c8f22f5a8f
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21171 a1c6a512-1295-4272-9138-f99709370657
911 lines
26 KiB
C
911 lines
26 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2006 Daniel Ankers
|
|
* Copyright © 2008-2009 Rafaël Carré
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/* Driver for the ARM PL180 SD/MMC controller inside AS3525 SoC */
|
|
|
|
/* TODO: Find the real capacity of >2GB models (will be useful for USB) */
|
|
|
|
#include "config.h" /* for HAVE_MULTIVOLUME & AMS_OF_SIZE */
|
|
#include "fat.h"
|
|
#include "thread.h"
|
|
#include "hotswap.h"
|
|
#include "system.h"
|
|
#include "cpu.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "as3525.h"
|
|
#include "pl180.h" /* SD controller */
|
|
#include "pl081.h" /* DMA controller */
|
|
#include "dma-target.h" /* DMA request lines */
|
|
#include "clock-target.h"
|
|
#include "stdbool.h"
|
|
#include "ata_idle_notify.h"
|
|
#include "sd.h"
|
|
|
|
#ifdef HAVE_HOTSWAP
|
|
#include "disk.h"
|
|
#endif
|
|
|
|
/* command flags */
|
|
#define MCI_NO_FLAGS (0<<0)
|
|
#define MCI_RESP (1<<0)
|
|
#define MCI_LONG_RESP (1<<1)
|
|
#define MCI_ARG (1<<2)
|
|
|
|
/* ARM PL180 registers */
|
|
#define MCI_POWER(i) (*(volatile unsigned char *) (pl180_base[i]+0x00))
|
|
#define MCI_CLOCK(i) (*(volatile unsigned long *) (pl180_base[i]+0x04))
|
|
#define MCI_ARGUMENT(i) (*(volatile unsigned long *) (pl180_base[i]+0x08))
|
|
#define MCI_COMMAND(i) (*(volatile unsigned long *) (pl180_base[i]+0x0C))
|
|
#define MCI_RESPCMD(i) (*(volatile unsigned long *) (pl180_base[i]+0x10))
|
|
#define MCI_RESP0(i) (*(volatile unsigned long *) (pl180_base[i]+0x14))
|
|
#define MCI_RESP1(i) (*(volatile unsigned long *) (pl180_base[i]+0x18))
|
|
#define MCI_RESP2(i) (*(volatile unsigned long *) (pl180_base[i]+0x1C))
|
|
#define MCI_RESP3(i) (*(volatile unsigned long *) (pl180_base[i]+0x20))
|
|
#define MCI_DATA_TIMER(i) (*(volatile unsigned long *) (pl180_base[i]+0x24))
|
|
#define MCI_DATA_LENGTH(i) (*(volatile unsigned short*) (pl180_base[i]+0x28))
|
|
#define MCI_DATA_CTRL(i) (*(volatile unsigned char *) (pl180_base[i]+0x2C))
|
|
#define MCI_DATA_CNT(i) (*(volatile unsigned short*) (pl180_base[i]+0x30))
|
|
#define MCI_STATUS(i) (*(volatile unsigned long *) (pl180_base[i]+0x34))
|
|
#define MCI_CLEAR(i) (*(volatile unsigned long *) (pl180_base[i]+0x38))
|
|
#define MCI_MASK0(i) (*(volatile unsigned long *) (pl180_base[i]+0x3C))
|
|
#define MCI_MASK1(i) (*(volatile unsigned long *) (pl180_base[i]+0x40))
|
|
#define MCI_SELECT(i) (*(volatile unsigned long *) (pl180_base[i]+0x44))
|
|
#define MCI_FIFO_CNT(i) (*(volatile unsigned long *) (pl180_base[i]+0x48))
|
|
|
|
#define MCI_ERROR \
|
|
(MCI_DATA_CRC_FAIL | MCI_DATA_TIMEOUT | MCI_RX_OVERRUN | MCI_TX_UNDERRUN)
|
|
|
|
#define MCI_FIFO(i) ((unsigned long *) (pl180_base[i]+0x80))
|
|
/* volumes */
|
|
#define INTERNAL_AS3525 0 /* embedded SD card */
|
|
#define SD_SLOT_AS3525 1 /* SD slot if present */
|
|
|
|
static const int pl180_base[NUM_VOLUMES] = {
|
|
NAND_FLASH_BASE
|
|
#ifdef HAVE_MULTIVOLUME
|
|
, SD_MCI_BASE
