/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 Daniel Ankers * Copyright © 2008-2009 Rafaël Carré * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* Driver for the ARM PL180 SD/MMC controller inside AS3525 SoC */ /* TODO: Find the real capacity of >2GB models (will be useful for USB) */ #include "config.h" /* for HAVE_MULTIVOLUME & AMS_OF_SIZE */ #include "fat.h" #include "thread.h" #include "hotswap.h" #include "system.h" #include "cpu.h" #include #include #include #include "as3525.h" #include "pl180.h" /* SD controller */ #include "pl081.h" /* DMA controller */ #include "dma-target.h" /* DMA request lines */ #include "clock-target.h" #include "stdbool.h" #include "ata_idle_notify.h" #include "sd.h" #ifdef HAVE_HOTSWAP #include "disk.h" #endif /* command flags */ #define MCI_NO_FLAGS (0<<0) #define MCI_RESP (1<<0) #define MCI_LONG_RESP (1<<1) #define MCI_ARG (1<<2) /* ARM PL180 registers */ #define MCI_POWER(i) (*(volatile unsigned char *) (pl180_base[i]+0x00)) #define MCI_CLOCK(i) (*(volatile unsigned long *) (pl180_base[i]+0x04)) #define MCI_ARGUMENT(i) (*(volatile unsigned long *) (pl180_base[i]+0x08)) #define MCI_COMMAND(i) (*(volatile unsigned long *) (pl180_base[i]+0x0C)) #define MCI_RESPCMD(i) (*(volatile unsigned long *) (pl180_base[i]+0x10)) #define MCI_RESP0(i) (*(volatile unsigned long *) (pl180_base[i]+0x14)) #define MCI_RESP1(i) (*(volatile unsigned long *) (pl180_base[i]+0x18)) #define MCI_RESP2(i) (*(volatile unsigned long *) (pl180_base[i]+0x1C)) #define MCI_RESP3(i) (*(volatile unsigned long *) (pl180_base[i]+0x20)) #define MCI_DATA_TIMER(i) (*(volatile unsigned long *) (pl180_base[i]+0x24)) #define MCI_DATA_LENGTH(i) (*(volatile unsigned short*) (pl180_base[i]+0x28)) #define MCI_DATA_CTRL(i) (*(volatile unsigned char *) (pl180_base[i]+0x2C)) #define MCI_DATA_CNT(i) (*(volatile unsigned short*) (pl180_base[i]+0x30)) #define MCI_STATUS(i) (*(volatile unsigned long *) (pl180_base[i]+0x34)) #define MCI_CLEAR(i) (*(volatile unsigned long *) (pl180_base[i]+0x38)) #define MCI_MASK0(i) (*(volatile unsigned long *) (pl180_base[i]+0x3C)) #define MCI_MASK1(i) (*(volatile unsigned long *) (pl180_base[i]+0x40)) #define MCI_SELECT(i) (*(volatile unsigned long *) (pl180_base[i]+0x44)) #define MCI_FIFO_CNT(i) (*(volatile unsigned long *) (pl180_base[i]+0x48)) #define MCI_ERROR \ (MCI_DATA_CRC_FAIL | MCI_DATA_TIMEOUT | MCI_RX_OVERRUN | MCI_TX_UNDERRUN) #define MCI_FIFO(i) ((unsigned long *) (pl180_base[i]+0x80)) /* volumes */ #define INTERNAL_AS3525 0 /* embedded SD card */ #define SD_SLOT_AS3525 1 /* SD slot if present */ static const int pl180_base[NUM_VOLUMES] = { NAND_FLASH_BASE #ifdef HAVE_MULTIVOLUME , SD_MCI_BASE #endif }; static int sd_select_bank(signed char bank); static int sd_init_card(const int drive); static void init_pl180_controller(const int drive); /* TODO : BLOCK_SIZE != SECTOR_SIZE ? */ #define BLOCK_SIZE 512 #define SECTOR_SIZE 512 #define BLOCKS_PER_BANK 0x7a7800 static tSDCardInfo card_info[NUM_VOLUMES]; /* for compatibility */ static long last_disk_activity = -1; #define MIN_YIELD_PERIOD 5 /* ticks */ static long next_yield = 0; static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)]; static const char sd_thread_name[] = "ata/sd"; static struct mutex sd_mtx; static struct event_queue sd_queue; #ifndef BOOTLOADER static bool sd_enabled = false; #endif static struct wakeup transfer_completion_signal; static volatile bool retry; static inline void mci_delay(void) { int