rockbox/firmware/target/mips/ingenic_x1000/i2c-x1000.c
Aidan MacDonald e85bc74b30 x1000: GPIO refactor
The GPIO API was pretty clunky and pin settings were decentralized,
making it hard to see what was happening and making GPIO stuff look
like a mess, frankly.

Instead of passing clunky (port, pin) pairs everywhere, GPIOs are now
identified with a single int. The extra overhead should be minimal as
GPIO configuration is generally not on a performance-critical path.

Pin assignments are now mostly consolidated in gpio-target.h and put
in various tables so gpio_init() can assign most pins at boot time.

Most drivers no longer need to touch GPIOs and basic pin I/O stuff
can happen without config since pins are put into the right state.
IRQ pins still need to be configured manually before use.

Change-Id: Ic5326284b0b2a2f613e9e76a41cb50e24af3aa47
2021-06-06 11:06:14 +00:00

460 lines
15 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* #define LOGF_ENABLE */
#include "i2c-x1000.h"
#include "system.h"
#include "kernel.h"
#include "panic.h"
#include "logf.h"
#include "clk-x1000.h"
#include "irq-x1000.h"
#include "x1000/i2c.h"
#include "x1000/cpm.h"
#if I2C_ASYNC_BUS_COUNT != 3
# error "Wrong I2C_ASYNC_BUS_COUNT (should be 3)"
#endif
#define FIFO_SIZE 64 /* Size of data FIFOs */
#define FIFO_TX_THRESH 16 /* Wake up when TX FIFO gets to this level */
#define FIFO_RX_SLACK 2 /* Slack space to leave, avoids RX FIFO overflow */
typedef struct i2c_x1000_bus {
/* Hardware channel, this is just equal to i2c-async bus number. */
int chn;
/* Buffer/count usage depends on what phase the bus is processing:
*
* - Phase1: writing out descriptor's buffer[0] for both READs and WRITEs.
* - Phase2: writing out descriptor's buffer[1] for WRITEs, or issuing a
* series of read requests for READs.
*
* In phase1, buffer[1] and count[1] are equal to the descriptor's copy.
* buffer[0] and count[0] get incremented/decremented as we send bytes.
* Phase1 is only visited if we actually need to send bytes; if there
* would be no data in this phase then __i2c_async_submit() sets up the
* driver to go directly to phase2.
*
* Phase2 begins after phase1 writes out its last byte, or if phase1 was
* skipped at submit time. For WRITEs phase2 is identical to phase1 so we
* copy over buffer[1] and count[1] to buffer[0] and count[0], and zero
* out buffer[1] and count[1].
*
* For READs phase2 sets buffer[0] to NULL and count[0] equal to count[1].
* Now count[0] counts the number of bytes left to request, and count[1]
* counts the number of bytes left to receive. i2c_x1000_fifo_write() sees
* that buffer[0] is NULL and sends read requests instead of data bytes.
* buffer[1] is advanced by i2c_x1000_fifo_read() we receive bytes.
*/
unsigned char* buffer[2];
int count[2];
bool phase1;
/* Copied fields from descriptor */
uint8_t bus_cond;
uint8_t tran_mode;
/* Counter to keep track of when to send end conditions */
int byte_cnt;
int byte_cnt_end;
/* Current bus frequency, used to calculate timeout durations */
long freq;
/* Timeout to reset the bus in case of buggy devices */
struct timeout tmo;
/* Flag used to indicate a reset is processing */
int resetting;
} i2c_x1000_bus;
static i2c_x1000_bus i2c_x1000_busses[3];
static void i2c_x1000_fifo_write(i2c_x1000_bus* bus)
{
int tx_free, tx_n;
/* Get free space in FIFO */
tx_free = FIFO_SIZE - REG_I2C_TXFLR(bus->chn);
_again:
/* Leave some slack space when reading. If we submit a full FIFO's worth
* of read requests, there's a small chance that a byte "on the wire" is
* unaccounted for and causes an RX FIFO overrun. Slack space is meant to
* avoid this situation.