|
|
#endif
|
|
};
|
|
|
|
static int sd_select_bank(signed char bank);
|
|
static int sd_init_card(const int drive);
|
|
static void init_pl180_controller(const int drive);
|
|
/* TODO : BLOCK_SIZE != SECTOR_SIZE ? */
|
|
#define BLOCK_SIZE 512
|
|
#define SECTOR_SIZE 512
|
|
#define BLOCKS_PER_BANK 0x7a7800
|
|
|
|
static tSDCardInfo card_info[NUM_VOLUMES];
|
|
|
|
/* for compatibility */
|
|
static long last_disk_activity = -1;
|
|
|
|
#define MIN_YIELD_PERIOD 5 /* ticks */
|
|
static long next_yield = 0;
|
|
|
|
static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)];
|
|
static const char sd_thread_name[] = "ata/sd";
|
|
static struct mutex sd_mtx;
|
|
static struct event_queue sd_queue;
|
|
#ifndef BOOTLOADER
|
|
static bool sd_enabled = false;
|
|
#endif
|
|
|
|
static struct wakeup transfer_completion_signal;
|
|
static volatile bool retry;
|
|
|
|
static inline void mci_delay(void) { int i = 0xffff; while(i--) ; }
|
|
|
|
#ifdef HAVE_HOTSWAP
|
|
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
|
|
static int sd1_oneshot_callback(struct timeout *tmo)
|
|
{
|
|
(void)tmo;
|
|
|
|
/* This is called only if the state was stable for 300ms - check state
|
|
* and post appropriate event. */
|
|
if (card_detect_target())
|
|
{
|
|
queue_broadcast(SYS_HOTSWAP_INSERTED, 0);
|
|
}
|
|
else
|
|
queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void INT_GPIOA(void)
|
|
{
|
|
static struct timeout sd1_oneshot;
|
|
/* reset irq */
|
|
GPIOA_IC = (1<<2);
|
|
timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0);
|
|
}
|
|
#endif /* defined(SANSA_E200V2) || defined(SANSA_FUZE) */
|
|
#endif /* HAVE_HOTSWAP */
|
|
|
|
void INT_NAND(void)
|
|
{
|
|
const int status = MCI_STATUS(INTERNAL_AS3525);
|
|
|
|
if(status & MCI_ERROR)
|
|
retry = true;
|
|
|
|
wakeup_signal(&transfer_completion_signal);
|
|
MCI_CLEAR(INTERNAL_AS3525) = status;
|
|
}
|
|
|
|
#ifdef HAVE_MULTIVOLUME
|
|
void INT_MCI0(void)
|
|
{
|
|
const int status = MCI_STATUS(SD_SLOT_AS3525);
|
|
|
|
if(status & MCI_ERROR)
|
|
retry = true;
|
|
|
|
wakeup_signal(&transfer_completion_signal);
|
|
MCI_CLEAR(SD_SLOT_AS3525) = status;
|
|
}
|
|
#endif
|
|
|
|
static bool send_cmd(const int drive, const int cmd, const int arg,
|
|
const int flags, int *response)
|
|
{
|
|
int val, status;
|
|
|
|
while(MCI_STATUS(drive) & MCI_CMD_ACTIVE);
|
|
|
|
if(MCI_COMMAND(drive) & MCI_COMMAND_ENABLE) /* clears existing command */
|
|
{
|
|
MCI_COMMAND(drive) = 0;
|
|
mci_delay();
|
|
}
|
|
|
|
val = cmd | MCI_COMMAND_ENABLE;
|
|
if(flags & MCI_RESP)
|
|
{
|
|
val |= MCI_COMMAND_RESPONSE;
|
|
if(flags & MCI_LONG_RESP)
|
|
val |= MCI_COMMAND_LONG_RESPONSE;
|
|
}
|
|
|
|
MCI_CLEAR(drive) = 0x7ff;
|
|
|
|
MCI_ARGUMENT(drive) = (flags & MCI_ARG) ? arg : 0;
|
|
MCI_COMMAND(drive) = val;
|
|
|
|
while(MCI_STATUS(drive) & MCI_CMD_ACTIVE); /* wait for cmd completion */
|
|
|
|
MCI_COMMAND(drive) = 0;
|
|
MCI_ARGUMENT(drive) = ~0;
|
|
|
|
status = MCI_STATUS(drive);
|
|
MCI_CLEAR(drive) = 0x7ff;
|
|
|
|
if(flags & MCI_RESP)
|
|
{
|
|
if(status & MCI_CMD_TIMEOUT)
|
|
return false;
