rockbox/apps/dsp.c

1401 lines
40 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 Miika Pekkarinen
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include <stdbool.h>
#include <inttypes.h>
#include <string.h>
#include <sound.h>
#include "dsp.h"
#include "eq.h"
#include "kernel.h"
#include "playback.h"
#include "system.h"
#include "settings.h"
#include "replaygain.h"
#include "misc.h"
#include "debug.h"
/* 16-bit samples are scaled based on these constants. The shift should be
* no more than 15.
*/
#define WORD_SHIFT 12
#define WORD_FRACBITS 27
#define NATIVE_DEPTH 16
#define SAMPLE_BUF_COUNT 256
#define RESAMPLE_BUF_COUNT (256 * 4) /* Enough for 11,025 Hz -> 44,100 Hz*/
#define DEFAULT_GAIN 0x01000000
/* enums to index conversion properly with stereo mode and other settings */
enum
{
SAMPLE_INPUT_LE_NATIVE_I_STEREO = STEREO_INTERLEAVED,
SAMPLE_INPUT_LE_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED,
SAMPLE_INPUT_LE_NATIVE_MONO = STEREO_MONO,
SAMPLE_INPUT_GT_NATIVE_I_STEREO = STEREO_INTERLEAVED + STEREO_NUM_MODES,
SAMPLE_INPUT_GT_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED + STEREO_NUM_MODES,
SAMPLE_INPUT_GT_NATIVE_MONO = STEREO_MONO + STEREO_NUM_MODES,
SAMPLE_INPUT_GT_NATIVE_1ST_INDEX = STEREO_NUM_MODES
};
enum
{
SAMPLE_OUTPUT_MONO = 0,
SAMPLE_OUTPUT_STEREO,
SAMPLE_OUTPUT_DITHERED_MONO,
SAMPLE_OUTPUT_DITHERED_STEREO
};
/****************************************************************************
* NOTE: Any assembly routines that use these structures must be updated
* if current data members are moved or changed.
*/
/* 32-bit achitecture offset */
struct resample_data
{
long delta; /* 00h */
long phase; /* 04h */
int32_t last_sample[2]; /* 08h */
/* 10h */
};
/* This is for passing needed data to assembly dsp routines. If another
* dsp parameter needs to be passed, add to the end of the structure
* and remove from dsp_config.
* If another function type becomes assembly optimized and requires dsp
* config info, add a pointer paramter of type "struct dsp_data *".
* If removing something from other than the end, reserve the spot or
* else update every implementation for every target.
* Be sure to add the offset of the new member for easy viewing as well. :)
* It is the first member of dsp_config and all members can be accessesed
* through the main aggregate but this is intended to make a safe haven
* for these items whereas the c part can be rearranged at will. dsp_data
* could even moved within dsp_config without disurbing the order.
*/
struct dsp_data
{
int output_scale; /* 00h */
int num_channels; /* 04h */
struct resample_data resample_data; /* 08h */
int clip_min; /* 18h */
int clip_max; /* 2ch */
/* 30h */
};
/* No asm...yet */
struct dither_data
{
long error[3]; /* 00h */
long random; /* 0ch */
/* 10h */
};
struct crossfeed_data
{
int32_t gain; /* 00h - Direct path gain */
int32_t coefs[3]; /* 04h - Coefficients for the shelving filter */
int32_t history[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
int32_t delay[13][2]; /* 20h */
int32_t *index; /* 88h - Current pointer into the delay line */
/* 8ch */
};
/* Current setup is one lowshelf filters three peaking filters and one
* highshelf filter. Varying the number of shelving filters make no sense,
* but adding peaking filters is possible.