i = 0xffff; while(i--) ; } #ifdef HAVE_HOTSWAP #if defined(SANSA_E200V2) || defined(SANSA_FUZE) static int sd1_oneshot_callback(struct timeout *tmo) { (void)tmo; /* This is called only if the state was stable for 300ms - check state * and post appropriate event. */ if (card_detect_target()) { queue_broadcast(SYS_HOTSWAP_INSERTED, 0); } else queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0); return 0; } void INT_GPIOA(void) { static struct timeout sd1_oneshot; /* reset irq */ GPIOA_IC = (1<<2); timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0); } #endif /* defined(SANSA_E200V2) || defined(SANSA_FUZE) */ #endif /* HAVE_HOTSWAP */ void INT_NAND(void) { const int status = MCI_STATUS(INTERNAL_AS3525); if(status & MCI_ERROR) retry = true; wakeup_signal(&transfer_completion_signal); MCI_CLEAR(INTERNAL_AS3525) = status; } #ifdef HAVE_MULTIVOLUME void INT_MCI0(void) { const int status = MCI_STATUS(SD_SLOT_AS3525); if(status & MCI_ERROR) retry = true; wakeup_signal(&transfer_completion_signal); MCI_CLEAR(SD_SLOT_AS3525) = status; } #endif static bool send_cmd(const int drive, const int cmd, const int arg, const int flags, int *response) { int val, status; while(MCI_STATUS(drive) & MCI_CMD_ACTIVE); if(MCI_COMMAND(drive) & MCI_COMMAND_ENABLE) /* clears existing command */ { MCI_COMMAND(drive) = 0; mci_delay(); } val = cmd | MCI_COMMAND_ENABLE; if(flags & MCI_RESP) { val |= MCI_COMMAND_RESPONSE; if(flags & MCI_LONG_RESP) val |= MCI_COMMAND_LONG_RESPONSE; } MCI_CLEAR(drive) = 0x7ff; MCI_ARGUMENT(drive) = (flags & MCI_ARG) ? arg : 0; MCI_COMMAND(drive) = val; while(MCI_STATUS(drive) & MCI_CMD_ACTIVE); /* wait for cmd completion */ MCI_COMMAND(drive) = 0; MCI_ARGUMENT(drive) = ~0; status = MCI_STATUS(drive); MCI_CLEAR(drive) = 0x7ff; if(flags & MCI_RESP) { if(status & MCI_CMD_TIMEOUT) return false; else if(status & (MCI_CMD_CRC_FAIL /* FIXME? */ | MCI_CMD_RESP_END)) { /* resp received */ if(flags & MCI_LONG_RESP) { /* store the response in reverse words order */ response[0] = MCI_RESP3(drive); response[1] = MCI_RESP2(drive); response[2] = MCI_RESP1(drive); response[3] = MCI_RESP0(drive); } else response[0] = MCI_RESP0(drive); return true; } } else if(status & MCI_CMD_SENT) return true; return false; } static int sd_init_card(const int drive) { unsigned int c_size; unsigned long c_mult; int response; int max_tries = 100; /* max acmd41 attemps */ bool sdhc; if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_FLAGS, NULL)) return -1; mci_delay(); sdhc = false; if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP|MCI_ARG, &response)) if((response & 0xFFF) == 0x1AA) sdhc = true; do { /* some MicroSD cards seems to need more delays, so play safe */ mci_delay(); mci_delay(); mci_delay(); mci_delay(); /* app_cmd */ if( !send_cmd(drive, SD_APP_CMD, 0, MCI_RESP|MCI_ARG, &response) || !(response & (1<<5)) ) { return -2; } /* acmd41 */ if(!send_cmd(drive, SD_APP_OP_COND, (sdhc ? 0x40FF8000 : (1<<23)), MCI_RESP|MCI_ARG, &card_info[drive].ocr)) return -3; } while(!