rockbox/firmware/kernel/thread.c

1576 lines
50 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Ulf Ralberg
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#ifdef HAVE_SIGALTSTACK_THREADS
/*
* The sp check in glibc __longjmp_chk() will cause
* a fatal error when switching threads via longjmp().
*/
#undef _FORTIFY_SOURCE
#endif
#include "thread-internal.h"
#include "kernel.h"
#include "cpu.h"
#include "string.h"
#ifdef RB_PROFILE
#include <profile.h>
#endif
#include "core_alloc.h"
/* Define THREAD_EXTRA_CHECKS as 1 to enable additional state checks */
#ifdef DEBUG
#define THREAD_EXTRA_CHECKS 1 /* Always 1 for DEBUG */
#else
#define THREAD_EXTRA_CHECKS 0
#endif
/****************************************************************************
* ATTENTION!! *
* See notes below on implementing processor-specific portions! *
****************************************************************************
*
* General locking order to guarantee progress. Order must be observed but
* all stages are not nescessarily obligatory. Going from 1) to 3) is
* perfectly legal.
*
* 1) IRQ
* This is first because of the likelyhood of having an interrupt occur that
* also accesses one of the objects farther down the list. Any non-blocking
* synchronization done may already have a lock on something during normal
* execution and if an interrupt handler running on the same processor as
* the one that has the resource locked were to attempt to access the
* resource, the interrupt handler would wait forever waiting for an unlock
* that will never happen. There is no danger if the interrupt occurs on
* a different processor because the one that has the lock will eventually
* unlock and the other processor's handler may proceed at that time. Not
* nescessary when the resource in question is definitely not available to
* interrupt handlers.
*
* 2) Kernel Object
* 1) May be needed beforehand if the kernel object allows dual-use such as
* event queues. The kernel object must have a scheme to protect itself from
* access by another processor and is responsible for serializing the calls
* to block_thread and wakeup_thread both to themselves and to each other.
* Objects' queues are also protected here.
*
* 3) Thread Slot
* This locks access to the thread's slot such that its state cannot be
* altered by another processor when a state change is in progress such as
* when it is in the process of going on a blocked list. An attempt to wake
* a thread while it is still blocking will likely desync its state with
* the other resources used for that state.
*
* 4) Core Lists
* These lists are specific to a particular processor core and are accessible
* by all processor cores and interrupt handlers. The running (rtr) list is
* the prime example where a thread may be added by any means.
*/
/*---------------------------------------------------------------------------
* Processor specific: core_sleep/core_wake/misc. notes
*
* ARM notes:
* FIQ is not dealt with by the scheduler code and is simply restored if it
* must by masked for some reason - because threading modifies a register
* that FIQ may also modify and there's no way to accomplish it atomically.
* s3c2440 is such a case.
*
* Audio interrupts are generally treated at a higher priority than others
* usage of scheduler code with interrupts higher than HIGHEST_IRQ_LEVEL
* are not in general safe. Special cases may be constructed on a per-
* source basis and blocking operations are not available.
*
* core_sleep procedure to implement for any CPU to ensure an asychronous
* wakup never results in requiring a wait until the next tick (up to
* 10000uS!). May require assembly and careful instruction ordering.
*
* 1) On multicore, stay awake if directed to do so by another. If so, goto
* step 4.
* 2) If processor requires, atomically reenable interrupts and perform step
* 3.
* 3) Sleep the CPU core. If wakeup itself enables interrupts (stop #0x2000
* on Coldfire) goto step 5.
* 4) Enable interrupts.
* 5) Exit procedure.
*
* core_wake and multprocessor notes for sleep/wake coordination:
* If possible, to wake up another processor, the forcing of an interrupt on
* the woken core by the waker core is the easiest way to ensure a non-
* delayed wake and immediate execution of any woken threads. If that isn't
* available then some careful non-blocking synchonization is needed (as on
* PP targets at the moment).
*---------------------------------------------------------------------------
*
*
*---------------------------------------------------------------------------
* Priority distribution structure (one category for each possible priority):
*
* +----+----+----+ ... +------+
* hist: | F0 | F1 | F2 | | Fn-1 |
* +----+----+----+ ... +------+
* mask: | b0 | b1 | b2 | | bn-1 |
* +----+----+----+ ... +------+
*
* F = count of threads at priority category n (frequency)
* b = bitmask of non-zero priority categories (occupancy)
*
* / if H[n] != 0 : 1
* b[n] = |
* \ else : 0
*
*---------------------------------------------------------------------------
* Basic priority inheritance priotocol (PIP):
*
* Mn = mutex n, Tn = thread n
*
* A lower priority thread inherits the priority of the highest priority
* thread blocked waiting for it to complete an action (such as release a
* mutex or respond to a message via queue_send):
*
* 1) T2->M1->T1
*
* T1 owns M1, T2 is waiting for M1 to realease M1. If T2 has a higher
* priority than T1 then T1 inherits the priority of T2.
*
* 2) T3
* \/
* T2->M1->T1
*
* Situation is like 1) but T2 and T3 are both queued waiting for M1 and so
* T1 inherits the higher of T2 and T3.
*
* 3) T3->M2->T2->M1->T1
*
* T1 owns M1, T2 owns M2. If T3 has a higher priority than both T1 and T2,
* then T1 inherits the priority of T3 through T2.
*
* Blocking chains can grow arbitrarily complex (though it's best that they
* not form at all very often :) and build-up from these units.