*/
struct eq_state
{
char enabled[5]; /* 00h - Flags for active filters */
struct eqfilter filters[5]; /* 08h - packing is 4? */
/* 10ch */
};
/* Include header with defines which functions are implemented in assembly
code for the target */
#include <dsp_asm.h>
/* Typedefs keep things much neater in this case */
typedef int (*sample_input_fn_type)(int count, const char *src[],
int32_t *dst[]);
typedef int (*resample_fn_type)(int count, struct dsp_data *data,
int32_t *src[], int32_t *dst[]);
typedef void (*sample_output_fn_type)(int count, struct dsp_data *data,
int32_t *src[], int16_t *dst);
typedef void (*channels_process_fn_type)(int count, int32_t *buf[]);
/*
***************************************************************************/
struct dsp_config
{
struct dsp_data data; /* Config members for use in asm routines */
long codec_frequency; /* Sample rate of data coming from the codec */
long frequency; /* Effective sample rate after pitch shift (if any) */
int sample_depth;
int sample_bytes;
int stereo_mode;
int frac_bits;
long gain; /* Note that this is in S8.23 format. */
/* Functions that change depending upon settings - NULL if stage is
disabled */
sample_input_fn_type input_samples;
resample_fn_type resample;
sample_output_fn_type output_samples;
/* These will be NULL for the voice codec and is more economical that
way */
channels_process_fn_type apply_crossfeed;
channels_process_fn_type channels_process;
};
/* General DSP config */
static struct dsp_config dsp_conf[2] IBSS_ATTR; /* 0=A, 1=V */
/* Dithering */
static struct dither_data dither_data[2] IBSS_ATTR; /* 0=left, 1=right */
static long dither_mask IBSS_ATTR;
static long dither_bias IBSS_ATTR;
/* Crossfeed */
struct crossfeed_data crossfeed_data IDATA_ATTR = /* A */
{
.index = (int32_t *)crossfeed_data.delay
};
/* Equalizer */
static struct eq_state eq_data; /* A/V */
#ifdef HAVE_SW_TONE_CONTROLS
static int prescale;
static int bass;
static int treble;
/* Filter struct for software bass/treble controls */
static struct eqfilter tone_filter;
#endif
/* Settings applicable to audio codec only */
static int pitch_ratio = 1000;
static int channels_mode;
long dsp_sw_gain;
long dsp_sw_cross;
static bool dither_enabled;
static bool eq_enabled IBSS_ATTR;
static long eq_precut;
static long track_gain;
static bool new_gain;
static long album_gain;
static long track_peak;
static long album_peak;
static long replaygain;
static bool crossfeed_enabled;
#define audio_dsp (&dsp_conf[CODEC_IDX_AUDIO])
#define voice_dsp (&dsp_conf[CODEC_IDX_VOICE])
static struct dsp_config *dsp IDATA_ATTR = audio_dsp;
/* The internal format is 32-bit samples, non-interleaved, stereo. This
* format is similar to the raw output from several codecs, so the amount
* of copying needed is minimized for that case.
*/
static int32_t sample_buf[SAMPLE_BUF_COUNT] IBSS_ATTR;
static int32_t resample_buf[RESAMPLE_BUF_COUNT] IBSS_ATTR;
/* set a new dsp and return old one */
static inline struct dsp_config * switch_dsp(struct dsp_config *_dsp)
{
struct dsp_config * old_dsp = dsp;
dsp = _dsp;
return old_dsp;
}
#if 0
/* Clip sample to arbitrary limits where range > 0 and min + range = max */
static inline long clip_sample(int32_t sample, int32_t min, int32_t range)
{
int32_t c = sample - min;
if ((uint32_t)c > (uint32_t)range)
{
sample -= c;
if (c > 0)
sample += range;
}
return sample;
}
#endif
/* Clip sample to signed 16 bit range */
static inline int32_t clip_sample_16(int32_t sample)
{
if ((int16_t)sample != sample)
sample = 0x7fff ^ (sample >> 31);
return sample;
}
int sound_get_pitch(void)
{
return pitch_ratio;
}
void sound_set_pitch(int permille)
{
pitch_ratio = permille;
dsp_configure(DSP_SWITCH_FREQUENCY, dsp->codec_frequency);
}
/* Convert at most count samples to the internal format, if needed. Returns
* number of samples ready for further processing. Updates src to point
* past the samples "consumed" and dst is set to point to the samples to
* consume. Note that for mono, dst[0] equals dst[1], as there is no point
* in processing the same data twice.
*/
/* convert count 16-bit mono to 32-bit mono */
static int sample_input_lte_native_mono(
int count, const char *src[], int32_t *dst[])
{
count = MIN(SAMPLE_BUF_COUNT/2, count);
const int16_t *s = (int16_t *) src[0];
const int16_t * const send = s + count;
int32_t *d = dst[0] = dst[1] = sample_buf;
const int scale = WORD_SHIFT;
do
{
