rockbox/firmware/pcm_playback.c

735 lines
18 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdbool.h>
#include "config.h"
#include "debug.h"
#include "panic.h"
#include <kernel.h>
#ifndef SIMULATOR
#include "cpu.h"
#include "i2c.h"
#include "uda1380.h"
#include "system.h"
#endif
#include "logf.h"
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "pcm_playback.h"
#include "lcd.h"
#include "button.h"
#include "file.h"
#include "buffer.h"
#include "sprintf.h"
#include "button.h"
#include <string.h>
#ifdef HAVE_UDA1380
#define CHUNK_SIZE 32768
/* Must be a power of 2 */
#define NUM_PCM_BUFFERS (PCMBUF_SIZE / CHUNK_SIZE)
#define NUM_PCM_BUFFERS_MASK (NUM_PCM_BUFFERS - 1)
#define PCM_WATERMARK (CHUNK_SIZE * 6)
#define PCM_CF_WATERMARK (PCMBUF_SIZE - CHUNK_SIZE*8)
static bool pcm_playing;
static bool pcm_paused;
static int pcm_freq = 0x6; /* 44.1 is default */
static char *audiobuffer;
static long audiobuffer_pos;
long audiobuffer_free;
static long audiobuffer_fillpos;
static bool boost_mode;
/* Crossfade modes. If CFM_CROSSFADE is selected, normal
* crossfader will activate. Selecting CFM_FLUSH is a special
* operation that only overwrites the pcm buffer without crossfading.
*/
enum {
CFM_CROSSFADE,
CFM_FLUSH
};
static int crossfade_mode;
static bool crossfade_enabled;
static bool crossfade_active;
static bool crossfade_init;
static int crossfade_pos;
static int crossfade_amount;
static int crossfade_rem;
static char *guardbuf;
static void (*pcm_event_handler)(void);
static unsigned char *next_start;
static long next_size;
static int last_chunksize = 0;
struct pcmbufdesc
{
void *addr;
int size;
void (*callback)(void); /* Call this when the buffer has been played */
} pcmbuffers[NUM_PCM_BUFFERS];
volatile int pcmbuf_read_index;
volatile int pcmbuf_write_index;
int pcmbuf_unplayed_bytes;
int pcmbuf_watermark;
void (*pcmbuf_watermark_callback)(int bytes_left);
/* Set up the DMA transfer that kicks in when the audio FIFO gets empty */
static void dma_start(const void *addr, long size)
{
pcm_playing = true;
addr = (void *)((unsigned long)addr & ~3); /* Align data */
size &= ~3; /* Size must be multiple of 4 */
/* Reset the audio FIFO */
IIS2CONFIG = 0x800;
EBU1CONFIG = 0x800;
/* Set up DMA transfer */
SAR0 = ((unsigned long)addr); /* Source address */
DAR0 = (unsigned long)&PDOR3; /* Destination address */
BCR0 = size; /* Bytes to transfer */
/* Enable the FIFO and force one write to it */
IIS2CONFIG = (pcm_freq << 12) | 0x300 | 4 << 2;
/* Also send the audio to S/PDIF */
EBU1CONFIG = 7 << 12 | 3 << 8 | 5 << 2;
DCR0 = DMA_INT | DMA_EEXT | DMA_CS | DMA_SINC | DMA_START;
}
void pcm_boost(bool state)
{
static bool boost_state = false;
if (crossfade_active || boost_mode)
return ;
if (state != boost_state) {
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
cpu_boost(state);
#endif
boost_state = state;
}
}
/* Stops the DMA transfer and interrupt */