|
|
else if(status & (MCI_CMD_CRC_FAIL /* FIXME? */ | MCI_CMD_RESP_END))
|
|
{ /* resp received */
|
|
if(flags & MCI_LONG_RESP)
|
|
{
|
|
/* store the response in reverse words order */
|
|
response[0] = MCI_RESP3(drive);
|
|
response[1] = MCI_RESP2(drive);
|
|
response[2] = MCI_RESP1(drive);
|
|
response[3] = MCI_RESP0(drive);
|
|
}
|
|
else
|
|
response[0] = MCI_RESP0(drive);
|
|
return true;
|
|
}
|
|
}
|
|
else if(status & MCI_CMD_SENT)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int sd_init_card(const int drive)
|
|
{
|
|
unsigned int c_size;
|
|
unsigned long c_mult;
|
|
int response;
|
|
int max_tries = 100; /* max acmd41 attemps */
|
|
bool sdhc;
|
|
|
|
if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_FLAGS, NULL))
|
|
return -1;
|
|
|
|
mci_delay();
|
|
|
|
sdhc = false;
|
|
if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP|MCI_ARG, &response))
|
|
if((response & 0xFFF) == 0x1AA)
|
|
sdhc = true;
|
|
|
|
do {
|
|
/* some MicroSD cards seems to need more delays, so play safe */
|
|
mci_delay();
|
|
mci_delay();
|
|
mci_delay();
|
|
mci_delay();
|
|
|
|
/* app_cmd */
|
|
if( !send_cmd(drive, SD_APP_CMD, 0, MCI_RESP|MCI_ARG, &response) ||
|
|
!(response & (1<<5)) )
|
|
{
|
|
return -2;
|
|
}
|
|
|
|
/* acmd41 */
|
|
if(!send_cmd(drive, SD_APP_OP_COND, (sdhc ? 0x40FF8000 : (1<<23)),
|
|
MCI_RESP|MCI_ARG, &card_info[drive].ocr))
|
|
return -3;
|
|
|
|
} while(!(card_info[drive].ocr & (1<<31)) && max_tries--);
|
|
|
|
if(max_tries < 0)
|
|
return -4;
|
|
|
|
/* send CID */
|
|
if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP|MCI_ARG,
|
|
card_info[drive].cid))
|
|
return -5;
|
|
|
|
/* send RCA */
|
|
if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP|MCI_ARG,
|
|
&card_info[drive].rca))
|
|
return -6;
|
|
|
|
/* send CSD */
|
|
if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca,
|
|
MCI_RESP|MCI_LONG_RESP|MCI_ARG, card_info[drive].csd))
|
|
return -7;
|
|
|
|
/* These calculations come from the Sandisk SD card product manual */
|
|
if( (card_info[drive].csd[3]>>30) == 0)
|
|
{
|
|
/* CSD version 1.0 */
|
|
c_size = ((card_info[drive].csd[2] & 0x3ff) << 2) + (card_info[drive].csd[1]>>30) + 1;
|
|
c_mult = 4 << ((card_info[drive].csd[1] >> 15) & 7);
|
|
card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 15);
|
|
card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */
|
|
card_info[drive].numblocks = c_size * c_mult * (card_info[drive].max_read_bl_len/512);
|
|
card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size;
|
|
}
|
|
#ifdef HAVE_MULTIVOLUME
|
|
else if( (card_info[drive].csd[3]>>30) == 1)
|
|
{
|
|
/* CSD version 2.0 */
|
|
c_size = ((card_info[drive].csd[2] & 0x3f) << 16) + (card_info[drive].csd[1]>>16) + 1;
|
|
card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 0xf);
|
|
card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */
|
|
card_info[drive].numblocks = c_size << 10;
|
|
card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size;
|
|
}
|
|
#endif
|
|
|
|
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_ARG, NULL))
|
|
return -9;