*d++ = *s++ << scale;
}
while (s < send);
src[0] = (char *)s;
return count;
}
/* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
static int sample_input_lte_native_i_stereo(
int count, const char *src[], int32_t *dst[])
{
count = MIN(SAMPLE_BUF_COUNT/2, count);
const int32_t *s = (int32_t *) src[0];
const int32_t * const send = s + count;
int32_t *dl = dst[0] = sample_buf;
int32_t *dr = dst[1] = sample_buf + SAMPLE_BUF_COUNT/2;
const int scale = WORD_SHIFT;
do
{
int32_t slr = *s++;
#ifdef ROCKBOX_LITTLE_ENDIAN
*dl++ = (slr >> 16) << scale;
*dr++ = (int32_t)(int16_t)slr << scale;
#else /* ROCKBOX_BIG_ENDIAN */
*dl++ = (int32_t)(int16_t)slr << scale;
*dr++ = (slr >> 16) << scale;
#endif
}
while (s < send);
src[0] = (char *)s;
return count;
}
/* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
static int sample_input_lte_native_ni_stereo(
int count, const char *src[], int32_t *dst[])
{
count = MIN(SAMPLE_BUF_COUNT/2, count);
const int16_t *sl = (int16_t *) src[0];
const int16_t *sr = (int16_t *) src[1];
const int16_t * const slend = sl + count;
int32_t *dl = dst[0] = sample_buf;
int32_t *dr = dst[1] = sample_buf + SAMPLE_BUF_COUNT/2;
const int scale = WORD_SHIFT;
do
{
*dl++ = *sl++ << scale;
*dr++ = *sr++ << scale;
}
while (sl < slend);
src[0] = (char *)sl;
src[1] = (char *)sr;
return count;
}
/* convert count 32-bit mono to 32-bit mono */
static int sample_input_gt_native_mono(
int count, const char *src[], int32_t *dst[])
{
count = MIN(SAMPLE_BUF_COUNT/2, count);
dst[0] = dst[1] = (int32_t *)src[0];
src[0] = (char *)(dst[0] + count);
return count;
}
/* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
static int sample_input_gt_native_i_stereo(
int count, const char *src[], int32_t *dst[])
{
count = MIN(SAMPLE_BUF_COUNT/2, count);
const int32_t *s = (int32_t *)src[0];
const int32_t * const send = s + 2*count;
int32_t *dl = sample_buf;
int32_t *dr = sample_buf + SAMPLE_BUF_COUNT/2;
dst[0] = dl;
dst[1] = dr;
do
{
*dl++ = *s++;
*dr++ = *s++;
}
while (s < send);
src[0] = (char *)send;
return count;
}
/* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
static int sample_input_gt_native_ni_stereo(
int count, const char *src[], int32_t *dst[])
{
count = MIN(SAMPLE_BUF_COUNT/2, count);
dst[0] = (int32_t *)src[0];
dst[1] = (int32_t *)src[1];
src[0] = (char *)(dst[0] + count);
src[1] = (char *)(dst[1] + count);
return count;
}
/**
* sample_input_new_format()
*
* set the to-native sample conversion function based on dsp sample parameters
*
* !DSPPARAMSYNC
* needs syncing with changes to the following dsp parameters:
* * dsp->stereo_mode (A/V)
* * dsp->sample_depth (A/V)
*/
static void sample_input_new_format(void)
{
static const sample_input_fn_type sample_input_functions[] =
{
[SAMPLE_INPUT_LE_NATIVE_MONO] = sample_input_lte_native_mono,
[SAMPLE_INPUT_LE_NATIVE_I_STEREO] = sample_input_lte_native_i_stereo,
[SAMPLE_INPUT_LE_NATIVE_NI_STEREO] = sample_input_lte_native_ni_stereo,
[SAMPLE_INPUT_GT_NATIVE_MONO] = sample_input_gt_native_mono,
[SAMPLE_INPUT_GT_NATIVE_I_STEREO] = sample_input_gt_native_i_stereo,
[SAMPLE_INPUT_GT_NATIVE_NI_STEREO] = sample_input_gt_native_ni_stereo,
};
int convert = dsp->stereo_mode;
if (dsp->sample_depth > NATIVE_DEPTH)
convert += SAMPLE_INPUT_GT_NATIVE_1ST_INDEX;
dsp->input_samples = sample_input_functions[convert];
}
#ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
/* write mono internal format to output format */
static void sample_output_mono(int count, struct dsp_data *data,
int32_t *src[], int16_t *dst)
{
const int32_t *s0 = src[0];
const int scale = data->output_scale;
do
{
int32_t lr = clip_sample_16(*s0++ >> scale);
*dst++ = lr;
*dst++ = lr;
}
while (--count > 0);
}
#endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
/* write stereo internal format to output format */
#ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
static void sample_output_stereo(int count, struct dsp_data *data,
int32_t *src[], int16_t *dst)
{
const int32_t *s0 = src[0];
const int32_t *s1 = src[1];
const int scale = data->output_scale;
do
{
*dst++ = clip_sample_16(*s0++ >> scale);
*dst++ = clip_sample_16(*s1++ >> scale);
}
while (--count > 0);
}
#endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
/**
* The "dither" code to convert the 24-bit samples produced by libmad was
* taken from the coolplayer project - coolplayer.sourceforge.net
*
* This function handles mono and stereo outputs.