*---------------------------------------------------------------------------
*/
static FORCE_INLINE void core_sleep(IF_COP_VOID(unsigned int core));
static FORCE_INLINE void store_context(void* addr);
static FORCE_INLINE void load_context(const void* addr);
/****************************************************************************
* Processor/OS-specific section - include necessary core support
*/
#include "asm/thread.c"
#if defined (CPU_PP)
#include "thread-pp.c"
#endif /* CPU_PP */
/*
* End Processor-specific section
***************************************************************************/
static NO_INLINE NORETURN_ATTR
void thread_panicf(const char *msg, struct thread_entry *thread)
{
IF_COP( const unsigned int core = thread->core; )
static char name[sizeof (((struct thread_debug_info *)0)->name)];
format_thread_name(name, sizeof (name), thread);
panicf ("%s %s" IF_COP(" (%d)"), msg, name IF_COP(, core));
}
static NO_INLINE void thread_stkov(struct thread_entry *thread)
{
thread_panicf("Stkov", thread);
}
#if THREAD_EXTRA_CHECKS
#define THREAD_PANICF(msg, thread) \
thread_panicf(msg, thread)
#define THREAD_ASSERT(exp, msg, thread) \
({ if (!({ exp; })) thread_panicf((msg), (thread)); })
#else
#define THREAD_PANICF(msg, thread) \
do {} while (1)
#define THREAD_ASSERT(exp, msg, thread) \
do {} while (0)
#endif /* THREAD_EXTRA_CHECKS */
/* Thread locking */
#if NUM_CORES > 1
#define LOCK_THREAD(thread) \
({ corelock_lock(&(thread)->slot_cl); })
#define TRY_LOCK_THREAD(thread) \
({ corelock_try_lock(&(thread)->slot_cl); })
#define UNLOCK_THREAD(thread) \
({ corelock_unlock(&(thread)->slot_cl); })
#else /* NUM_CORES == 1*/
#define LOCK_THREAD(thread) \
({ (void)(thread); })
#define TRY_LOCK_THREAD(thread) \
({ (void)(thread); })
#define UNLOCK_THREAD(thread) \
({ (void)(thread); })
#endif /* NUM_CORES */
/* RTR list */
#define RTR_LOCK(corep) \
corelock_lock(&(corep)->rtr_cl)
#define RTR_UNLOCK(corep) \
corelock_unlock(&(corep)->rtr_cl)
#ifdef HAVE_PRIORITY_SCHEDULING
#define rtr_add_entry(corep, priority) \
prio_add_entry(&(corep)->rtr_dist, (priority))
#define rtr_subtract_entry(corep, priority) \
prio_subtract_entry(&(corep)->rtr_dist, (priority))
#define rtr_move_entry(corep, from, to) \
prio_move_entry(&(corep)->rtr_dist, (from), (to))
#else /* !HAVE_PRIORITY_SCHEDULING */
#define rtr_add_entry(corep, priority) \
do {} while (0)
#define rtr_subtract_entry(corep, priority) \
do {} while (0)
#define rtr_move_entry(corep, from, to) \
do {} while (0)
#endif /* HAVE_PRIORITY_SCHEDULING */
static FORCE_INLINE void thread_store_context(struct thread_entry *thread)
{
store_context(&thread->context);
#if (CONFIG_PLATFORM & PLATFORM_HOSTED)
thread->__errno = errno;
#endif
}
static FORCE_INLINE void thread_load_context(struct thread_entry *thread)
{
#if (CONFIG_PLATFORM & PLATFORM_HOSTED)
errno = thread->__errno;
#endif
load_context(&thread->context);
}
static FORCE_INLINE unsigned int
should_switch_tasks(struct thread_entry *thread)
{
#ifdef HAVE_PRIORITY_SCHEDULING
const unsigned int core = CURRENT_CORE;
#if NUM_CORES > 1
/* Forget about it if different CPU */
if (thread->core != core)
return THREAD_OK;
#endif
/* Just woke something therefore a thread is on the run queue */
struct thread_entry *current =
RTR_THREAD_FIRST(&__core_id_entry(core)->rtr);
if (LIKELY(thread->priority >= current->priority))
return THREAD_OK;
/* There is a thread ready to run of higher priority on the same
* core as the current one; recommend a task switch. */
return THREAD_OK | THREAD_SWITCH;
#else
return THREAD_OK;
(void)thread;
#endif /* HAVE_PRIORITY_SCHEDULING */
}
#ifdef HAVE_PRIORITY_SCHEDULING
/*---------------------------------------------------------------------------
* Increment frequency at category "priority"
*---------------------------------------------------------------------------
*/
static inline unsigned int prio_add_entry(
struct priority_distribution *pd, int priority)
{
unsigned int count = ++pd->hist[priority];
if (count == 1)
priobit_set_bit(&pd->mask, priority);
return count;
}
/*---------------------------------------------------------------------------
* Decrement frequency at category "priority"
*---------------------------------------------------------------------------
*/
static inline unsigned int prio_subtract_entry(
struct priority_distribution *pd, int priority)
{
unsigned int count = --pd->hist[priority];
if (count == 0)
priobit_clear_bit(&pd->mask, priority);
return count;
}
/*---------------------------------------------------------------------------
* Remove from one category and add to another
*---------------------------------------------------------------------------
*/
static inline void prio_move_entry(
struct priority_distribution *pd, int from, int to)
{
if (--pd->hist[from] == 0)
priobit_clear_bit(&pd->mask, from);
if (++pd->hist[to] == 1)
priobit_set_bit(&pd->mask, to);
}
#endif /* HAVE_PRIORITY_SCHEDULING */
/*---------------------------------------------------------------------------
* Common init for new thread basic info
*---------------------------------------------------------------------------
*/
static void new_thread_base_init(struct thread_entry *thread,
void **stackp, size_t *stack_sizep,
const char *name IF_PRIO(, int priority)
IF_COP(, unsigned int core))
{
ALIGN_BUFFER(*stackp, *stack_sizep, MIN_STACK_ALIGN);
thread->stack = *stackp;