|
|
|
|
if(!send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_ARG, NULL))
|
|
return -10;
|
|
|
|
if(!send_cmd(drive, SD_SET_BUS_WIDTH, card_info[drive].rca | 2, MCI_ARG, NULL))
|
|
return -11;
|
|
|
|
if(!send_cmd(drive, SD_SET_BLOCKLEN, card_info[drive].block_size, MCI_ARG,
|
|
NULL))
|
|
return -12;
|
|
|
|
card_info[drive].initialized = 1;
|
|
|
|
MCI_CLOCK(drive) |= MCI_CLOCK_BYPASS; /* full speed for controller clock */
|
|
mci_delay();
|
|
|
|
/*
|
|
* enable bank switching
|
|
* without issuing this command, we only have access to 1/4 of the blocks
|
|
* of the first bank (0x1E9E00 blocks, which is the size reported in the
|
|
* CSD register)
|
|
*/
|
|
if(drive == INTERNAL_AS3525)
|
|
{
|
|
const int ret = sd_select_bank(-1);
|
|
if(ret < 0)
|
|
return ret - 13;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sd_thread(void) __attribute__((noreturn));
|
|
static void sd_thread(void)
|
|
{
|
|
struct queue_event ev;
|
|
bool idle_notified = false;
|
|
|
|
while (1)
|
|
{
|
|
queue_wait_w_tmo(&sd_queue, &ev, HZ);
|
|
|
|
switch ( ev.id )
|
|
{
|
|
#ifdef HAVE_HOTSWAP
|
|
case SYS_HOTSWAP_INSERTED:
|
|
case SYS_HOTSWAP_EXTRACTED:
|
|
fat_lock(); /* lock-out FAT activity first -
|
|
prevent deadlocking via disk_mount that
|
|
would cause a reverse-order attempt with
|
|
another thread */
|
|
mutex_lock(&sd_mtx); /* lock-out card activity - direct calls
|
|
into driver that bypass the fat cache */
|
|
|
|
/* We now have exclusive control of fat cache and ata */
|
|
|
|
disk_unmount(SD_SLOT_AS3525); /* release "by force", ensure file
|
|
descriptors aren't leaked and any busy
|
|
ones are invalid if mounting */
|
|
|
|
/* Force card init for new card, re-init for re-inserted one or
|
|
* clear if the last attempt to init failed with an error. */
|
|
card_info[SD_SLOT_AS3525].initialized = 0;
|
|
|
|
if (ev.id == SYS_HOTSWAP_INSERTED)
|
|
{
|
|
sd_enable(true);
|
|
init_pl180_controller(SD_SLOT_AS3525);
|
|
sd_init_card(SD_SLOT_AS3525);
|
|
disk_mount(SD_SLOT_AS3525);
|
|
}
|
|
|
|
queue_broadcast(SYS_FS_CHANGED, 0);
|
|
|
|
/* Access is now safe */
|
|
mutex_unlock(&sd_mtx);
|
|
fat_unlock();
|
|
sd_enable(false);
|
|
break;
|
|
#endif
|
|
case SYS_TIMEOUT:
|
|
if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ)))
|
|
{
|
|
idle_notified = false;
|
|
}
|
|
else
|
|
{
|
|
/* never let a timer wrap confuse us */
|
|
next_yield = current_tick;
|
|
|
|
if (!idle_notified)
|
|
{
|
|
call_storage_idle_notifys(false);
|
|
idle_notified = true;
|
|
}
|
|
}
|
|
break;
|
|
#if 0
|
|
case SYS_USB_CONNECTED:
|
|
usb_acknowledge(SYS_USB_CONNECTED_ACK);
|
|
/* Wait until the USB cable is extracted again */
|
|
usb_wait_for_disconnect(&sd_queue);
|
|
|
|
break;
|
|
case SYS_USB_DISCONNECTED:
|
|
usb_acknowledge(SYS_USB_DISCONNECTED_ACK);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_pl180_controller(const int drive)
|
|
{
|
|
MCI_COMMAND(drive) = MCI_DATA_CTRL(drive) = 0;
|
|
MCI_CLEAR(drive) = 0x7ff;
|
|
|
|
MCI_MASK0(drive) = MCI_MASK1(drive) = MCI_ERROR | MCI_DATA_END;
|
|
|
|
#ifdef HAVE_MULTIVOLUME
|
|