*/
static void sample_output_dithered(int count, struct dsp_data *data,
int32_t *src[], int16_t *dst)
{
const int32_t mask = dither_mask;
const int32_t bias = dither_bias;
const int scale = data->output_scale;
const int32_t min = data->clip_min;
const int32_t max = data->clip_max;
const int32_t range = max - min;
int ch;
int16_t *d;
for (ch = 0; ch < dsp->data.num_channels; ch++)
{
struct dither_data * const dither = &dither_data[ch];
int32_t *s = src[ch];
int i;
for (i = 0, d = &dst[ch]; i < count; i++, s++, d += 2)
{
int32_t output, sample;
int32_t random;
/* Noise shape and bias */
sample = *s;
sample += dither->error[0] - dither->error[1] + dither->error[2];
dither->error[2] = dither->error[1];
dither->error[1] = dither->error[0]/2;
output = sample + bias;
/* Dither */
random = dither->random*0x0019660dL + 0x3c6ef35fL;
output += (random & mask) - (dither->random & mask);
dither->random = random;
/* Clip */
int32_t c = output - min;
if ((uint32_t)c > (uint32_t)range)
{
output -= c;
if (c > 0)
{
output += range;
if (sample > max)
sample = max;
}
else if (sample < min)
{
sample = min;
}
}
output &= ~mask;
/* Error feedback */
dither->error[0] = sample - output;
/* Quantize */
*d = output >> scale;
}
}
if (dsp->data.num_channels == 2)
return;
/* Have to duplicate left samples into the right channel since
pcm buffer and hardware is interleaved stereo */
d = &dst[0];
do
{
int16_t s = *d++;
*d++ = s;
}
while (--count > 0);
}
/**
* sample_output_new_format()
*
* set the from-native to ouput sample conversion routine
*
* !DSPPARAMSYNC
* needs syncing with changes to the following dsp parameters:
* * dsp->stereo_mode (A/V)
* * dither_enabled (A)
*/
static void sample_output_new_format(void)
{
static const sample_output_fn_type sample_output_functions[] =
{
sample_output_mono,
sample_output_stereo,
sample_output_dithered,
sample_output_dithered
};
int out = dsp->data.num_channels - 1;
if (dsp == audio_dsp && dither_enabled)
out += 2;
dsp->output_samples = sample_output_functions[out];
}
static void resampler_set_delta(int frequency)
{
dsp->data.resample_data.delta = (unsigned long)
frequency * 65536LL / NATIVE_FREQUENCY;
}
/**
* Linear interpolation resampling that introduces a one sample delay because
* of our inability to look into the future at the end of a frame.
*/
#ifndef DSP_HAVE_ASM_RESAMPLING
static int dsp_downsample(int count, struct dsp_data *data,
int32_t *src[], int32_t *dst[])
{
int ch = data->num_channels - 1;
long delta = data->resample_data.delta;
long phase, pos;
int32_t *d;
/* Rolled channel loop actually showed slightly faster. */
do
{
/* Just initialize things and not worry too much about the relatively
* uncommon case of not being able to spit out a sample for the frame.
*/
int32_t *s = src[ch];
int32_t last = data->resample_data.last_sample[ch];
data->resample_data.last_sample[ch] = s[count - 1];
d = dst[ch];
phase = data->resample_data.phase;
pos = phase >> 16;
/* Do we need last sample of previous frame for interpolation? */
if (pos > 0)
last = s[pos - 1];
while (pos < count)
{
*d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
phase += delta;
pos = phase >> 16;
last = s[pos - 1];
}
}
while (--ch >= 0);
/* Wrap phase accumulator back to start of next frame. */
data->resample_data.phase = phase - (count << 16);
return d - dst[0];
}
static int dsp_upsample(int count, struct dsp_data *data,
int32_t *src[], int32_t *dst[])
{
int ch = data->num_channels - 1;
long delta = data->resample_data.delta;
long phase, pos;
int32_t *d;
/* Rolled channel loop actually showed slightly faster. */
do
{
/* Should always be able to output a sample for a ratio up to
RESAMPLE_BUF_COUNT / SAMPLE_BUF_COUNT. */
int32_t *s = src[ch];
int32_t last = data->resample_data.last_sample[ch];
data->resample_data.last_sample[ch] = s[count - 1];
d = dst[ch];
phase = data->resample_data.phase;
pos = phase >> 16;
while (pos == 0)
{
*d++ = last + FRACMUL((phase & 0xffff) << 15, s[0] - last);
phase += delta;
pos = phase >> 16;
}
while (pos < count)
{
last = s[pos - 1];
*d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
phase += delta;
pos = phase >> 16;
}
}
while (--ch >= 0);
/* Wrap phase accumulator back to start of next frame. */
data->resample_data.phase = phase & 0xffff;
return d - dst[0];
}
#endif /* DSP_HAVE_ASM_RESAMPLING */
/* Resample count stereo samples. Updates the src array, if resampling is
* done, to refer to the resampled data. Returns number of stereo samples
* for further processing.
*/
static inline int resample(int count, int32_t *src[])
{
if (dsp->resample)
{
int32_t *dst[2] =
{
resample_buf,
resample_buf + RESAMPLE_BUF_COUNT/2,
};
count = dsp->resample(count, &dsp->data, src, dst);
src[0] = dst[0];
src[1] = dst[dsp->data.num_channels - 1];
}
return count;
}
static void dither_init(void)
{
/* Voice codec should not reset the audio codec's dither data */
if (dsp != audio_dsp)
return;
memset(dither_data, 0, sizeof (dither_data));
dither_bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
dither_mask = (1L << (dsp->frac_bits + 1 - NATIVE_DEPTH)) - 1;
}
void dsp_dither_enable(bool enable)
{
/* Be sure audio dsp is current to set correct function */
struct dsp_config *old_dsp = switch_dsp(audio_dsp);
dither_enabled = enable;
sample_output_new_format();
switch_dsp(old_dsp);
}
/* Applies crossfeed to the stereo signal in src.