*/
if(bus->tran_mode == I2C_READ) {
tx_free -= FIFO_RX_SLACK;
if(tx_free <= 0)
goto _end;
}
/* Calculate number of bytes needed to send/request */
tx_n = MIN(tx_free, bus->count[0]);
/* Account for bytes we're about to send/request */
bus->count[0] -= tx_n;
tx_free -= tx_n;
for(; tx_n > 0; --tx_n) {
bus->byte_cnt += 1;
/* Read data byte or set read request bit */
uint32_t dc = bus->buffer[0] ? *bus->buffer[0]++ : jz_orm(I2C_DC, CMD);
/* Check for first byte & apply RESTART.
* Note the HW handles RESTART automatically when changing the
* direction of the transfer, so we don't need to check for that.
*/
if(bus->byte_cnt == 1 && (bus->bus_cond & I2C_RESTART))
dc |= jz_orm(I2C_DC, RESTART);
/* Check for last byte & apply STOP */
if(bus->byte_cnt == bus->byte_cnt_end && (bus->bus_cond & I2C_STOP))
dc |= jz_orm(I2C_DC, STOP);
/* Add entry to FIFO */
REG_I2C_DC(bus->chn) = dc;
}
/* FIFO full and current phase still has data to send.
* Configure interrupt to fire when there's a good amount of free space.
*/
if(bus->count[0] > 0) {
_end:
REG_I2C_TXTL(bus->chn) = FIFO_TX_THRESH;
jz_writef(I2C_INTMSK(bus->chn), TXEMP(1), RXFL(0));
return;
}
/* Advance to second phase if needed */
if(bus->phase1 && bus->count[1] > 0) {
bus->buffer[0] = bus->tran_mode == I2C_WRITE ? bus->buffer[1] : NULL;
bus->count[0] = bus->count[1];
bus->phase1 = false;
/* Submit further data if possible; else wait for TX space */
if(tx_free > 0)
goto _again;
else
goto _end;
}
/* All phases are done. Now we just need to wake up when the whole
* operation is complete, either by waiting for TX to drain or RX to
* fill to the appropriate level. */
if(bus->tran_mode == I2C_WRITE) {
REG_I2C_TXTL(bus->chn) = 0;
jz_writef(I2C_INTMSK(bus->chn), TXEMP(1), RXFL(0));
} else {
REG_I2C_RXTL(bus->chn) = bus->count[1] - 1;
jz_writef(I2C_INTMSK(bus->chn), TXEMP(0), RXFL(1));
}
}
static void i2c_x1000_fifo_read(i2c_x1000_bus* bus)
{
/* Get number of bytes in the RX FIFO */
int rx_n = REG_I2C_RXFLR(bus->chn);
/* Shouldn't happen, but check just in case */
if(rx_n > bus->count[1]) {
panicf("i2c_x1000(%d): expected %d bytes in RX fifo, got %d",
bus->chn, bus->count[1], rx_n);
}
/* Fill buffer with data from FIFO */
bus->count[1] -= rx_n;
for(; rx_n != 0; --rx_n) {
*bus->buffer[1]++ = jz_readf(I2C_DC(bus->chn), DAT);
}
}
static void i2c_x1000_interrupt(i2c_x1000_bus* bus)
{
int intr = REG_I2C_INTST(bus->chn);
int status = I2C_STATUS_OK;
/* Bus error; we can't prevent this from happening. As I understand
* it, we cannot get a TXABT when the bus is idle, so it should be
* safe to leave this interrupt unmasked all the time.