VIC_INT_ENABLE |=
|
|
(drive == INTERNAL_AS3525) ? INTERRUPT_NAND : INTERRUPT_MCI0;
|
|
|
|
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
|
|
/* setup isr for microsd monitoring */
|
|
VIC_INT_ENABLE |= (INTERRUPT_GPIOA);
|
|
/* clear previous irq */
|
|
GPIOA_IC |= (1<<2);
|
|
/* enable edge detecting */
|
|
GPIOA_IS &= ~(1<<2);
|
|
/* detect both raising and falling edges */
|
|
GPIOA_IBE |= (1<<2);
|
|
|
|
#endif
|
|
|
|
#else
|
|
VIC_INT_ENABLE |= INTERRUPT_NAND;
|
|
#endif
|
|
|
|
MCI_POWER(drive) = MCI_POWER_UP|(10 /*voltage*/ << 2); /* use OF voltage */
|
|
mci_delay();
|
|
|
|
MCI_POWER(drive) |= MCI_POWER_ON;
|
|
mci_delay();
|
|
|
|
MCI_SELECT(drive) = 0;
|
|
|
|
MCI_CLOCK(drive) = MCI_CLOCK_ENABLE | AS3525_SD_IDENT_DIV;
|
|
mci_delay();
|
|
}
|
|
|
|
int sd_init(void)
|
|
{
|
|
int ret;
|
|
CGU_IDE = (1<<7) /* AHB interface enable */ |
|
|
(1<<6) /* interface enable */ |
|
|
(AS3525_IDE_DIV << 2) |
|
|
AS3525_CLK_PLLA; /* clock source = PLLA */
|
|
|
|
|
|
CGU_PERI |= CGU_NAF_CLOCK_ENABLE;
|
|
#ifdef HAVE_MULTIVOLUME
|
|
CGU_PERI |= CGU_MCI_CLOCK_ENABLE;
|
|
CCU_IO &= ~(1<<3); /* bits 3:2 = 01, xpd is SD interface */
|
|
CCU_IO |= (1<<2);
|
|
#endif
|
|
|
|
wakeup_init(&transfer_completion_signal);
|
|
|
|
init_pl180_controller(INTERNAL_AS3525);
|
|
ret = sd_init_card(INTERNAL_AS3525);
|
|
if(ret < 0)
|
|
return ret;
|
|
#ifdef HAVE_MULTIVOLUME
|
|
init_pl180_controller(SD_SLOT_AS3525);
|
|
#endif
|
|
|
|
/* init mutex */
|
|
mutex_init(&sd_mtx);
|
|
|
|
queue_init(&sd_queue, true);
|
|
create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0,
|
|
sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU));
|
|
|
|
#ifndef BOOTLOADER
|
|
sd_enabled = true;
|
|
sd_enable(false);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#ifdef STORAGE_GET_INFO
|
|
void sd_get_info(IF_MV2(int drive,) struct storage_info *info)
|
|
{
|
|
#ifndef HAVE_MULTIVOLUME
|
|
const int drive=0;
|
|
#endif
|
|
info->sector_size=card_info[drive].block_size;
|
|
info->num_sectors=card_info[drive].numblocks;
|
|
info->vendor="Rockbox";
|
|
info->product = (drive == 0) ? "Internal Storage" : "SD Card Slot";
|
|
info->revision="0.00";
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_HOTSWAP
|
|
bool sd_removable(IF_MV_NONVOID(int drive))
|
|
{
|
|
#ifndef HAVE_MULTIVOLUME
|
|
const int drive=0;
|
|
#endif
|
|
return (drive==1);
|
|
}
|
|
|
|
bool sd_present(IF_MV_NONVOID(int drive))
|
|
{
|
|
#ifndef HAVE_MULTIVOLUME
|
|
const int drive=0;
|
|
#endif
|
|
return (card_info[drive].initialized && card_info[drive].numblocks > 0);
|
|
}
|
|
#endif
|
|
|
|
static int sd_wait_for_state(const int drive, unsigned int state)
|
|
{
|
|
unsigned int response = 0;
|
|
unsigned int timeout = 100; /* ticks */
|
|
long t = current_tick;
|
|
|
|
while (1)
|
|
{
|
|
long tick;
|
|
|
|
if(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca,
|
|
MCI_RESP|MCI_ARG, &response))
|
|
return -1;
|
|
|
|
if (((response >> 9) & 0xf) == state)
|
|
return 0;
|
|
|
|
if(TIME_AFTER(current_tick, t + timeout))
|
|
return -2;
|
|
|
|