* Crossfeed is a process where listening over speakers is simulated. This
* is good for old hard panned stereo records, which might be quite fatiguing
* to listen to on headphones with no crossfeed.
*/
#ifndef DSP_HAVE_ASM_CROSSFEED
static void apply_crossfeed(int count, int32_t *buf[])
{
int32_t *hist_l = &crossfeed_data.history[0];
int32_t *hist_r = &crossfeed_data.history[2];
int32_t *delay = &crossfeed_data.delay[0][0];
int32_t *coefs = &crossfeed_data.coefs[0];
int32_t gain = crossfeed_data.gain;
int32_t *di = crossfeed_data.index;
int32_t acc;
int32_t left, right;
int i;
for (i = 0; i < count; i++)
{
left = buf[0][i];
right = buf[1][i];
/* Filter delayed sample from left speaker */
ACC_INIT(acc, *di, coefs[0]);
ACC(acc, hist_l[0], coefs[1]);
ACC(acc, hist_l[1], coefs[2]);
/* Save filter history for left speaker */
hist_l[1] = GET_ACC(acc);
hist_l[0] = *di;
*di++ = left;
/* Filter delayed sample from right speaker */
ACC_INIT(acc, *di, coefs[0]);
ACC(acc, hist_r[0], coefs[1]);
ACC(acc, hist_r[1], coefs[2]);
/* Save filter history for right speaker */
hist_r[1] = GET_ACC(acc);
hist_r[0] = *di;
*di++ = right;
/* Now add the attenuated direct sound and write to outputs */
buf[0][i] = FRACMUL(left, gain) + hist_r[1];
buf[1][i] = FRACMUL(right, gain) + hist_l[1];
/* Wrap delay line index if bigger than delay line size */
if (di >= delay + 13*2)
di = delay;
}
/* Write back local copies of data we've modified */
crossfeed_data.index = di;
}
#endif /* DSP_HAVE_ASM_CROSSFEED */
/**
* dsp_set_crossfeed(bool enable)
*
* !DSPPARAMSYNC
* needs syncing with changes to the following dsp parameters:
* * dsp->stereo_mode (A)
*/
void dsp_set_crossfeed(bool enable)
{
crossfeed_enabled = enable;
audio_dsp->apply_crossfeed =
(enable && audio_dsp->data.num_channels > 1)
? apply_crossfeed : NULL;
}
void dsp_set_crossfeed_direct_gain(int gain)
{
crossfeed_data.gain = get_replaygain_int(gain * -10) << 7;
/* If gain is negative, the calculation overflowed and we need to clamp */
if (crossfeed_data.gain < 0)
crossfeed_data.gain = 0x7fffffff;
}
void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff)
{
long g1 = get_replaygain_int(lf_gain * -10) << 3;
long g2 = get_replaygain_int(hf_gain * -10) << 3;
filter_shelf_coefs(0xffffffff/NATIVE_FREQUENCY*cutoff, g1, g2,
crossfeed_data.coefs);
}
/* Combine all gains to a global gain. */
static void set_gain(struct dsp_config *dsp)
{
dsp->gain = DEFAULT_GAIN;
/* Replay gain not relevant to voice */
if (dsp == audio_dsp && replaygain)
{
dsp->gain = replaygain;
}
if (eq_enabled && eq_precut)
{
dsp->gain = (long) (((int64_t) dsp->gain * eq_precut) >> 24);
}
if (dsp->gain == DEFAULT_GAIN)
{
dsp->gain = 0;
}
else
{
dsp->gain >>= 1;
}
}
/**
* Use to enable the equalizer.
*
* @param enable true to enable the equalizer
*/
void dsp_set_eq(bool enable)
{
eq_enabled = enable;
}
/**
* Update the amount to cut the audio before applying the equalizer.
*
* @param precut to apply in decibels (multiplied by 10)
*/
void dsp_set_eq_precut(int precut)
{
eq_precut = get_replaygain_int(precut * -10);
set_gain(audio_dsp);
set_gain(voice_dsp); /* For EQ precut */
}
/**
* Synchronize the equalizer filter coefficients with the global settings.