static void dma_stop(void)
{
pcm_playing = false;
DCR0 = 0;
/* Reset the FIFO */
IIS2CONFIG = 0x800;
EBU1CONFIG = 0x800;
pcmbuf_unplayed_bytes = 0;
last_chunksize = 0;
audiobuffer_pos = 0;
audiobuffer_fillpos = 0;
audiobuffer_free = PCMBUF_SIZE;
pcmbuf_read_index = 0;
pcmbuf_write_index = 0;
next_start = NULL;
next_size = 0;
crossfade_init = 0;
pcm_paused = false;
}
/* sets frequency of input to DAC */
void pcm_set_frequency(unsigned int frequency)
{
switch(frequency)
{
case 11025:
pcm_freq = 0x4;
uda1380_set_nsorder(3);
break;
case 22050:
pcm_freq = 0x6;
uda1380_set_nsorder(3);
break;
case 44100:
default:
pcm_freq = 0xC;
uda1380_set_nsorder(5);
break;
}
}
/* the registered callback function to ask for more mp3 data */
static void (*callback_for_more)(unsigned char**, long*) = NULL;
int pcm_play_num_used_buffers(void)
{
return (pcmbuf_write_index - pcmbuf_read_index) & NUM_PCM_BUFFERS_MASK;
}
static void pcm_play_callback(unsigned char** start, long* size)
{
struct pcmbufdesc *desc = &pcmbuffers[pcmbuf_read_index];
int sz;
pcmbuf_unplayed_bytes -= last_chunksize;
audiobuffer_free += last_chunksize;
if(desc->size == 0)
{
/* The buffer is finished, call the callback function */
if(desc->callback)
desc->callback();
/* Advance to the next buffer */
pcmbuf_read_index = (pcmbuf_read_index + 1) & NUM_PCM_BUFFERS_MASK;
desc = &pcmbuffers[pcmbuf_read_index];
}
if(pcm_play_num_used_buffers())
{
/* Play max 64K at a time */
sz = MIN(desc->size, 32768);
*start = desc->addr;
*size = sz;
/* Update the buffer descriptor */
desc->size -= sz;
desc->addr += sz;
last_chunksize = sz;
}
else
{
/* No more buffers */
*size = 0;
if (pcm_event_handler)
pcm_event_handler();
}
#if 1
if(pcmbuf_unplayed_bytes <= pcmbuf_watermark)
{
if(pcmbuf_watermark_callback)
{
pcmbuf_watermark_callback(pcmbuf_unplayed_bytes);
}
}
#endif
}
void pcm_play_data(const unsigned char* start, int size,
void (*get_more)(unsigned char** start, long* size))
{
callback_for_more = get_more;
get_more(&next_start, &next_size);
dma_start(start, size);
/* Sleep a while, then power on audio output */
sleep(HZ/16);
uda1380_enable_output(true);
}
void pcm_play_stop(void)
{
crossfade_active = false;
pcm_set_boost_mode(false);
if (pcm_playing) {
uda1380_enable_output(false);
pcm_boost(false);
sleep(HZ/16);
dma_stop();
}
}
void pcm_play_pause(bool play)
{
if(pcm_paused && play && pcmbuf_unplayed_bytes)
{
logf("unpause");
/* Reset chunk size so dma has enough data to fill the fifo. */
/* This shouldn't be needed anymore. */
//SAR0 = (unsigned long)next_start;
//BCR0 = next_size;
/* Enable the FIFO and force one write to it */
IIS2CONFIG = (pcm_freq << 12) | 0x300 | 4 << 2;
EBU1CONFIG = 7 << 12 | 3 << 8 | 5 << 2;
DCR0 |= DMA_EEXT | DMA_START;
}
else if(!pcm_paused && !play)
{
logf("pause");
/* Disable DMA peripheral request. */
DCR0 &= ~DMA_EEXT;
IIS2CONFIG = 0x800;
EBU1CONFIG = 0x800;
}
pcm_paused = !play;
}
bool pcm_is_playing(void)