if (TIME_AFTER((tick = current_tick), next_yield))
|
|
{
|
|
yield();
|
|
timeout += current_tick - tick;
|
|
next_yield = tick + MIN_YIELD_PERIOD;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int sd_select_bank(signed char bank)
|
|
{
|
|
unsigned char card_data[512];
|
|
int ret;
|
|
|
|
ret = sd_wait_for_state(INTERNAL_AS3525, SD_TRAN);
|
|
if (ret < 0)
|
|
return ret - 2;
|
|
|
|
if(!send_cmd(INTERNAL_AS3525, SD_SWITCH_FUNC, 0x80ffffef, MCI_ARG, NULL))
|
|
return -1;
|
|
|
|
mci_delay();
|
|
|
|
if(!send_cmd(INTERNAL_AS3525, 35, 0, MCI_NO_FLAGS, NULL))
|
|
return -2;
|
|
|
|
mci_delay();
|
|
|
|
memset(card_data, 0, 512);
|
|
if(bank == -1)
|
|
{ /* enable bank switching */
|
|
card_data[0] = 16;
|
|
card_data[1] = 1;
|
|
card_data[2] = 10;
|
|
}
|
|
else
|
|
card_data[0] = bank;
|
|
|
|
dma_retain();
|
|
dma_enable_channel(0, card_data, MCI_FIFO(INTERNAL_AS3525), DMA_PERI_SD,
|
|
DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL);
|
|
|
|
MCI_DATA_TIMER(INTERNAL_AS3525) = 0x1000000; /* FIXME: arbitrary */
|
|
MCI_DATA_LENGTH(INTERNAL_AS3525) = 512;
|
|
MCI_DATA_CTRL(INTERNAL_AS3525) = (1<<0) /* enable */ |
|
|
(0<<1) /* transfer direction */ |
|
|
(1<<3) /* DMA */ |
|
|
(9<<4) /* 2^9 = 512 */ ;
|
|
|
|
wakeup_wait(&transfer_completion_signal, TIMEOUT_BLOCK);
|
|
|
|
dma_release();
|
|
|
|
mci_delay();
|
|
|
|
ret = sd_wait_for_state(INTERNAL_AS3525, SD_TRAN);
|
|
if (ret < 0)
|
|
return ret - 4;
|
|
|
|
card_info[INTERNAL_AS3525].current_bank = (bank == -1) ? 0 : bank;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define UNALIGNED_NUM_SECTORS 10
|
|
static int32_t aligned_buffer[UNALIGNED_NUM_SECTORS* (SECTOR_SIZE / 4)];
|
|
|
|
static int sd_transfer_sectors(IF_MV2(int drive,) unsigned long start,
|
|
int count, void* buf, const bool write)
|
|
{
|
|
#ifndef HAVE_MULTIVOLUME
|
|
const int drive = 0;
|
|
#endif
|
|
int ret = 0;
|
|
bool unaligned_transfer = (int)buf & 3;
|
|
|
|
/* skip SanDisk OF */
|
|
if (drive == INTERNAL_AS3525)
|
|
start += AMS_OF_SIZE;
|
|
|
|
mutex_lock(&sd_mtx);
|
|
#ifndef BOOTLOADER
|
|
sd_enable(true);
|
|
#endif
|
|
|
|
if (card_info[drive].initialized <= 0)
|
|
{
|
|
ret = sd_init_card(drive);
|
|
if (!(card_info[drive].initialized))
|
|
goto sd_transfer_error;
|
|
}
|
|
|
|
last_disk_activity = current_tick;
|
|
|
|
ret = sd_wait_for_state(drive, SD_TRAN);
|
|
if (ret < 0)
|
|
{
|
|
ret -= 20;
|
|
goto sd_transfer_error;
|
|
}
|
|
|
|
dma_retain();
|
|
|
|
while(count)
|
|
{
|
|
/* 128 * 512 = 2^16, and doesn't fit in the 16 bits of DATA_LENGTH
|
|
* register, so we have to transfer maximum 127 sectors at a time. */
|
|
unsigned int transfer = (count >= 128) ? 127 : count; /* sectors */
|
|
void *dma_buf;
|
|
const int cmd =
|
|
write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK;
|
|
unsigned long bank_start = start;
|
|
|
|
/* Interrupt handler might set this to true during transfer */
|
|
retry = false;
|
|
|
|
/* Only switch banks for internal storage */
|
|
if(drive == INTERNAL_AS3525)
|
|
{
|
|
int bank = start / BLOCKS_PER_BANK; /* Current bank */
|
|
|
|
/* Switch bank if needed */