thread->stack_size = *stack_sizep;
thread->name = name;
wait_queue_init(&thread->queue);
thread->wqp = NULL;
tmo_set_dequeued(thread);
#ifdef HAVE_PRIORITY_SCHEDULING
thread->skip_count = 0;
thread->blocker = NULL;
thread->base_priority = priority;
thread->priority = priority;
memset(&thread->pdist, 0, sizeof(thread->pdist));
prio_add_entry(&thread->pdist, priority);
#endif
#if NUM_CORES > 1
thread->core = core;
#endif
#ifdef HAVE_SCHEDULER_BOOSTCTRL
thread->cpu_boost = 0;
#endif
}
/*---------------------------------------------------------------------------
* Move a thread onto the core's run queue and promote it
*---------------------------------------------------------------------------
*/
static inline void core_rtr_add(struct core_entry *corep,
struct thread_entry *thread)
{
RTR_LOCK(corep);
rtr_queue_add(&corep->rtr, thread);
rtr_add_entry(corep, thread->priority);
#ifdef HAVE_PRIORITY_SCHEDULING
thread->skip_count = thread->base_priority;
#endif
thread->state = STATE_RUNNING;
RTR_UNLOCK(corep);
}
/*---------------------------------------------------------------------------
* Remove a thread from the core's run queue
*---------------------------------------------------------------------------
*/
static inline void core_rtr_remove(struct core_entry *corep,
struct thread_entry *thread)
{
RTR_LOCK(corep);
rtr_queue_remove(&corep->rtr, thread);
rtr_subtract_entry(corep, thread->priority);
/* Does not demote state */
RTR_UNLOCK(corep);
}
/*---------------------------------------------------------------------------
* Move a thread back to a running state on its core
*---------------------------------------------------------------------------
*/
static NO_INLINE void core_schedule_wakeup(struct thread_entry *thread)
{
const unsigned int core = IF_COP_CORE(thread->core);
struct core_entry *corep = __core_id_entry(core);
core_rtr_add(corep, thread);
#if NUM_CORES > 1
if (core != CURRENT_CORE)
core_wake(core);
#endif
}
#ifdef HAVE_PRIORITY_SCHEDULING
/*---------------------------------------------------------------------------
* Locks the thread registered as the owner of the block and makes sure it
* didn't change in the meantime
*---------------------------------------------------------------------------
*/
#if NUM_CORES == 1
static inline struct thread_entry * lock_blocker_thread(struct blocker *bl)
{
return bl->thread;
}
#else /* NUM_CORES > 1 */
static struct thread_entry * lock_blocker_thread(struct blocker *bl)
{
/* The blocker thread may change during the process of trying to
capture it */
while (1)
{
struct thread_entry *t = bl->thread;
/* TRY, or else deadlocks are possible */
if (!t)
{
struct blocker_splay *blsplay = (struct blocker_splay *)bl;
if (corelock_try_lock(&blsplay->cl))
{
if (!bl->thread)
return NULL; /* Still multi */
corelock_unlock(&blsplay->cl);
}
}
else
{
if (TRY_LOCK_THREAD(t))
{
if (bl->thread == t)
return t;
UNLOCK_THREAD(t);
}
}
}
}
#endif /* NUM_CORES */
static inline void unlock_blocker_thread(struct blocker *bl)
{
#if NUM_CORES > 1
struct thread_entry *blt = bl->thread;
if (blt)
UNLOCK_THREAD(blt);
else
corelock_unlock(&((struct blocker_splay *)bl)->cl);
#endif /* NUM_CORES > 1*/
(void)bl;
}
/*---------------------------------------------------------------------------
* Change the priority and rtr entry for a running thread
*---------------------------------------------------------------------------
*/
static inline void set_rtr_thread_priority(
struct thread_entry *thread, int priority)
{
const unsigned int core = IF_COP_CORE(thread->core);
struct core_entry *corep = __core_id_entry(core);
RTR_LOCK(corep);
rtr_move_entry(corep, thread->priority, priority);
thread->priority = priority;
RTR_UNLOCK(corep);
}
/*---------------------------------------------------------------------------
* Finds the highest priority thread in a list of threads. If the list is
* empty, the PRIORITY_IDLE is returned.
*
* It is possible to use the struct priority_distribution within an object
* instead of scanning the remaining threads in the list but as a compromise,
* the resulting per-object memory overhead is saved at a slight speed
* penalty under high contention.
*---------------------------------------------------------------------------
*/
static int wait_queue_find_priority(struct __wait_queue *wqp)
{
int highest_priority = PRIORITY_IDLE;
struct thread_entry *thread = WQ_THREAD_FIRST(wqp);
while (thread != NULL)
{
int priority = thread->priority;
if (priority < highest_priority)
highest_priority = priority;
thread = WQ_THREAD_NEXT(thread);
}
return highest_priority;
}
/*---------------------------------------------------------------------------
* Register priority with blocking system and bubble it down the chain if
* any until we reach the end or something is already equal or higher.
*
* NOTE: A simultaneous circular wait could spin deadlock on multiprocessor
* targets but that same action also guarantees a circular block anyway and
* those are prevented, right? :-)
*---------------------------------------------------------------------------
*/
static void inherit_priority(
struct blocker * const blocker0, struct blocker *bl,
struct thread_entry *blt, int newblpr)
{
int oldblpr = bl->priority;
while (1)
{
if (blt == NULL)
{
/* Multiple owners */
struct blocker_splay *blsplay = (struct blocker_splay *)bl;
/* Recurse down the all the branches of this; it's the only way.