{
return pcm_playing;
}
/* DMA0 Interrupt is called when the DMA has finished transfering a chunk */
void DMA0(void) __attribute__ ((interrupt_handler, section(".icode")));
void DMA0(void)
{
int res = DSR0;
DSR0 = 1; /* Clear interrupt */
DCR0 &= ~DMA_EEXT;
/* Stop on error */
if(res & 0x70)
{
dma_stop();
logf("DMA Error");
}
else
{
if(next_size)
{
SAR0 = (unsigned long)next_start; /* Source address */
BCR0 = next_size; /* Bytes to transfer */
DCR0 |= DMA_EEXT;
if (callback_for_more)
callback_for_more(&next_start, &next_size);
}
else
{
/* Finished playing */
dma_stop();
logf("DMA No Data");
}
}
IPR |= (1<<14); /* Clear pending interrupt request */
}
void pcm_init(void)
{
pcm_playing = false;
pcm_paused = false;
uda1380_init();
BUSMASTER_CTRL = 0x81; /* PARK[1,0]=10 + BCR24BIT */
DIVR0 = 54; /* DMA0 is mapped into vector 54 in system.c */
DMAROUTE = (DMAROUTE & 0xffffff00) | DMA0_REQ_AUDIO_1;
DMACONFIG = 1; /* DMA0Req = PDOR3 */
/* Reset the audio FIFO */
IIS2CONFIG = 0x800;
/* Enable interrupt at level 7, priority 0 */
ICR4 = (ICR4 & 0xffff00ff) | 0x00001c00;
IMR &= ~(1<<14); /* bit 14 is DMA0 */
pcm_play_init();
pcm_set_frequency(44100);
}
void pcm_play_set_watermark(int numbytes, void (*callback)(int bytes_left))
{
pcmbuf_watermark = numbytes;
pcmbuf_watermark_callback = callback;
}
bool pcm_play_add_chunk(void *addr, int size, void (*callback)(void))
{
/* We don't use the last buffer, since we can't see the difference
between the full and empty condition */
if(pcm_play_num_used_buffers() < (NUM_PCM_BUFFERS - 2))
{
pcmbuffers[pcmbuf_write_index].addr = addr;
pcmbuffers[pcmbuf_write_index].size = size;
pcmbuffers[pcmbuf_write_index].callback = callback;
pcmbuf_write_index = (pcmbuf_write_index+1) & NUM_PCM_BUFFERS_MASK;
pcmbuf_unplayed_bytes += size;
return true;
}
else
return false;
}
void pcm_watermark_callback(int bytes_left)
{
/* Fill audio buffer by boosting cpu */
pcm_boost(true);
if (bytes_left <= CHUNK_SIZE * 2)
crossfade_active = false;
}
void pcm_set_boost_mode(bool state)
{
if (state)
pcm_boost(true);
boost_mode = state;
}
void audiobuffer_add_event(void (*event_handler)(void))
{
pcm_event_handler = event_handler;
}
unsigned int audiobuffer_get_latency(void)
{
int latency;
/* This has to be done better. */
latency = (PCMBUF_SIZE - audiobuffer_free - CHUNK_SIZE)/4 / (44100/1000);
if (latency < 0)
latency = 0;
return latency;
}
bool pcm_is_lowdata(void)
{
if (!pcm_is_playing() || pcm_paused)
return false;
if (pcmbuf_unplayed_bytes < PCM_WATERMARK || crossfade_active)
return true;
return false;
}
bool pcm_crossfade_init(void)
{
if (PCMBUF_SIZE - audiobuffer_free < CHUNK_SIZE * 8 || !crossfade_enabled) {
return false;
}
logf("crossfading!");
crossfade_mode = CFM_CROSSFADE;
crossfade_init = true;
return true;
}
/** Initialize a track switch so that audio playback will not stop but
* the switch to next track would happen as soon as possible.