*/
if(intr & jz_orm(I2C_INTST, TXABT)) {
logf("i2c_x1000(%d): got TXABT (%08lx)",
bus->chn, REG_I2C_ABTSRC(bus->chn));
REG_I2C_CTXABT(bus->chn);
status = I2C_STATUS_ERROR;
goto _done;
}
/* FIFO errors shouldn't occur unless driver did something dumb */
if(intr & jz_orm(I2C_INTST, RXUF, TXOF, RXOF)) {
#if 1
panicf("i2c_x1000(%d): fifo error (%08x)", bus->chn, intr);
#else
/* This is how the error condition would be cleared */
REG_I2C_CTXOF(bus->chn);
REG_I2C_CRXOF(bus->chn);
REG_I2C_CRXUF(bus->chn);
status = I2C_STATUS_ERROR;
goto _done;
#endif
}
/* Read from FIFO on reads, and check if we have sent/received
* the expected amount of data. If so, complete the descriptor. */
if(bus->tran_mode == I2C_READ) {
i2c_x1000_fifo_read(bus);
if(bus->count[1] == 0)
goto _done;
} else if(bus->count[0] == 0) {
goto _done;
}
/* Still need to send or request data -- issue commands to FIFO */
i2c_x1000_fifo_write(bus);
return;
_done:
jz_writef(I2C_INTMSK(bus->chn), TXEMP(0), RXFL(0));
timeout_cancel(&bus->tmo);
__i2c_async_complete_callback(bus->chn, status);
}
void I2C0(void)
{
i2c_x1000_interrupt(&i2c_x1000_busses[0]);
}
void I2C1(void)
{
i2c_x1000_interrupt(&i2c_x1000_busses[1]);
}
void I2C2(void)
{
i2c_x1000_interrupt(&i2c_x1000_busses[2]);
}
static int i2c_x1000_bus_timeout(struct timeout* tmo)
{
/* Buggy device is preventing the operation from completing, so we
* can't do much except reset the bus and hope for the best. Device
* drivers can aid us by detecting the TIMEOUT status we return and
* resetting the device to get it out of a bugged state. */
i2c_x1000_bus* bus = (i2c_x1000_bus*)tmo->data;
switch(bus->resetting) {
default:
/* Start of reset. Disable the controller */
REG_I2C_INTMSK(bus->chn) = 0;
bus->resetting = 1;
jz_writef(I2C_ENABLE(bus->chn), ACTIVE(0));
return 1;
case 1:
/* Check if controller is disabled yet */
if(jz_readf(I2C_ENBST(bus->chn), ACTIVE))
return 1;
/* Wait 10 ms after disabling to give time for bus to clear */
bus->resetting = 2;
return HZ/100;
case 2:
/* Re-enable the controller */
bus->resetting = 3;
jz_writef(I2C_ENABLE(bus->chn), ACTIVE(1));
return 1;
case 3:
/* Check that controller is enabled */
if(jz_readf(I2C_ENBST(bus->chn), ACTIVE) == 0)
return 1;
/* Reset complete */
bus->resetting = 0;
jz_overwritef(I2C_INTMSK(bus->chn), RXFL(0), TXEMP(0),
TXABT(1), TXOF(1), RXOF(1), RXUF(1));
__i2c_async_complete_callback(bus->chn, I2C_STATUS_TIMEOUT);
return 0;
}
}
void __i2c_async_submit(int busnr, i2c_descriptor* desc)
{
i2c_x1000_bus* bus = &i2c_x1000_busses[busnr];
if(desc->tran_mode == I2C_READ) {
if(desc->count[0] > 0) {
/* Handle initial write as phase1 */
bus->buffer[0] = desc->buffer[0];
bus->count[0] = desc->count[0];
bus->phase1 = true;
} else {
/* No initial write, skip directly to phase2 */
bus->buffer[0] = NULL;
bus->count[0] = desc->count[1];
bus->phase1 = false;
}
/* Set buffer/count for phase2 read */
bus->buffer[1] = desc->buffer[1];
bus->count[1] = desc->count[1];
} else {
/* Writes always have to have buffer[0] populated; buffer[1] is
* allowed to be NULL (and thus count[1] = 0). This matches our
* phase logic so no need for anything special
*/
bus->buffer[0] = desc->buffer[0];
bus->count[0] = desc->count[0];
bus->buffer[1] = desc->buffer[1];
bus->count[1] = desc->count[1];
bus->phase1 = true;
}
/* Save bus condition and transfer mode */
bus->bus_cond = desc->bus_cond;
bus->tran_mode = desc->tran_mode;
/* Byte counter is used to check for first and last byte and apply
* the requested end mode */
bus->byte_cnt = 0;
bus->byte_cnt_end = desc->count[0] + desc->count[1];
/* Ensure interrupts are cleared */
REG_I2C_CINT(busnr);
/* Program target address */
jz_overwritef(I2C_TAR(busnr), ADDR(desc->slave_addr & ~I2C_10BIT_ADDR),
10BITS(desc->slave_addr & I2C_10BIT_ADDR ? 1 : 0));
/* Do the initial FIFO fill; this sets up the needed interrupts. */
i2c_x1000_fifo_write(bus);
/* Software timeout to deal with buggy slave devices that pull the bus
* high forever and leave us hanging. Use 100ms + whatever time should
* be needed to handle data transmission. Account for 9 bits per byte
* because of the ACKs necessary after each byte.