We might meet the same queue several times if more than one of
these threads is waiting the same queue. That isn't a problem
for us since we early-terminate, just notable. */
FOR_EACH_BITARRAY_SET_BIT(&blsplay->mask, slotnum)
{
bl->priority = oldblpr; /* To see the change each time */
blt = __thread_slot_entry(slotnum);
LOCK_THREAD(blt);
inherit_priority(blocker0, bl, blt, newblpr);
}
corelock_unlock(&blsplay->cl);
return;
}
bl->priority = newblpr;
/* Update blocker thread inheritance record */
if (newblpr < PRIORITY_IDLE)
prio_add_entry(&blt->pdist, newblpr);
if (oldblpr < PRIORITY_IDLE)
prio_subtract_entry(&blt->pdist, oldblpr);
int oldpr = blt->priority;
int newpr = priobit_ffs(&blt->pdist.mask);
if (newpr == oldpr)
break; /* No blocker thread priority change */
if (blt->state == STATE_RUNNING)
{
set_rtr_thread_priority(blt, newpr);
break; /* Running: last in chain */
}
/* Blocker is blocked */
blt->priority = newpr;
bl = blt->blocker;
if (LIKELY(bl == NULL))
break; /* Block doesn't support PIP */
if (UNLIKELY(bl == blocker0))
break; /* Full circle - deadlock! */
/* Blocker becomes current thread and the process repeats */
struct __wait_queue *wqp = wait_queue_ptr(blt);
struct thread_entry *t = blt;
blt = lock_blocker_thread(bl);
UNLOCK_THREAD(t);
/* Adjust this wait queue */
oldblpr = bl->priority;
if (newpr <= oldblpr)
newblpr = newpr;
else if (oldpr <= oldblpr)
newblpr = wait_queue_find_priority(wqp);
if (newblpr == oldblpr)
break; /* Queue priority not changing */
}
UNLOCK_THREAD(blt);
}
/*---------------------------------------------------------------------------
* Quick-inherit of priority elevation. 'thread' must be not runnable
*---------------------------------------------------------------------------
*/
static void priority_inherit_internal_inner(struct thread_entry *thread,
int blpr)
{
if (prio_add_entry(&thread->pdist, blpr) == 1 && blpr < thread->priority)
thread->priority = blpr;
}
static inline void priority_inherit_internal(struct thread_entry *thread,
int blpr)
{
if (blpr < PRIORITY_IDLE)
priority_inherit_internal_inner(thread, blpr);
}
/*---------------------------------------------------------------------------
* Quick-disinherit of priority elevation. 'thread' must current
*---------------------------------------------------------------------------
*/
static void priority_disinherit_internal_inner(struct thread_entry *thread,
int blpr)
{
if (prio_subtract_entry(&thread->pdist, blpr) == 0 &&
blpr <= thread->priority)
{
int priority = priobit_ffs(&thread->pdist.mask);
if (priority != thread->priority)
set_rtr_thread_priority(thread, priority);
}
}
static inline void priority_disinherit_internal(struct thread_entry *thread,
int blpr)
{
if (blpr < PRIORITY_IDLE)
priority_disinherit_internal_inner(thread, blpr);
}
void priority_disinherit(struct thread_entry *thread, struct blocker *bl)
{
LOCK_THREAD(thread);
priority_disinherit_internal(thread, bl->priority);
UNLOCK_THREAD(thread);
}
/*---------------------------------------------------------------------------
* Transfer ownership from a single owner to a multi-owner splay from a wait
* queue
*---------------------------------------------------------------------------
*/
static void wakeup_thread_queue_multi_transfer(struct thread_entry *thread)
{
/* All threads will have the same blocker and queue; only we are changing
it now */
struct __wait_queue *wqp = wait_queue_ptr(thread);
struct blocker *bl = thread->blocker;
struct blocker_splay *blsplay = (struct blocker_splay *)bl;
struct thread_entry *blt = bl->thread;
/* The first thread is already locked and is assumed tagged "multi" */
int count = 1;
/* Multiple versions of the wait queue may be seen if doing more than
one thread; queue removal isn't destructive to the pointers of the node
being removed; this may lead to the blocker priority being wrong for a
time but it gets fixed up below after getting exclusive access to the
queue */
while (1)
{
thread->blocker = NULL;
wait_queue_remove(thread);
unsigned int slotnum = THREAD_ID_SLOT(thread->id);
threadbit_set_bit(&blsplay->mask, slotnum);
struct thread_entry *tnext = WQ_THREAD_NEXT(thread);
if (tnext == NULL || tnext->retval == 0)
break;
UNLOCK_THREAD(thread);
count++;
thread = tnext;
LOCK_THREAD(thread);
}
/* Locking order reverses here since the threads are no longer on the
queued side */
if (count > 1)
corelock_lock(&blsplay->cl);
LOCK_THREAD(blt);
int blpr = bl->priority;
priority_disinherit_internal(blt, blpr);
if (count > 1)
{
blsplay->blocker.thread = NULL;
blpr = wait_queue_find_priority(wqp);
FOR_EACH_BITARRAY_SET_BIT(&blsplay->mask, slotnum)
{
UNLOCK_THREAD(thread);
thread = __thread_slot_entry(slotnum);
LOCK_THREAD(thread);
priority_inherit_internal(thread, blpr);
core_schedule_wakeup(thread);
}
}
else
{
/* Becomes a simple, direct transfer */
blsplay->blocker.thread = thread;
if (thread->priority <= blpr)
blpr = wait_queue_find_priority(wqp);
priority_inherit_internal(thread, blpr);
core_schedule_wakeup(thread);
}
UNLOCK_THREAD(thread);
bl->priority = blpr;
UNLOCK_THREAD(blt);
if (count > 1)
corelock_unlock(&blsplay->cl);
blt->retval = count;
}
/*---------------------------------------------------------------------------
* Transfer ownership to a thread waiting for an objects and transfer
* inherited priority boost from other waiters. This algorithm knows that
* blocking chains may only unblock from the very end.
*
* Only the owning thread itself may call this and so the assumption that
* it is the running thread is made.