*/
void pcm_flush_audio(void)
{
if (crossfade_init || crossfade_active || !pcm_playing)
return ;
crossfade_mode = CFM_FLUSH;
crossfade_init = true;
}
void pcm_flush_fillpos(void)
{
if (audiobuffer_fillpos) {
while (!pcm_play_add_chunk(&audiobuffer[audiobuffer_pos],
audiobuffer_fillpos, pcm_event_handler)) {
pcm_boost(false);
yield();
/* This is a fatal error situation that should never happen. */
if (!pcm_playing)
break ;
}
pcm_event_handler = NULL;
audiobuffer_pos += audiobuffer_fillpos;
if (audiobuffer_pos >= PCMBUF_SIZE)
audiobuffer_pos -= PCMBUF_SIZE;
audiobuffer_free -= audiobuffer_fillpos;
audiobuffer_fillpos = 0;
}
}
static void crossfade_start(void)
{
crossfade_init = 0;
if (PCMBUF_SIZE - audiobuffer_free < CHUNK_SIZE * 4) {
if (crossfade_mode == CFM_FLUSH)
pcm_play_stop();
return ;
}
pcm_flush_fillpos();
pcm_boost(true);
crossfade_active = true;
crossfade_pos = audiobuffer_pos;
switch (crossfade_mode) {
case CFM_CROSSFADE:
crossfade_amount = (PCMBUF_SIZE - audiobuffer_free - (CHUNK_SIZE * 2))/2;
crossfade_rem = crossfade_amount;
break ;
case CFM_FLUSH:
crossfade_amount = (PCMBUF_SIZE - audiobuffer_free - (CHUNK_SIZE * 2))/2;
crossfade_rem = crossfade_amount;
break ;
}
crossfade_pos -= crossfade_amount*2;
if (crossfade_pos < 0)
crossfade_pos += PCMBUF_SIZE;
}
static __inline
int crossfade(short *buf, const short *buf2, int length)
{
int size, i;
int val1, val2;
size = MIN(length, crossfade_rem);
switch (crossfade_mode) {
case CFM_CROSSFADE:
val1 = (crossfade_rem<<10)/crossfade_amount;
val2 = ((crossfade_amount-crossfade_rem)<<10)/crossfade_amount;
for (i = 0; i < size; i++) {
buf[i] = ((buf[i] * val1) + (buf2[i] * val2)) >> 10;
}
break ;
case CFM_FLUSH:
for (i = 0; i < size; i++) {
buf[i] = buf2[i];
}
//memcpy((char *)buf, (char *)buf2, size*2);
break ;
}
crossfade_rem -= size;
if (crossfade_rem <= 0)
crossfade_active = false;
return size;
}
inline static bool prepare_insert(long length)
{
if (crossfade_init)
crossfade_start();
if (audiobuffer_free < length + audiobuffer_fillpos
+ CHUNK_SIZE && !crossfade_active) {
pcm_boost(false);
return false;
}
if (!pcm_is_playing()) {
pcm_boost(true);
crossfade_active = false;
if (audiobuffer_free < PCMBUF_SIZE - CHUNK_SIZE*4)
pcm_play_start();
}
return true;
}
void* pcm_request_buffer(long length, long *realsize)
{
void *ptr = NULL;
if (!prepare_insert(length)) {
*realsize = 0;
return NULL;
}
if (crossfade_active) {
*realsize = MIN(length, PCMBUF_GUARD);
ptr = &guardbuf[0];
} else {
*realsize = MIN(length, PCMBUF_SIZE - audiobuffer_pos
- audiobuffer_fillpos);
if (*realsize < length) {
*realsize += MIN((long)(length - *realsize), PCMBUF_GUARD);
}
ptr = &audiobuffer[audiobuffer_pos + audiobuffer_fillpos];
}
return ptr;
}
bool pcm_is_crossfade_active(void)
{
return crossfade_active;
}
void pcm_flush_buffer(long length)
{
int copy_n;
char *buf;
if (crossfade_active) {
buf = &guardbuf[0];
length = MIN(length, PCMBUF_GUARD);
while (length > 0 && crossfade_active) {
copy_n = MIN(length, PCMBUF_SIZE - crossfade_pos);
copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos],