|
|
if(card_info[INTERNAL_AS3525].current_bank != bank)
|
|
{
|
|
ret = sd_select_bank(bank);
|
|
if (ret < 0)
|
|
{
|
|
ret -= 2*20;
|
|
goto sd_transfer_error;
|
|
}
|
|
}
|
|
|
|
/* Adjust start block in current bank */
|
|
bank_start -= bank * BLOCKS_PER_BANK;
|
|
|
|
/* Do not cross a bank boundary in a single transfer loop */
|
|
if((transfer + bank_start) >= BLOCKS_PER_BANK)
|
|
transfer = BLOCKS_PER_BANK - bank_start;
|
|
}
|
|
|
|
if(unaligned_transfer)
|
|
{
|
|
dma_buf = aligned_buffer;
|
|
if(transfer > UNALIGNED_NUM_SECTORS)
|
|
transfer = UNALIGNED_NUM_SECTORS;
|
|
if(write)
|
|
memcpy(aligned_buffer, buf, transfer * SECTOR_SIZE);
|
|
}
|
|
else /* Aligned transfers are faster : no memcpy */
|
|
dma_buf = buf;
|
|
|
|
/* Set bank_start to the correct unit (blocks or bytes) */
|
|
if(!(card_info[drive].ocr & (1<<30))) /* not SDHC */
|
|
bank_start *= BLOCK_SIZE;
|
|
|
|
if(!send_cmd(drive, cmd, bank_start, MCI_ARG, NULL))
|
|
{
|
|
ret -= 3*20;
|
|
goto sd_transfer_error;
|
|
}
|
|
|
|
if(write)
|
|
dma_enable_channel(0, dma_buf, MCI_FIFO(drive),
|
|
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
|
|
DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL);
|
|
else
|
|
dma_enable_channel(0, MCI_FIFO(drive), dma_buf,
|
|
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
|
|
DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL);
|
|
|
|
MCI_DATA_TIMER(drive) = 0x1000000; /* FIXME: arbitrary */
|
|
MCI_DATA_LENGTH(drive) = transfer * card_info[drive].block_size;
|
|
MCI_DATA_CTRL(drive) = (1<<0) /* enable */ |
|
|
(!write<<1) /* transfer direction */ |
|
|
(1<<3) /* DMA */ |
|
|
(9<<4) /* 2^9 = 512 */ ;
|
|
|
|
|
|
wakeup_wait(&transfer_completion_signal, TIMEOUT_BLOCK);
|
|
if(!retry)
|
|
{
|
|
if(unaligned_transfer && !write)
|
|
memcpy(buf, aligned_buffer, transfer * SECTOR_SIZE);
|
|
buf += transfer * SECTOR_SIZE;
|
|
start += transfer;
|
|
count -= transfer;
|
|
}
|
|
|
|
last_disk_activity = current_tick;
|
|
|
|
if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_NO_FLAGS, NULL))
|
|
{
|
|
ret = -4*20;
|
|
goto sd_transfer_error;
|
|
}
|
|
|
|
ret = sd_wait_for_state(drive, SD_TRAN);
|
|
if (ret < 0)
|
|
{
|
|
ret -= 5*20;
|
|
goto sd_transfer_error;
|
|
}
|
|
}
|
|
|
|
dma_release();
|
|
|
|
#ifndef BOOTLOADER
|
|
sd_enable(false);
|
|
#endif
|
|
mutex_unlock(&sd_mtx);
|
|
return 0;
|
|
|
|
sd_transfer_error:
|
|
card_info[drive].initialized = 0;
|
|
return ret;
|
|
}
|
|
|
|
int sd_read_sectors(IF_MV2(int drive,) unsigned long start, int count,
|
|
void* buf)
|
|
{
|
|
return sd_transfer_sectors(IF_MV2(drive,) start, count, buf, false);
|
|
}
|
|
|
|
int sd_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
|
|
const void* buf)
|
|
{
|
|
|
|
#ifdef BOOTLOADER /* we don't need write support in bootloader */
|
|
#ifdef HAVE_MULTIVOLUME
|
|
(void) drive;
|
|
#endif
|
|
(void) start;
|
|
(void) count;
|
|
(void) buf;
|
|
return -1;
|
|
#else
|
|
return sd_transfer_sectors(IF_MV2(drive,) start, count, (void*)buf, true);
|
|
#endif
|
|
}
|
|
|
|
#ifndef BOOTLOADER
|
|
void sd_sleep(void)