*---------------------------------------------------------------------------
*/
static void wakeup_thread_transfer(struct thread_entry *thread)
{
/* Waking thread inherits priority boost from object owner (blt) */
struct blocker *bl = thread->blocker;
struct thread_entry *blt = bl->thread;
THREAD_ASSERT(__running_self_entry() == blt,
"UPPT->wrong thread", __running_self_entry());
LOCK_THREAD(blt);
thread->blocker = NULL;
struct __wait_queue *wqp = wait_queue_remove(thread);
int blpr = bl->priority;
/* Remove the object's boost from the owning thread */
priority_disinherit_internal_inner(blt, blpr);
struct thread_entry *tnext = WQ_THREAD_FIRST(wqp);
if (LIKELY(tnext == NULL))
{
/* Expected shortcut - no more waiters */
blpr = PRIORITY_IDLE;
}
else
{
/* If thread is at the blocker priority, its removal may drop it */
if (thread->priority <= blpr)
blpr = wait_queue_find_priority(wqp);
priority_inherit_internal_inner(thread, blpr);
}
bl->thread = thread; /* This thread pwns */
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
bl->priority = blpr; /* Save highest blocked priority */
UNLOCK_THREAD(blt);
}
/*---------------------------------------------------------------------------
* Readjust priorities when waking a thread blocked waiting for another
* in essence "releasing" the thread's effect on the object owner. Can be
* performed from any context.
*---------------------------------------------------------------------------
*/
static void wakeup_thread_release(struct thread_entry *thread)
{
struct blocker *bl = thread->blocker;
struct thread_entry *blt = lock_blocker_thread(bl);
thread->blocker = NULL;
struct __wait_queue *wqp = wait_queue_remove(thread);
/* Off to see the wizard... */
core_schedule_wakeup(thread);
if (thread->priority > bl->priority)
{
/* Queue priority won't change */
UNLOCK_THREAD(thread);
unlock_blocker_thread(bl);
return;
}
UNLOCK_THREAD(thread);
int newblpr = wait_queue_find_priority(wqp);
if (newblpr == bl->priority)
{
/* Blocker priority won't change */
unlock_blocker_thread(bl);
return;
}
inherit_priority(bl, bl, blt, newblpr);
}
#endif /* HAVE_PRIORITY_SCHEDULING */
/*---------------------------------------------------------------------------
* Explicitly wakeup a thread on a blocking queue. Only effects threads of
* STATE_BLOCKED and STATE_BLOCKED_W_TMO.
*
* INTERNAL: Intended for use by kernel and not programs.
*---------------------------------------------------------------------------
*/
unsigned int wakeup_thread_(struct thread_entry *thread
IF_PRIO(, enum wakeup_thread_protocol proto))
{
LOCK_THREAD(thread);
/* Determine thread's current state. */
switch (thread->state)
{
case STATE_BLOCKED:
case STATE_BLOCKED_W_TMO:
#ifdef HAVE_PRIORITY_SCHEDULING
/* Threads with PIP blockers cannot specify "WAKEUP_DEFAULT" */
if (thread->blocker != NULL)
{
static void (* const funcs[])(struct thread_entry *thread)
ICONST_ATTR =
{
[WAKEUP_DEFAULT] = NULL,
[WAKEUP_TRANSFER] = wakeup_thread_transfer,
[WAKEUP_RELEASE] = wakeup_thread_release,
[WAKEUP_TRANSFER_MULTI] = wakeup_thread_queue_multi_transfer,
};
/* Call the specified unblocking PIP (does the rest) */
funcs[proto](thread);
}
else
#endif /* HAVE_PRIORITY_SCHEDULING */
{
wait_queue_remove(thread);
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
}
return should_switch_tasks(thread);
case STATE_RUNNING:
if (wait_queue_try_remove(thread))
{
UNLOCK_THREAD(thread);
return THREAD_OK; /* timed out */
}
default:
UNLOCK_THREAD(thread);
return THREAD_NONE;
}
}
/*---------------------------------------------------------------------------
* Check the core's timeout list when at least one thread is due to wake.
* Filtering for the condition is done before making the call. Resets the
* tick when the next check will occur.
*---------------------------------------------------------------------------
*/
static NO_INLINE void check_tmo_expired_inner(struct core_entry *corep)
{
const long tick = current_tick; /* snapshot the current tick */
long next_tmo_check = tick + 60*HZ; /* minimum duration: once/minute */
struct thread_entry *prev = NULL;
struct thread_entry *thread = TMO_THREAD_FIRST(&corep->tmo);
/* If there are no processes waiting for a timeout, just keep the check
tick from falling into the past. */
/* Break the loop once we have walked through the list of all
* sleeping processes or have removed them all. */
while (thread != NULL)
{
/* Check sleeping threads. Allow interrupts between checks. */
enable_irq();
struct thread_entry *next = TMO_THREAD_NEXT(thread);
/* Lock thread slot against explicit wakeup */
disable_irq();
LOCK_THREAD(thread);
unsigned int state = thread->state;
if (LIKELY(state >= TIMEOUT_STATE_FIRST &&
TIME_BEFORE(tick, thread->tmo_tick)))
{
/* Timeout still pending - this will be the usual case */
if (TIME_BEFORE(thread->tmo_tick, next_tmo_check))
{
/* Move the next check up to its time */
next_tmo_check = thread->tmo_tick;
}
prev = thread;
}
else
{
/* TODO: there are no priority-inheriting timeout blocks
right now but the procedure should be established */
/* Sleep timeout has been reached / garbage collect stale list
items */
tmo_queue_expire(&corep->tmo, prev, thread);
if (state >= TIMEOUT_STATE_FIRST)
core_rtr_add(corep, thread);
/* removed this one - prev doesn't change */
}
UNLOCK_THREAD(thread);
thread = next;
}
corep->next_tmo_check = next_tmo_check;
}
static FORCE_INLINE void check_tmo_expired(struct core_entry *corep)
{
if (!TIME_BEFORE(current_tick, corep->next_tmo_check))
check_tmo_expired_inner(corep);
}
/*---------------------------------------------------------------------------
* Prepares a the current thread to sleep forever or for the given duration.