(const short *)buf, copy_n/2);
buf += copy_n;
length -= copy_n;
crossfade_pos += copy_n;
if (crossfade_pos >= PCMBUF_SIZE)
crossfade_pos -= PCMBUF_SIZE;
}
while (length > 0) {
copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos);
memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n);
audiobuffer_fillpos = copy_n;
buf += copy_n;
length -= copy_n;
if (length > 0)
pcm_flush_fillpos();
}
}
audiobuffer_fillpos += length;
try_flush:
if (audiobuffer_fillpos < CHUNK_SIZE && PCMBUF_SIZE
- audiobuffer_pos - audiobuffer_fillpos > 0)
return ;
copy_n = audiobuffer_fillpos - (PCMBUF_SIZE - audiobuffer_pos);
if (copy_n > 0) {
audiobuffer_fillpos -= copy_n;
pcm_flush_fillpos();
copy_n = MIN(copy_n, PCMBUF_GUARD);
memcpy(&audiobuffer[0], &guardbuf[0], copy_n);
audiobuffer_fillpos = copy_n;
goto try_flush;
}
pcm_flush_fillpos();
}
bool pcm_insert_buffer(char *buf, long length)
{
long copy_n = 0;
if (!prepare_insert(length))
return false;
if (crossfade_active) {
while (length > 0 && crossfade_active) {
copy_n = MIN(length, PCMBUF_SIZE - crossfade_pos);
copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos],
(const short *)buf, copy_n/2);
buf += copy_n;
length -= copy_n;
crossfade_pos += copy_n;
if (crossfade_pos >= PCMBUF_SIZE)
crossfade_pos -= PCMBUF_SIZE;
}
while (length > 0) {
copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos);
memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n);
audiobuffer_fillpos = copy_n;
buf += copy_n;
length -= copy_n;
if (length > 0)
pcm_flush_fillpos();
}
}
while (length > 0) {
copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos -
audiobuffer_fillpos);
copy_n = MIN(CHUNK_SIZE - audiobuffer_fillpos, copy_n);
memcpy(&audiobuffer[audiobuffer_pos+audiobuffer_fillpos],
buf, copy_n);
buf += copy_n;
audiobuffer_fillpos += copy_n;
length -= copy_n;
/* Pre-buffer to meet CHUNK_SIZE requirement */
if (audiobuffer_fillpos < CHUNK_SIZE && length == 0) {
return true;
}
pcm_flush_fillpos();
}
return true;
}
void pcm_play_init(void)
{
audiobuffer = &audiobuf[(audiobufend - audiobuf) -
PCMBUF_SIZE - PCMBUF_GUARD];
guardbuf = &audiobuffer[PCMBUF_SIZE];
audiobuffer_free = PCMBUF_SIZE;
audiobuffer_pos = 0;
audiobuffer_fillpos = 0;
boost_mode = 0;
pcmbuf_read_index = 0;
pcmbuf_write_index = 0;
pcmbuf_unplayed_bytes = 0;
crossfade_active = false;
crossfade_init = false;
pcm_event_handler = NULL;
}
void pcm_crossfade_enable(bool on_off)
{
crossfade_enabled = on_off;
}
bool pcm_is_crossfade_enabled(void)
{
return crossfade_enabled;
}
void pcm_play_start(void)
{
struct pcmbufdesc *desc = &pcmbuffers[pcmbuf_read_index];
int size;
char *start;
if (crossfade_enabled) {
pcm_play_set_watermark(PCM_CF_WATERMARK, pcm_watermark_callback);
} else {
pcm_play_set_watermark(PCM_WATERMARK, pcm_watermark_callback);
}
crossfade_active = false;
if(!pcm_is_playing())
{
size = MIN(desc->size, 32768);
start = desc->addr;
last_chunksize = size;
desc->size -= size;
desc->addr += size;
pcm_play_data(start, size, pcm_play_callback);
}
}
#endif /* HAVE_UDA1380 */