(card_info[drive].ocr & (1<<31)) && max_tries--); if(max_tries < 0) return -4; /* send CID */ if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP|MCI_ARG, card_info[drive].cid)) return -5; /* send RCA */ if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP|MCI_ARG, &card_info[drive].rca)) return -6; /* send CSD */ if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca, MCI_RESP|MCI_LONG_RESP|MCI_ARG, card_info[drive].csd)) return -7; /* These calculations come from the Sandisk SD card product manual */ if( (card_info[drive].csd[3]>>30) == 0) { /* CSD version 1.0 */ c_size = ((card_info[drive].csd[2] & 0x3ff) << 2) + (card_info[drive].csd[1]>>30) + 1; c_mult = 4 << ((card_info[drive].csd[1] >> 15) & 7); card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 15); card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */ card_info[drive].numblocks = c_size * c_mult * (card_info[drive].max_read_bl_len/512); card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size; } #ifdef HAVE_MULTIVOLUME else if( (card_info[drive].csd[3]>>30) == 1) { /* CSD version 2.0 */ c_size = ((card_info[drive].csd[2] & 0x3f) << 16) + (card_info[drive].csd[1]>>16) + 1; card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 0xf); card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */ card_info[drive].numblocks = c_size << 10; card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size; } #endif if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_ARG, NULL)) return -9; if(!send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_ARG, NULL)) return -10; if(!send_cmd(drive, SD_SET_BUS_WIDTH, card_info[drive].rca | 2, MCI_ARG, NULL)) return -11; if(!send_cmd(drive, SD_SET_BLOCKLEN, card_info[drive].block_size, MCI_ARG, NULL)) return -12; card_info[drive].initialized = 1; MCI_CLOCK(drive) |= MCI_CLOCK_BYPASS; /* full speed for controller clock */ mci_delay(); /* * enable bank switching * without issuing this command, we only have access to 1/4 of the blocks * of the first bank (0x1E9E00 blocks, which is the size reported in the * CSD register) */ if(drive == INTERNAL_AS3525) { const int ret = sd_select_bank(-1); if(ret < 0) return ret - 13; } return 0; } static void sd_thread(void) __attribute__((noreturn)); static void sd_thread(void) { struct queue_event ev; bool idle_notified = false; while (1) { queue_wait_w_tmo(&sd_queue, &ev, HZ); switch ( ev.id ) { #ifdef HAVE_HOTSWAP case SYS_HOTSWAP_INSERTED: case SYS_HOTSWAP_EXTRACTED: fat_lock(); /* lock-out FAT activity first - prevent deadlocking via disk_mount that would cause a reverse-order attempt with another thread */ mutex_lock(&sd_mtx); /* lock-out card activity - direct calls into driver that bypass the fat cache */ /* We now have exclusive control of fat cache and ata */ disk_unmount(SD_SLOT_AS3525); /* release "by force", ensure file descriptors aren't leaked and any busy ones are invalid if mounting */ /* Force card init for new card, re-init for re-inserted one or * clear if the last attempt to init failed with an error. */ card_info[SD_SLOT_AS3525].initialized = 0; if (ev.id == SYS_HOTSWAP_INSERTED) { sd_enable(true); init_pl180_controller(SD_SLOT_AS3525); sd_init_card(SD_SLOT_AS3525); disk_mount(SD_SLOT_AS3525); } queue_broadcast(SYS_FS_CHANGED, 0); /* Access is now safe */ mutex_unlock(&sd_mtx); fat_unlock(); sd_enable(false); break; #endif case SYS_TIMEOUT: if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ))) { idle_notified = false; } else { /* never let a timer wrap confuse us */ next_yield = current_tick; if (!idle_notified) { call_storage_idle_notifys(false); idle_notified = true; } } break; #if 0 case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&sd_queue); break; case SYS_USB_DISCONNECTED: usb_acknowledge(SYS_USB_DISCONNECTED_ACK); break; #endif } } } static void init_pl180_controller(const int drive) { MCI_COMMAND(drive) = MCI_DATA_CTRL(drive) = 0; MCI_CLEAR(drive) = 