*---------------------------------------------------------------------------
*/
static FORCE_INLINE void prepare_block(struct thread_entry *current,
unsigned int state, int timeout)
{
const unsigned int core = IF_COP_CORE(current->core);
/* Remove the thread from the list of running threads. */
struct core_entry *corep = __core_id_entry(core);
core_rtr_remove(corep, current);
if (timeout >= 0)
{
/* Sleep may expire. */
long tmo_tick = current_tick + timeout;
current->tmo_tick = tmo_tick;
if (TIME_BEFORE(tmo_tick, corep->next_tmo_check))
corep->next_tmo_check = tmo_tick;
tmo_queue_register(&corep->tmo, current);
if (state == STATE_BLOCKED)
state = STATE_BLOCKED_W_TMO;
}
/* Report new state. */
current->state = state;
}
/*---------------------------------------------------------------------------
* Switch thread in round robin fashion for any given priority. Any thread
* that removed itself from the running list first must specify itself in
* the paramter.
*
* INTERNAL: Intended for use by kernel and not programs.
*---------------------------------------------------------------------------
*/
void switch_thread(void)
{
const unsigned int core = CURRENT_CORE;
struct core_entry *corep = __core_id_entry(core);
struct thread_entry *thread = corep->running;
if (thread)
{
#ifdef RB_PROFILE
profile_thread_stopped(THREAD_ID_SLOT(thread->id));
#endif
#ifdef DEBUG
/* Check core_ctx buflib integrity */
core_check_valid();
#endif
thread_store_context(thread);
/* Check if the current thread stack is overflown */
if (UNLIKELY(thread->stack[0] != DEADBEEF) && thread->stack_size > 0)
thread_stkov(thread);
}
/* TODO: make a real idle task */
for (;;)
{
disable_irq();
/* Check for expired timeouts */
check_tmo_expired(corep);
RTR_LOCK(corep);
if (!RTR_EMPTY(&corep->rtr))
break;
thread = NULL;
/* Enter sleep mode to reduce power usage */
RTR_UNLOCK(corep);
core_sleep(IF_COP(core));
/* Awakened by interrupt or other CPU */
}
thread = (thread && thread->state == STATE_RUNNING) ?
RTR_THREAD_NEXT(thread) : RTR_THREAD_FIRST(&corep->rtr);
#ifdef HAVE_PRIORITY_SCHEDULING
/* Select the new task based on priorities and the last time a
* process got CPU time relative to the highest priority runnable
* task. If priority is not a feature, then FCFS is used (above). */
int max = priobit_ffs(&corep->rtr_dist.mask);
for (;;)
{
int priority = thread->priority;
int diff;
/* This ridiculously simple method of aging seems to work
* suspiciously well. It does tend to reward CPU hogs (under
* yielding) but that's generally not desirable at all. On
* the plus side, it, relatively to other threads, penalizes
* excess yielding which is good if some high priority thread
* is performing no useful work such as polling for a device
* to be ready. Of course, aging is only employed when higher
* and lower priority threads are runnable. The highest
* priority runnable thread(s) are never skipped unless a
* lower-priority process has aged sufficiently. Priorities
* of REALTIME class are run strictly according to priority
* thus are not subject to switchout due to lower-priority
* processes aging; they must give up the processor by going
* off the run list. */
if (LIKELY(priority <= max) ||
(priority > PRIORITY_REALTIME &&
(diff = priority - max, ++thread->skip_count > diff*diff)))
{
break;
}
thread = RTR_THREAD_NEXT(thread);
}
thread->skip_count = 0; /* Reset aging counter */
#endif /* HAVE_PRIORITY_SCHEDULING */
rtr_queue_make_first(&corep->rtr, thread);
corep->running = thread;
RTR_UNLOCK(corep);
enable_irq();
#ifdef RB_PROFILE
profile_thread_started(THREAD_ID_SLOT(thread->id));
#endif
/* And finally, give control to the next thread. */
thread_load_context(thread);
}
/*---------------------------------------------------------------------------
* Sleeps a thread for at least a specified number of ticks with zero being
* a wait until the next tick.
*
* INTERNAL: Intended for use by kernel and not programs.
*---------------------------------------------------------------------------
*/
void sleep_thread(int ticks)
{
struct thread_entry *current = __running_self_entry();
LOCK_THREAD(current);
prepare_block(current, STATE_SLEEPING, MAX(ticks, 0) + 1);
UNLOCK_THREAD(current);
}
/*---------------------------------------------------------------------------
* Block a thread on a blocking queue for explicit wakeup. If timeout is
* negative, the block is infinite.
*
* INTERNAL: Intended for use by kernel and not programs.
*---------------------------------------------------------------------------
*/
void block_thread_(struct thread_entry *current, int timeout)
{
LOCK_THREAD(current);
#ifdef HAVE_PRIORITY_SCHEDULING
struct blocker *bl = current->blocker;
struct thread_entry *blt = NULL;
if (bl != NULL)
{
current->blocker = bl;
blt = lock_blocker_thread(bl);
}
#endif /* HAVE_PRIORITY_SCHEDULING */
wait_queue_register(current);
prepare_block(current, STATE_BLOCKED, timeout);
#ifdef HAVE_PRIORITY_SCHEDULING
if (bl != NULL)
{
int newblpr = current->priority;
UNLOCK_THREAD(current);
if (newblpr < bl->priority)
inherit_priority(bl, bl, blt, newblpr);
else
unlock_blocker_thread(bl); /* Queue priority won't change */
}
else
#endif /* HAVE_PRIORITY_SCHEDULING */
{
UNLOCK_THREAD(current);
}
}
/*---------------------------------------------------------------------------
* Place the current core in idle mode - woken up on interrupt or wake
* request from another core.