*
* @param band the equalizer band to synchronize
*/
void dsp_set_eq_coefs(int band)
{
const int *setting;
long gain;
unsigned long cutoff, q;
/* Adjust setting pointer to the band we actually want to change */
setting = &global_settings.eq_band0_cutoff + (band * 3);
/* Convert user settings to format required by coef generator functions */
cutoff = 0xffffffff / NATIVE_FREQUENCY * (*setting++);
q = *setting++;
gain = *setting++;
if (q == 0)
q = 1;
/* NOTE: The coef functions assume the EMAC unit is in fractional mode,
which it should be, since we're executed from the main thread. */
/* Assume a band is disabled if the gain is zero */
if (gain == 0)
{
eq_data.enabled[band] = 0;
}
else
{
if (band == 0)
eq_ls_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
else if (band == 4)
eq_hs_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
else
eq_pk_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
eq_data.enabled[band] = 1;
}
}
/* Apply EQ filters to those bands that have got it switched on. */
static void eq_process(int count, int32_t *buf[])
{
static const int shifts[] =
{
EQ_SHELF_SHIFT, /* low shelf */
EQ_PEAK_SHIFT, /* peaking */
EQ_PEAK_SHIFT, /* peaking */
EQ_PEAK_SHIFT, /* peaking */
EQ_SHELF_SHIFT, /* high shelf */
};
unsigned int channels = dsp->data.num_channels;
int i;
/* filter configuration currently is 1 low shelf filter, 3 band peaking
filters and 1 high shelf filter, in that order. we need to know this
so we can choose the correct shift factor.
*/
for (i = 0; i < 5; i++)
{
if (!eq_data.enabled[i])
continue;
eq_filter(buf, &eq_data.filters[i], count, channels, shifts[i]);
}
}
/* Apply a constant gain to the samples (e.g., for ReplayGain). May update
* the src array if gain was applied.
* Note that this must be called before the resampler.
*/
static void apply_gain(int count, int32_t *buf[])
{
int32_t *sl, *sr;
int32_t s, *d;
long gain;
int i;
if (new_gain)
{
/* Gain has changed */
dsp_set_replaygain();
if (dsp->gain == 0)
return; /* No gain to apply now */
}
sl = buf[0], sr = buf[1];
gain = dsp->gain;
if (sl != sr)
{
d = &sample_buf[SAMPLE_BUF_COUNT / 2];
buf[1] = d;
s = *sr++;
for (i = 0; i < count; i++)
FRACMUL_8_LOOP(s, gain, sr, d);
}
else
{
buf[1] = &sample_buf[0];
}
d = &sample_buf[0];
buf[0] = d;
s = *sl++;
for (i = 0; i < count; i++)
FRACMUL_8_LOOP(s, gain, sl, d);
}
void stereo_width_set(int value)
{
long width, straight, cross;
width = value * 0x7fffff / 100;
if (value <= 100)
{
straight = (0x7fffff + width) / 2;
cross = straight - width;
}
else
{
/* straight = (1 + width) / (2 * width) */
straight = ((int64_t)(0x7fffff + width) << 22) / width;
cross = straight - 0x7fffff;
}
dsp_sw_gain = straight << 8;
dsp_sw_cross = cross << 8;
}
/**
* Implements the different channel configurations and stereo width.
*/
/* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
* completeness. */
#if 0
static void channels_process_sound_chan_stereo(int count, int32_t *buf[])
{
/* The channels are each just themselves */
(void)count; (void)buf;
}
#endif
#ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
static void channels_process_sound_chan_mono(int count, int32_t *buf[])
{
int32_t *sl = buf[0], *sr = buf[1];
do
{
int32_t lr = *sl/2 + *sr/2;
*sl++ = lr;
*sr++ = lr;
}
while (--count > 0);
}
#endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
#ifdef HAVE_SW_TONE_CONTROLS
static void set_tone_controls(void)
{
filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY*200,
0xffffffff/NATIVE_FREQUENCY*3500,
bass, treble, -prescale, tone_filter.coefs);
}
int dsp_callback(int msg, intptr_t param)
{
switch (msg) {
case DSP_CALLBACK_SET_PRESCALE:
prescale = param;
set_tone_controls();
break;
/* prescaler is always set after calling any of these, so we wait with
* calculating coefs until the above case is hit.