0x7ff; MCI_MASK0(drive) = MCI_MASK1(drive) = MCI_ERROR | MCI_DATA_END; #ifdef HAVE_MULTIVOLUME VIC_INT_ENABLE |= (drive == INTERNAL_AS3525) ? INTERRUPT_NAND : INTERRUPT_MCI0; #if defined(SANSA_E200V2) || defined(SANSA_FUZE) /* setup isr for microsd monitoring */ VIC_INT_ENABLE |= (INTERRUPT_GPIOA); /* clear previous irq */ GPIOA_IC |= (1<<2); /* enable edge detecting */ GPIOA_IS &= ~(1<<2); /* detect both raising and falling edges */ GPIOA_IBE |= (1<<2); #endif #else VIC_INT_ENABLE |= INTERRUPT_NAND; #endif MCI_POWER(drive) = MCI_POWER_UP|(10 /*voltage*/ << 2); /* use OF voltage */ mci_delay(); MCI_POWER(drive) |= MCI_POWER_ON; mci_delay(); MCI_SELECT(drive) = 0; MCI_CLOCK(drive) = MCI_CLOCK_ENABLE | AS3525_SD_IDENT_DIV; mci_delay(); } int sd_init(void) { int ret; CGU_IDE = (1<<7) /* AHB interface enable */ | (1<<6) /* interface enable */ | (AS3525_IDE_DIV << 2) | AS3525_CLK_PLLA; /* clock source = PLLA */ CGU_PERI |= CGU_NAF_CLOCK_ENABLE; #ifdef HAVE_MULTIVOLUME CGU_PERI |= CGU_MCI_CLOCK_ENABLE; CCU_IO &= ~(1<<3); /* bits 3:2 = 01, xpd is SD interface */ CCU_IO |= (1<<2); #endif wakeup_init(&transfer_completion_signal); init_pl180_controller(INTERNAL_AS3525); ret = sd_init_card(INTERNAL_AS3525); if(ret < 0) return ret; #ifdef HAVE_MULTIVOLUME init_pl180_controller(SD_SLOT_AS3525); #endif /* init mutex */ mutex_init(&sd_mtx); queue_init(&sd_queue, true); create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0, sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); #ifndef BOOTLOADER sd_enabled = true; sd_enable(false); #endif return 0; } #ifdef STORAGE_GET_INFO void sd_get_info(IF_MV2(int drive,) struct storage_info *info) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif info->sector_size=card_info[drive].block_size; info->num_sectors=card_info[drive].numblocks; info->vendor="Rockbox"; info->product = (drive == 0) ? "Internal Storage" : "SD Card Slot"; info->revision="0.00"; } #endif #ifdef HAVE_HOTSWAP bool sd_removable(IF_MV_NONVOID(int drive)) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif return (drive==1); } bool sd_present(IF_MV_NONVOID(int drive)) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif return (card_info[drive].initialized && card_info[drive].numblocks > 0); } #endif static int sd_wait_for_state(const int drive, unsigned int state) { unsigned int response = 0; unsigned int timeout = 100; /* ticks */ long t = current_tick; while (1) { long tick; if(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca, MCI_RESP|MCI_ARG, &response)) return -1; if (((response >> 9) & 0xf) == state) return 0; if(TIME_AFTER(current_tick, t + timeout)) return -2; if (TIME_AFTER((tick = current_tick), next_yield)) { yield(); timeout += current_tick - tick; next_yield = tick + MIN_YIELD_PERIOD; } } } static int sd_select_bank(signed char bank) { unsigned char card_data[512]; int ret; ret = sd_wait_for_state(INTERNAL_AS3525, SD_TRAN); if (ret < 0) return ret - 2; if(!send_cmd(INTERNAL_AS3525, SD_SWITCH_FUNC, 0x80ffffef, MCI_ARG, NULL)) return -1; mci_delay(); if(!send_cmd(INTERNAL_AS3525, 35, 0, MCI_NO_FLAGS, NULL)) return -2; mci_delay(); memset(card_data, 0, 512); if(bank == -1) { /* enable bank switching */ card_data[0] = 16; card_data[1] = 1; card_data[2] = 10; } else card_data[0] = bank; dma_retain(); dma_enable_channel(0, card_data, MCI_FIFO(INTERNAL_AS3525), DMA_PERI_SD, DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL); MCI_DATA_TIMER(INTERNAL_AS3525) = 0x1000000; /* FIXME: arbitrary */ MCI_DATA_LENGTH(INTERNAL_AS3525) = 512; MCI_DATA_CTRL(INTERNAL_AS3525) = (1<<0) /* enable */ | (0<<1) /* transfer direction */ | (1<<3) /* DMA */ | (9<<4) /* 2^9 = 512 */ ; wakeup_wait(&transfer_completion_signal, TIMEOUT_BLOCK); dma_release(); mci_delay(); ret = sd_wait_for_state(INTERNAL_AS3525, SD_TRAN); if (ret < 0) return ret - 4; card_info[INTERNAL_AS3525].current_bank = (bank == -1) ? 