*---------------------------------------------------------------------------
*/
void core_idle(void)
{
disable_irq();
core_sleep(IF_COP(CURRENT_CORE));
}
/*---------------------------------------------------------------------------
* Create a thread. If using a dual core architecture, specify which core to
* start the thread on.
*
* Return ID if context area could be allocated, else NULL.
*---------------------------------------------------------------------------
*/
unsigned int create_thread(void (*function)(void),
void* stack, size_t stack_size,
unsigned flags, const char *name
IF_PRIO(, int priority)
IF_COP(, unsigned int core))
{
struct thread_entry *thread = thread_alloc();
if (thread == NULL)
return 0;
new_thread_base_init(thread, &stack, &stack_size, name
IF_PRIO(, priority) IF_COP(, core));
unsigned int stack_words = stack_size / sizeof (uintptr_t);
if (stack_words == 0)
return 0;
/* Munge the stack to make it easy to spot stack overflows */
for (unsigned int i = 0; i < stack_words; i++)
((uintptr_t *)stack)[i] = DEADBEEF;
#if NUM_CORES > 1
/* Writeback stack munging or anything else before starting */
if (core != CURRENT_CORE)
commit_dcache();
#endif
thread->context.sp = (typeof (thread->context.sp))(stack + stack_size);
THREAD_STARTUP_INIT(core, thread, function);
int oldlevel = disable_irq_save();
LOCK_THREAD(thread);
thread->state = STATE_FROZEN;
if (!(flags & CREATE_THREAD_FROZEN))
core_schedule_wakeup(thread);
unsigned int id = thread->id; /* Snapshot while locked */
UNLOCK_THREAD(thread);
restore_irq(oldlevel);
return id;
}
/*---------------------------------------------------------------------------
* Block the current thread until another thread terminates. A thread may
* wait on itself to terminate but that will deadlock
*.
* Parameter is the ID as returned from create_thread().
*---------------------------------------------------------------------------
*/
void thread_wait(unsigned int thread_id)
{
struct thread_entry *current = __running_self_entry();
struct thread_entry *thread = __thread_id_entry(thread_id);
corelock_lock(&thread->waiter_cl);
if (thread->id == thread_id && thread->state != STATE_KILLED)
{
disable_irq();
block_thread(current, TIMEOUT_BLOCK, &thread->queue, NULL);
corelock_unlock(&thread->waiter_cl);
switch_thread();
return;
}
corelock_unlock(&thread->waiter_cl);
}
/*---------------------------------------------------------------------------
* Exit the current thread
*---------------------------------------------------------------------------
*/
static USED_ATTR NORETURN_ATTR
void thread_exit_final(struct thread_entry *current)
{
/* Slot is no longer this thread */
new_thread_id(current);
current->name = NULL;
/* No longer using resources from creator */
wait_queue_wake(&current->queue);
UNLOCK_THREAD(current);
corelock_unlock(&current->waiter_cl);
thread_free(current);
switch_thread();
/* This should never and must never be reached - if it is, the
* state is corrupted */
THREAD_PANICF("thread_exit->K:*R", current);
}
void thread_exit(void)
{
struct core_entry *corep = __core_id_entry(CURRENT_CORE);
register struct thread_entry *current = corep->running;
/* Cancel CPU boost if any */
cancel_cpu_boost();
disable_irq();
corelock_lock(&current->waiter_cl);
LOCK_THREAD(current);
#ifdef HAVE_PRIORITY_SCHEDULING
/* Only one bit in the mask should be set with a frequency on 1 which
* represents the thread's own base priority otherwise threads are waiting
* on an abandoned object */
if (priobit_popcount(&current->pdist.mask) != 1 ||
current->pdist.hist[priobit_ffs(&current->pdist.mask)] > 1)
thread_panicf("abandon ship!", current);
#endif /* HAVE_PRIORITY_SCHEDULING */
/* Remove from scheduler lists */
tmo_queue_remove(&corep->tmo, current);
prepare_block(current, STATE_KILLED, -1);
corep->running = NULL; /* No switch_thread context save */
#ifdef RB_PROFILE
profile_thread_stopped(THREAD_ID_SLOT(current->id));
#endif
/* Do final release of resources and remove the thread */
#if NUM_CORES > 1
thread_exit_finalize(current->core, current);
#else
thread_exit_final(current);
#endif
}
#ifdef HAVE_PRIORITY_SCHEDULING
/*---------------------------------------------------------------------------
* Sets the thread's relative base priority for the core it runs on. Any
* needed inheritance changes also may happen.
*---------------------------------------------------------------------------
*/
int thread_set_priority(unsigned int thread_id, int priority)
{
if (priority < HIGHEST_PRIORITY || priority > LOWEST_PRIORITY)
return -1; /* Invalid priority argument */
int old_base_priority = -1;
struct thread_entry *thread = __thread_id_entry(thread_id);
const int oldlevel = disable_irq_save();
LOCK_THREAD(thread);
if (thread->id != thread_id || thread->state == STATE_KILLED)
goto done; /* Invalid thread */
old_base_priority = thread->base_priority;
if (priority == old_base_priority)
goto done; /* No base priority change */
thread->base_priority = priority;
/* Adjust the thread's priority influence on itself */
prio_move_entry(&thread->pdist, old_base_priority, priority);
int old_priority = thread->priority;
int new_priority = priobit_ffs(&thread->pdist.mask);
if (old_priority == new_priority)
goto done; /* No running priority change */
if (thread->state == STATE_RUNNING)
{
/* This thread is running - just change location on the run queue.
