rockbox/firmware/target/arm/sandisk/sansa-c200/lcd-c200.c

319 lines
8.9 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 by Mark Arigo
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "system.h"
/* Display status */
static unsigned lcd_yuv_options NOCACHEBSS_ATTR = 0;
/* LCD command set for Samsung S6B33B2 */
#define R_OSCILLATION_MODE 0x02
#define R_DRIVER_OUTPUT_MODE 0x10
#define R_DCDC_SET 0x20
#define R_BIAS_SET 0x22
#define R_DCDC_CLOCK_DIV 0x24
#define R_DCDC_AMP_ONOFF 0x26
#define R_TEMP_COMPENSATION 0x28
#define R_CONTRAST_CONTROL1 0x2a
#define R_CONTRAST_CONTROL2 0x2b
#define R_STANDBY_OFF 0x2c
#define R_STANDBY_ON 0x2d
#define R_DDRAM_BURST_OFF 0x2e
#define R_DDRAM_BURST_ON 0x2f
#define R_ADDRESSING_MODE 0x30
#define R_ROW_VECTOR_MODE 0x32
#define R_N_LINE_INVERSION 0x34
#define R_FRAME_FREQ_CONTROL 0x36
#define R_RED_PALETTE 0x38
#define R_GREEN_PALETTE 0x3a
#define R_BLUE_PALETTE 0x3c
#define R_ENTRY_MODE 0x40
#define R_X_ADDR_AREA 0x42
#define R_Y_ADDR_AREA 0x43
#define R_RAM_SKIP_AREA 0x45
#define R_DISPLAY_OFF 0x50
#define R_DISPLAY_ON 0x51
#define R_SPEC_DISPLAY_PATTERN 0x53
#define R_PARTIAL_DISPLAY_MODE 0x55
#define R_PARTIAL_START_LINE 0x56
#define R_PARTIAL_END_LINE 0x57
#define R_AREA_SCROLL_MODE 0x59
#define R_SCROLL_START_LINE 0x5a
#define R_DATA_FORMAT_SELECT 0x60
/* wait for LCD */
static inline void lcd_wait_write(void)
{
while (LCD1_CONTROL & LCD1_BUSY_MASK);
}
/* send LCD data */
static void lcd_send_data(unsigned data)
{
lcd_wait_write();
LCD1_DATA = data >> 8;
lcd_wait_write();
LCD1_DATA = data & 0xff;
}
/* send LCD command */
static void lcd_send_command(unsigned cmd)
{
lcd_wait_write();
LCD1_CMD = cmd;
}
/* LCD init */
void lcd_init_device(void)
{
/* This is from the c200 of bootloader beginning at offset 0xbbf4 */
outl(inl(0x70000010) & ~0xfc000000, 0x70000010);
outl(inl(0x70000010), 0x70000010);
DEV_INIT2 &= ~0x400;
udelay(10000);
LCD1_CONTROL &= ~0x4;
udelay(15);
LCD1_CONTROL |= 0x4;
udelay(10);
LCD1_CONTROL = 0x0084; /* bits (9,10) = 00 -> fastest setting */
udelay(10000);
lcd_send_command(R_STANDBY_OFF);
udelay(20000);
lcd_send_command(R_OSCILLATION_MODE);
lcd_send_command(0x01);
udelay(20000);
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x01);
udelay(20000);
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x09);
udelay(20000);
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x0b);
udelay(20000);
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x0f);
udelay(20000);
lcd_send_command(R_DRIVER_OUTPUT_MODE);
lcd_send_command(0x07);
lcd_send_command(R_DCDC_SET);
lcd_send_command(0x03);
lcd_send_command(R_DCDC_CLOCK_DIV);
lcd_send_command(0x03);
lcd_send_command(R_TEMP_COMPENSATION);
lcd_send_command(0x01);
lcd_send_command(R_CONTRAST_CONTROL1);
lcd_send_command(0x55);
lcd_send_command(R_ADDRESSING_MODE);
lcd_send_command(0x10);
lcd_send_command(R_ROW_VECTOR_MODE);
lcd_send_command(0x0e);
lcd_send_command(R_N_LINE_INVERSION);
lcd_send_command(0x0d);
lcd_send_command(R_FRAME_FREQ_CONTROL);
lcd_send_command(0);
lcd_send_command(R_ENTRY_MODE);
lcd_send_command(0x82);
lcd_send_command(R_Y_ADDR_AREA); /* vertical dimensions */
lcd_send_command(0x1a); /* y1 + 0x1a */
lcd_send_command(LCD_HEIGHT - 1 + 0x1a); /* y2 + 0x1a */
lcd_send_command(R_X_ADDR_AREA); /* horizontal dimensions */
lcd_send_command(0); /* x1 */
lcd_send_command(LCD_WIDTH - 1); /* x2 */
udelay(100000);
lcd_send_command(R_DISPLAY_ON);
}
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val)
{
lcd_send_command(R_CONTRAST_CONTROL1);
lcd_send_command(val);
}
void lcd_set_invert_display(bool yesno)
{
/* TODO: Implement lcd_set_invert_display() */
(void)yesno;
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
lcd_send_command(R_DRIVER_OUTPUT_MODE);
lcd_send_command(yesno ? 0x02 : 0x07);
}
/*** update functions ***/
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
/* Performance function to blit a YUV bitmap directly to the LCD */
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
unsigned char const * yuv_src[3];
off_t z;
/* Sorry, but width and height must be >= 2 or else */
width &= ~1;
height >>= 1;
y += 0x1a;
z = stride*src_y;
yuv_src[0] = src[0] + z + src_x;
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
lcd_send_command(R_ENTRY_MODE);
lcd_send_command(0x80);
lcd_send_command(R_X_ADDR_AREA);
lcd_send_command(x);
lcd_send_command(x + width - 1);
if (lcd_yuv_options & LCD_YUV_DITHER)
{
do
{
lcd_send_command(R_Y_ADDR_AREA);
lcd_send_command(y);
lcd_send_command(y + 1);
lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
y += 2;
}
while (--height > 0);
}
else
{
do
{
lcd_send_command(R_Y_ADDR_AREA);
lcd_send_command(y);
lcd_send_command(y + 1);
lcd_write_yuv420_lines(yuv_src, width, stride);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
y += 2;
}
while (--height > 0);
}
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
const fb_data *addr;
if (x + width >= LCD_WIDTH)
width = LCD_WIDTH - x;
if (y + height >= LCD_HEIGHT)
height = LCD_HEIGHT - y;
if ((width <= 0) || (height <= 0))
return; /* Nothing left to do. */
addr = &lcd_framebuffer[y][x];
if (width <= 1) {
lcd_send_command(R_ENTRY_MODE); /* The X end address must be larger */
lcd_send_command(0x80); /* that the X start address, so we */
lcd_send_command(R_X_ADDR_AREA); /* switch to vertical mode for */
lcd_send_command(x); /* single column updates and set */
lcd_send_command(x + 1); /* the window width to 2 */
} else {
lcd_send_command(R_ENTRY_MODE);
lcd_send_command(0x82);
lcd_send_command(R_X_ADDR_AREA);
lcd_send_command(x);
lcd_send_command(x + width - 1);
}
lcd_send_command(R_Y_ADDR_AREA);
lcd_send_command(y + 0x1a);
lcd_send_command(y + height - 1 + 0x1a);
do {
int w = width;
do {
lcd_send_data(*addr++);
} while (--w > 0);
addr += LCD_WIDTH - width;
} while (--height > 0);
}