*/
case DSP_CALLBACK_SET_BASS:
bass = param;
break;
case DSP_CALLBACK_SET_TREBLE:
treble = param;
default:
break;
}
return 0;
}
#endif
#ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
static void channels_process_sound_chan_custom(int count, int32_t *buf[])
{
const int32_t gain = dsp_sw_gain;
const int32_t cross = dsp_sw_cross;
int32_t *sl = buf[0], *sr = buf[1];
do
{
int32_t l = *sl;
int32_t r = *sr;
*sl++ = FRACMUL(l, gain) + FRACMUL(r, cross);
*sr++ = FRACMUL(r, gain) + FRACMUL(l, cross);
}
while (--count > 0);
}
#endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
static void channels_process_sound_chan_mono_left(int count, int32_t *buf[])
{
/* Just copy over the other channel */
memcpy(buf[1], buf[0], count * sizeof (*buf));
}
static void channels_process_sound_chan_mono_right(int count, int32_t *buf[])
{
/* Just copy over the other channel */
memcpy(buf[0], buf[1], count * sizeof (*buf));
}
#ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
static void channels_process_sound_chan_karaoke(int count, int32_t *buf[])
{
int32_t *sl = buf[0], *sr = buf[1];
do
{
int32_t ch = *sl/2 - *sr/2;
*sl++ = ch;
*sr++ = -ch;
}
while (--count > 0);
}
#endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
void channels_set(int value)
{
static const channels_process_fn_type channels_process_functions[] =
{
/* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
[SOUND_CHAN_STEREO] = NULL,
[SOUND_CHAN_MONO] = channels_process_sound_chan_mono,
[SOUND_CHAN_CUSTOM] = channels_process_sound_chan_custom,
[SOUND_CHAN_MONO_LEFT] = channels_process_sound_chan_mono_left,
[SOUND_CHAN_MONO_RIGHT] = channels_process_sound_chan_mono_right,
[SOUND_CHAN_KARAOKE] = channels_process_sound_chan_karaoke,
};
if ((unsigned)value >= ARRAYLEN(channels_process_functions) ||
audio_dsp->stereo_mode == STEREO_MONO)
value = SOUND_CHAN_STEREO;
/* This doesn't apply to voice */
channels_mode = value;
audio_dsp->channels_process = channels_process_functions[value];
}
/* Process and convert src audio to dst based on the DSP configuration,
* reading count number of audio samples. dst is assumed to be large
* enough; use dsp_output_count() to get the required number. src is an
* array of pointers; for mono and interleaved stereo, it contains one
* pointer to the start of the audio data and the other is ignored; for
* non-interleaved stereo, it contains two pointers, one for each audio
* channel. Returns number of bytes written to dst.
*/
int dsp_process(char *dst, const char *src[], int count)
{
int32_t *tmp[2];
int written = 0;
int samples;
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
/* set emac unit for dsp processing, and save old macsr, we're running in
codec thread context at this point, so can't clobber it */
unsigned long old_macsr = coldfire_get_macsr();
coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
#endif
while (count > 0)
{
samples = dsp->input_samples(count, src, tmp);
count -= samples;
if (dsp->gain != 0)
apply_gain(samples, tmp);
if ((samples = resample(samples, tmp)) <= 0)
break; /* I'm pretty sure we're downsampling here */
if (dsp->apply_crossfeed)
dsp->apply_crossfeed(samples, tmp);
/* TODO: EQ and tone controls need separate structs for audio and voice
* DSP processing thanks to filter history. isn't really audible now, but
* might be the day we start handling voice more delicately.
*/
if (eq_enabled)
eq_process(samples, tmp);
#ifdef HAVE_SW_TONE_CONTROLS
if ((bass | treble) != 0)
eq_filter(tmp, &tone_filter, samples, dsp->data.num_channels,
FILTER_BISHELF_SHIFT);
#endif
if (dsp->channels_process)
dsp->channels_process(samples, tmp);
dsp->output_samples(samples, &dsp->data, tmp, (int16_t *)dst);
written += samples;
dst += samples * sizeof (int16_t) * 2;
yield();
}
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
/* set old macsr again */
coldfire_set_macsr(old_macsr);
#endif
return written;
}
/* Given count number of input samples, calculate the maximum number of
* samples of output data that would be generated (the calculation is not
* entirely exact and rounds upwards to be on the safe side; during
* resampling, the number of samples generated depends on the current state
* of the resampler).
*/
/* dsp_input_size MUST be called afterwards */
int dsp_output_count(int count)
{
if (dsp->resample)
{
count = (int)(((unsigned long)count * NATIVE_FREQUENCY
+ (dsp->frequency - 1)) / dsp->frequency);
}
/* Now we have the resampled sample count which must not exceed
* RESAMPLE_BUF_COUNT/2 to avoid resample buffer overflow. One
* must call dsp_input_count() to get the correct input sample
* count.
*/
if (count > RESAMPLE_BUF_COUNT/2)
count = RESAMPLE_BUF_COUNT/2;
return count;
}
/* Given count output samples, calculate number of input samples
* that would be consumed in order to fill the output buffer.