|
|
{
|
|
}
|
|
|
|
void sd_spin(void)
|
|
{
|
|
}
|
|
|
|
void sd_spindown(int seconds)
|
|
{
|
|
(void)seconds;
|
|
}
|
|
|
|
long sd_last_disk_activity(void)
|
|
{
|
|
return last_disk_activity;
|
|
}
|
|
|
|
void sd_enable(bool on)
|
|
{
|
|
if (sd_enabled == on)
|
|
return; /* nothing to do */
|
|
if(on)
|
|
{
|
|
CGU_PERI |= CGU_NAF_CLOCK_ENABLE;
|
|
#ifdef HAVE_MULTIVOLUME
|
|
CGU_PERI |= CGU_MCI_CLOCK_ENABLE;
|
|
/* Needed for buttonlight and MicroSD to work at the same time */
|
|
/* Turn ROD control on, as the OF does */
|
|
SD_MCI_POWER |= (1<<7);
|
|
CCU_IO |= (1<<2);
|
|
#endif
|
|
CGU_IDE |= (1<<7) /* AHB interface enable */ |
|
|
(1<<6) /* interface enable */;
|
|
sd_enabled = true;
|
|
}
|
|
else
|
|
{
|
|
CGU_PERI &= ~CGU_NAF_CLOCK_ENABLE;
|
|
#ifdef HAVE_MULTIVOLUME
|
|
CGU_PERI &= ~CGU_MCI_CLOCK_ENABLE;
|
|
/* Needed for buttonlight and MicroSD to work at the same time */
|
|
/* Turn ROD control off, as the OF does */
|
|
SD_MCI_POWER &= ~(1<<7);
|
|
CCU_IO &= ~(1<<2);
|
|
#endif
|
|
CGU_IDE &= ~((1<<7)|(1<<6));
|
|
sd_enabled = false;
|
|
}
|
|
}
|
|
|
|
/* move the sd-card info to mmc struct */
|
|
tCardInfo *card_get_info_target(int card_no)
|
|
{
|
|
int i, temp;
|
|
static tCardInfo card;
|
|
static const char mantissa[] = { /* *10 */
|
|
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
|
|
static const int exponent[] = { /* use varies */
|
|
1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 };
|
|
|
|
card.initialized = card_info[card_no].initialized;
|
|
card.ocr = card_info[card_no].ocr;
|
|
for(i=0; i<4; i++) card.csd[i] = card_info[card_no].csd[i];
|
|
for(i=0; i<4; i++) card.cid[i] = card_info[card_no].cid[i];
|
|
card.numblocks = card_info[card_no].numblocks;
|
|
card.blocksize = card_info[card_no].block_size;
|
|
temp = card_extract_bits(card.csd, 29, 3);
|
|
card.speed = mantissa[card_extract_bits(card.csd, 25, 4)]
|
|
* exponent[temp > 2 ? 7 : temp + 4];
|
|
card.nsac = 100 * card_extract_bits(card.csd, 16, 8);
|
|
temp = card_extract_bits(card.csd, 13, 3);
|
|
card.tsac = mantissa[card_extract_bits(card.csd, 9, 4)]
|
|
* exponent[temp] / 10;
|
|
card.cid[0] = htobe32(card.cid[0]); /* ascii chars here */
|
|
card.cid[1] = htobe32(card.cid[1]); /* ascii chars here */
|
|
temp = *((char*)card.cid+13); /* adjust year<=>month, 1997 <=> 2000 */
|
|
*((char*)card.cid+13) = (unsigned char)((temp >> 4) | (temp << 4)) + 3;
|
|
|
|
return &card;
|
|
}
|
|
|
|
bool card_detect_target(void)
|
|
{
|
|
#ifdef HAVE_HOTSWAP
|
|
/* TODO: add e200/c200 */
|
|
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
|
|
return !(GPIOA_PIN(2));
|
|
#endif
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
#ifdef HAVE_HOTSWAP
|
|
void card_enable_monitoring_target(bool on)
|
|
{
|
|
if (on)
|
|
{
|
|
/* add e200v2/c200v2 here */
|
|
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
|
|
/* enable isr*/
|
|
GPIOA_IE |= (1<<2);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
|
|
/* edisable isr*/
|
|
GPIOA_IE &= ~(1<<2);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif /* BOOTLOADER */
|