0 : bank; return 0; } #define UNALIGNED_NUM_SECTORS 10 static int32_t aligned_buffer[UNALIGNED_NUM_SECTORS* (SECTOR_SIZE / 4)]; static int sd_transfer_sectors(IF_MV2(int drive,) unsigned long start, int count, void* buf, const bool write) { #ifndef HAVE_MULTIVOLUME const int drive = 0; #endif int ret = 0; bool unaligned_transfer = (int)buf & 3; /* skip SanDisk OF */ if (drive == INTERNAL_AS3525) start += AMS_OF_SIZE; mutex_lock(&sd_mtx); #ifndef BOOTLOADER sd_enable(true); #endif if (card_info[drive].initialized <= 0) { ret = sd_init_card(drive); if (!(card_info[drive].initialized)) goto sd_transfer_error; } last_disk_activity = current_tick; ret = sd_wait_for_state(drive, SD_TRAN); if (ret < 0) { ret -= 20; goto sd_transfer_error; } dma_retain(); while(count) { /* 128 * 512 = 2^16, and doesn't fit in the 16 bits of DATA_LENGTH * register, so we have to transfer maximum 127 sectors at a time. */ unsigned int transfer = (count >= 128) ? 127 : count; /* sectors */ void *dma_buf; const int cmd = write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK; unsigned long bank_start = start; /* Interrupt handler might set this to true during transfer */ retry = false; /* Only switch banks for internal storage */ if(drive == INTERNAL_AS3525) { int bank = start / BLOCKS_PER_BANK; /* Current bank */ /* Switch bank if needed */ if(card_info[INTERNAL_AS3525].current_bank != bank) { ret = sd_select_bank(bank); if (ret < 0) { ret -= 2*20; goto sd_transfer_error; } } /* Adjust start block in current bank */ bank_start -= bank * BLOCKS_PER_BANK; /* Do not cross a bank boundary in a single transfer loop */ if((transfer + bank_start) >= BLOCKS_PER_BANK) transfer = BLOCKS_PER_BANK - bank_start; } if(unaligned_transfer) { dma_buf = aligned_buffer; if(transfer > UNALIGNED_NUM_SECTORS) transfer = UNALIGNED_NUM_SECTORS; if(write) memcpy(aligned_buffer, buf, transfer * SECTOR_SIZE); } else /* Aligned transfers are faster : no memcpy */ dma_buf = buf; /* Set bank_start to the correct unit (blocks or bytes) */ if(!(card_info[drive].ocr & (1<<30))) /* not SDHC */ bank_start *= BLOCK_SIZE; if(!send_cmd(drive, cmd, bank_start, MCI_ARG, NULL)) { ret -= 3*20; goto sd_transfer_error; } if(write) dma_enable_channel(0, dma_buf, MCI_FIFO(drive), (drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT, DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL); else dma_enable_channel(0, MCI_FIFO(drive), dma_buf, (drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT, DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL); MCI_DATA_TIMER(drive) = 0x1000000; /* FIXME: arbitrary */ MCI_DATA_LENGTH(drive) = transfer * card_info[drive].block_size; MCI_DATA_CTRL(drive) = (1<<0) /* enable */ | (!write<<1) /* transfer direction */ | (1<<3) /* DMA */ | (9<<4) /* 2^9 = 512 */ ; wakeup_wait(&transfer_completion_signal, TIMEOUT_BLOCK); if(!retry) { if(unaligned_transfer && !write) memcpy(buf, aligned_buffer, transfer * SECTOR_SIZE); buf += transfer * SECTOR_SIZE; start += transfer; count -= transfer; } last_disk_activity = current_tick; if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_NO_FLAGS, NULL)) { ret = -4*20; goto sd_transfer_error; } ret = sd_wait_for_state(drive, SD_TRAN); if (ret < 0) { ret -= 5*20; goto sd_transfer_error; } } dma_release(); #ifndef BOOTLOADER sd_enable(false); #endif mutex_unlock(&sd_mtx); return 0; sd_transfer_error: card_info[drive].initialized = 0; return ret; } int sd_read_sectors(IF_MV2(int drive,) unsigned long start, int count, void* buf) { return sd_transfer_sectors(IF_MV2(drive,) start, count, buf, false); } int sd_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf) { #ifdef BOOTLOADER /* we don't need write support in bootloader */ #ifdef HAVE_MULTIVOLUME (void) drive; #endif (void) start; (void) count; (void) buf; return -1; #else return sd_transfer_sectors(IF_MV2(drive,) start, count, (void*)buf, true); #endif } #ifndef BOOTLOADER void sd_sleep(void) { } void sd_spin(void) { } void sd_spindown(int seconds) { (void)seconds; } long sd_last_disk_activity(void) { return last_disk_activity; } void sd_enable(bool on) { if (sd_enabled == on) return; /* nothing to do */ if(on) { CGU_PERI |= CGU_NAF_CLOCK_ENABLE; #ifdef HAVE_MULTIVOLUME CGU_PERI |= CGU_MCI_CLOCK_ENABLE; /* Needed for buttonlight and MicroSD to work at the same time */ /* Turn ROD control on, as the OF does */ SD_MCI_POWER |= (1<<7); CCU_IO |= (1<<2); #endif CGU_IDE |= (1<<7) /* AHB interface enable */ | (1<<6) /* interface enable */; sd_enabled = true; } else { CGU_PERI &= ~CGU_NAF_CLOCK_ENABLE; #ifdef HAVE_MULTIVOLUME CGU_PERI &= ~CGU_MCI_CLOCK_ENABLE; /* Needed for buttonlight and MicroSD to work at the same time */ /* Turn ROD control off, as the OF does */ SD_MCI_POWER &= ~(1<<7); CCU_IO &= ~(1<<2); #endif CGU_IDE &= ~((1<<7)|(1<<6)); sd_enabled = false; } } /* move the sd-card info to mmc struct */ tCardInfo *card_get_info_target(int card_no) { int i, temp; static tCardInfo card; static const char mantissa[] = { /* *10 */ 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const int exponent[] = { /* use varies */ 1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 }; card.initialized = card_info[card_no].initialized; card.ocr = card_info[card_no].ocr; for(i=0; i<4; i++) card.csd[i] = card_info[card_no].csd[i]; for(i=0; i<4; i++) card.cid[i] = card_info[card_no].cid[i]; card.numblocks = card_info[card_no].numblocks; card.blocksize = card_info[card_no].block_size; temp = card_extract_bits(card.csd, 29, 3); card.speed = mantissa[card_extract_bits(card.csd, 25, 4)] * exponent[temp > 2 ? 7 : temp + 4]; card.nsac = 100 * card_extract_bits(card.csd, 16, 8); temp = card_extract_bits(card.csd, 13, 3); card.tsac = mantissa[card_extract_bits(card.csd, 9, 4)] * exponent[temp] / 10; card.cid[0] = htobe32(card.cid[0]); /* ascii chars here */ card.cid[1] = htobe32(card.cid[1]); /* ascii chars here */ temp = *((char*)card.cid+13); /* adjust year<=>month, 1997 <=> 2000 */ *((char*)card.cid+13) = (unsigned char)((temp >> 4) | (temp << 4)) + 3; return &card; } bool card_detect_target(void) { #ifdef HAVE_HOTSWAP /* TODO: add e200/c200 */ #if defined(SANSA_E200V2) || defined(SANSA_FUZE) return !(GPIOA_PIN(2)); #endif #endif return false; } #ifdef HAVE_HOTSWAP void card_enable_monitoring_target(bool on) { if (on) { /* add e200v2/c200v2 here */ #if defined(SANSA_E200V2) || defined(SANSA_FUZE) /* enable isr*/ GPIOA_IE |= (1<<2); #endif } else { #if defined(SANSA_E200V2) || defined(SANSA_FUZE) /* edisable isr*/ GPIOA_IE &= ~(1<<2); #endif } } #endif #endif /* BOOTLOADER */