Also sets thread->priority. */
set_rtr_thread_priority(thread, new_priority);
goto done;
}
/* Thread is blocked */
struct blocker *bl = thread->blocker;
if (bl == NULL)
{
thread->priority = new_priority;
goto done; /* End of transitive blocks */
}
struct thread_entry *blt = lock_blocker_thread(bl);
struct __wait_queue *wqp = wait_queue_ptr(thread);
thread->priority = new_priority;
UNLOCK_THREAD(thread);
thread = NULL;
int oldblpr = bl->priority;
int newblpr = oldblpr;
if (new_priority < oldblpr)
newblpr = new_priority;
else if (old_priority <= oldblpr)
newblpr = wait_queue_find_priority(wqp);
if (newblpr == oldblpr)
{
unlock_blocker_thread(bl);
goto done;
}
inherit_priority(bl, bl, blt, newblpr);
done:
if (thread)
UNLOCK_THREAD(thread);
restore_irq(oldlevel);
return old_base_priority;
}
/*---------------------------------------------------------------------------
* Returns the current base priority for a thread.
*---------------------------------------------------------------------------
*/
int thread_get_priority(unsigned int thread_id)
{
struct thread_entry *thread = __thread_id_entry(thread_id);
int base_priority = thread->base_priority;
/* Simply check without locking slot. It may or may not be valid by the
* time the function returns anyway. If all tests pass, it is the
* correct value for when it was valid. */
if (thread->id != thread_id || thread->state == STATE_KILLED)
base_priority = -1;
return base_priority;
}
#endif /* HAVE_PRIORITY_SCHEDULING */
/*---------------------------------------------------------------------------
* Starts a frozen thread - similar semantics to wakeup_thread except that
* the thread is on no scheduler or wakeup queue at all. It exists simply by
* virtue of the slot having a state of STATE_FROZEN.
*---------------------------------------------------------------------------
*/
void thread_thaw(unsigned int thread_id)
{
struct thread_entry *thread = __thread_id_entry(thread_id);
int oldlevel = disable_irq_save();
LOCK_THREAD(thread);
/* If thread is the current one, it cannot be frozen, therefore
* there is no need to check that. */
if (thread->id == thread_id && thread->state == STATE_FROZEN)
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
restore_irq(oldlevel);
}
#if NUM_CORES > 1
/*---------------------------------------------------------------------------
* Switch the processor that the currently executing thread runs on.
*---------------------------------------------------------------------------
*/
static USED_ATTR NORETURN_ATTR
void switch_core_final(unsigned int old_core, struct thread_entry *current)
{
/* Old core won't be using slot resources at this point */
core_schedule_wakeup(current);
UNLOCK_THREAD(current);
#ifdef RB_PROFILE
profile_thread_stopped(THREAD_ID_SLOT(current->id));
#endif
switch_thread();
/* not reached */
THREAD_PANICF("switch_core_final->same core!", current);
(void)old_core;
}
unsigned int switch_core(unsigned int new_core)
{
const unsigned int old_core = CURRENT_CORE;
if (old_core == new_core)
return old_core; /* No change */
struct core_entry *corep = __core_id_entry(old_core);
struct thread_entry *current = corep->running;
disable_irq();
LOCK_THREAD(current);
/* Remove us from old core lists */
tmo_queue_remove(&corep->tmo, current);
core_rtr_remove(corep, current);
corep->running = NULL; /* No switch_thread context save */
/* Do the actual migration */
current->core = new_core;
switch_thread_core(old_core, current);
/* Executing on new core */
return old_core;
}
#endif /* NUM_CORES > 1 */
#ifdef HAVE_SCHEDULER_BOOSTCTRL
/*---------------------------------------------------------------------------
* Change the boost state of a thread boosting or unboosting the CPU
* as required.
*---------------------------------------------------------------------------
*/
static inline void boost_thread(struct thread_entry *thread, bool boost)
{
if ((thread->cpu_boost != 0) != boost)
{
thread->cpu_boost = boost;
cpu_boost(boost);
}
}
void trigger_cpu_boost(void)
{
boost_thread(__running_self_entry(), true);
}
void cancel_cpu_boost(void)
{
boost_thread(__running_self_entry(), false);
}
#endif /* HAVE_SCHEDULER_BOOSTCTRL */
/*---------------------------------------------------------------------------
* Initialize threading API. This assumes interrupts are not yet enabled. On
* multicore setups, no core is allowed to proceed until create_thread calls
* are safe to perform.
*---------------------------------------------------------------------------
*/
void INIT_ATTR init_threads(void)
{
const unsigned int core = CURRENT_CORE;
if (core == CPU)
{
thread_alloc_init(); /* before using cores! */
/* Create main thread */
struct thread_entry *thread = thread_alloc();
if (thread == NULL)
{
/* WTF? There really must be a slot available at this stage.
* This can fail if, for example, .bss isn't zero'ed out by the
* loader or threads is in the wrong section. */
THREAD_PANICF("init_threads->no slot", NULL);
}
size_t stack_size;
void *stack = __get_main_stack(&stack_size);
new_thread_base_init(thread, &stack, &stack_size, __main_thread_name
IF_PRIO(, PRIORITY_MAIN_THREAD) IF_COP(, core));
struct core_entry *corep = __core_id_entry(core);
core_rtr_add(corep, thread);
corep->running = thread;
#ifdef INIT_MAIN_THREAD
init_main_thread(&thread->context);
#endif
}
#if NUM_CORES > 1
/* Boot CPU:
* Wait for other processors to finish their inits since create_thread
* isn't safe to call until the kernel inits are done. The first
* threads created in the system must of course be created by CPU.
* Another possible approach is to initialize all cores and slots
* for each core by CPU, let the remainder proceed in parallel and
* signal CPU when all are finished.
*
* Other:
* After last processor completes, it should signal all others to
* proceed or may signal the next and call thread_exit(). The last one
* to finish will signal CPU.
*/
core_thread_init(core);
if (core != CPU)
{
/* No main thread on coprocessors - go idle and wait */
switch_thread();
THREAD_PANICF("init_threads() - coprocessor returned", NULL);
}
#endif /* NUM_CORES */
}