*/
int dsp_input_count(int count)
{
/* count is now the number of resampled input samples. Convert to
original input samples. */
if (dsp->resample)
{
/* Use the real resampling delta =
* dsp->frequency * 65536 / NATIVE_FREQUENCY, and
* round towards zero to avoid buffer overflows. */
count = (int)(((unsigned long)count *
dsp->data.resample_data.delta) >> 16);
}
return count;
}
int dsp_stereo_mode(void)
{
return dsp->stereo_mode;
}
bool dsp_configure(int setting, intptr_t value)
{
void set_gain_var(long *var, long value)
{
/* Voice shouldn't mess with these */
if (dsp == audio_dsp)
{
*var = value;
/* In case current gain is zero, force at least one call
to apply_gain or apply_gain won't pick up on new_gain */
audio_dsp->gain = -1;
new_gain = true;
}
}
void update_functions(void)
{
sample_input_new_format();
sample_output_new_format();
if (dsp == audio_dsp)
dsp_set_crossfeed(crossfeed_enabled);
}
switch (setting)
{
case DSP_SWITCH_CODEC:
if ((uintptr_t)value <= 1)
switch_dsp(&dsp_conf[value]);
break;
case DSP_SET_FREQUENCY:
memset(&dsp->data.resample_data, 0,
sizeof (dsp->data.resample_data));
/* Fall through!!! */
case DSP_SWITCH_FREQUENCY:
dsp->codec_frequency = (value == 0) ? NATIVE_FREQUENCY : value;
/* Account for playback speed adjustment when setting dsp->frequency
if we're called from the main audio thread. Voice UI thread should
not need this feature.
*/
if (dsp == audio_dsp)
dsp->frequency = pitch_ratio * dsp->codec_frequency / 1000;
else
dsp->frequency = dsp->codec_frequency;
resampler_set_delta(dsp->frequency);
if (dsp->frequency == NATIVE_FREQUENCY)
dsp->resample = NULL;
else if (dsp->frequency < NATIVE_FREQUENCY)
dsp->resample = dsp_upsample;
else
dsp->resample = dsp_downsample;
break;
case DSP_SET_SAMPLE_DEPTH:
dsp->sample_depth = value;
if (dsp->sample_depth <= NATIVE_DEPTH)
{
dsp->frac_bits = WORD_FRACBITS;
dsp->sample_bytes = sizeof (int16_t); /* samples are 16 bits */
dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
dsp->data.clip_min = -((1 << WORD_FRACBITS));
}
else
{
dsp->frac_bits = value;
dsp->sample_bytes = sizeof (int32_t); /* samples are 32 bits */
dsp->data.clip_max = (1 << value) - 1;
dsp->data.clip_min = -(1 << value);
}
dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
sample_input_new_format();
dither_init();
break;
case DSP_SET_STEREO_MODE:
dsp->stereo_mode = value;
dsp->data.num_channels = value == STEREO_MONO ? 1 : 2;
update_functions();
break;
case DSP_RESET:
dsp->stereo_mode = STEREO_NONINTERLEAVED;
dsp->data.num_channels = 2;
dsp->sample_depth = NATIVE_DEPTH;
dsp->frac_bits = WORD_FRACBITS;
dsp->sample_bytes = sizeof (int16_t);
dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
dsp->data.clip_min = -((1 << WORD_FRACBITS));
dsp->codec_frequency = dsp->frequency = NATIVE_FREQUENCY;
if (dsp == audio_dsp)
{
track_gain = 0;
album_gain = 0;
track_peak = 0;
album_peak = 0;
new_gain = true;
}
update_functions();
break;
case DSP_FLUSH:
memset(&dsp->data.resample_data, 0,
sizeof (dsp->data.resample_data));
resampler_set_delta(dsp->frequency);
dither_init();
break;
case DSP_SET_TRACK_GAIN:
set_gain_var(&track_gain, value);
break;
case DSP_SET_ALBUM_GAIN:
set_gain_var(&album_gain, value);
break;
case DSP_SET_TRACK_PEAK:
set_gain_var(&track_peak, value);
break;
case DSP_SET_ALBUM_PEAK:
set_gain_var(&album_peak, value);
break;
default:
return 0;
}
return 1;
}
void dsp_set_replaygain(void)
{
long gain = 0;
new_gain = false;
if (global_settings.replaygain || global_settings.replaygain_noclip)
{
bool track_mode = get_replaygain_mode(track_gain != 0,
album_gain != 0) == REPLAYGAIN_TRACK;
long peak = (track_mode || !album_peak) ? track_peak : album_peak;
if (global_settings.replaygain)
{
gain = (track_mode || !album_gain) ? track_gain : album_gain;
if (global_settings.replaygain_preamp)
{
long preamp = get_replaygain_int(
global_settings.replaygain_preamp * 10);
gain = (long) (((int64_t) gain * preamp) >> 24);
}
}
if (gain == 0)
{
/* So that noclip can work even with no gain information. */
gain = DEFAULT_GAIN;
}
if (global_settings.replaygain_noclip && (peak != 0)
&& ((((int64_t) gain * peak) >> 24) >= DEFAULT_GAIN))
{
gain = (((int64_t) DEFAULT_GAIN << 24) / peak);
}
if (gain == DEFAULT_GAIN)
{
/* Nothing to do, disable processing. */
gain = 0;
}
}
/* Store in S8.23 format to simplify calculations. */
replaygain = gain;
set_gain(audio_dsp);
}