*/
long ticks = (HZ/10) + (HZ * 9 * bus->byte_cnt_end / bus->freq);
timeout_register(&bus->tmo, i2c_x1000_bus_timeout, ticks, (intptr_t)bus);
}
void i2c_init(void)
{
/* Initialize core */
__i2c_async_init();
/* Initialize our bus data structures */
for(int i = 0; i < 3; ++i) {
i2c_x1000_busses[i].chn = i;
i2c_x1000_busses[i].freq = 0;
i2c_x1000_busses[i].resetting = 0;
}
}
/* Stuff only required during initialization is below, basically the same as
* the old driver except for how the IRQs are initially set up. */
static void i2c_x1000_gate(int chn, int gate)
{
switch(chn) {
case 0: jz_writef(CPM_CLKGR, I2C0(gate)); break;
case 1: jz_writef(CPM_CLKGR, I2C1(gate)); break;
case 2: jz_writef(CPM_CLKGR, I2C2(gate)); break;
default: break;
}
}
static void i2c_x1000_enable(int chn)
{
/* Enable controller */
jz_writef(I2C_ENABLE(chn), ACTIVE(1));
while(jz_readf(I2C_ENBST(chn), ACTIVE) == 0);
/* Set up interrutpts */
jz_overwritef(I2C_INTMSK(chn), RXFL(0), TXEMP(0),
TXABT(1), TXOF(1), RXOF(1), RXUF(1));
system_enable_irq(IRQ_I2C(chn));
}
static void i2c_x1000_disable(int chn)
{
/* Disable interrupts */
system_disable_irq(IRQ_I2C(chn));
REG_I2C_INTMSK(chn) = 0;
/* Disable controller */
jz_writef(I2C_ENABLE(chn), ACTIVE(0));
while(jz_readf(I2C_ENBST(chn), ACTIVE));
}
void i2c_x1000_set_freq(int chn, int freq)
{
/* Store frequency */
i2c_x1000_busses[chn].freq = freq;
/* Disable the channel if previously active */
i2c_x1000_gate(chn, 0);
if(jz_readf(I2C_ENBST(chn), ACTIVE) == 1)
i2c_x1000_disable(chn);
/* Request to shut down the channel */
if(freq == 0) {
i2c_x1000_gate(chn, 1);
return;
}
/* Calculate timing parameters */
unsigned pclk = clk_get(X1000_CLK_PCLK);
unsigned t_SU_DAT = pclk / (freq * 8);
unsigned t_HD_DAT = pclk / (freq * 12);
unsigned t_LOW = pclk / (freq * 2);
unsigned t_HIGH = pclk / (freq * 2);
if(t_SU_DAT > 1) t_SU_DAT -= 1;
if(t_SU_DAT > 255) t_SU_DAT = 255;
if(t_SU_DAT == 0) t_SU_DAT = 0;
if(t_HD_DAT > 0xffff) t_HD_DAT = 0xfff;
if(t_LOW < 8) t_LOW = 8;
if(t_HIGH < 6) t_HIGH = 6;
/* Control register setting */
unsigned reg = jz_orf(I2C_CON, SLVDIS(1), RESTART(1), MD(1));
if(freq <= I2C_FREQ_100K)
reg |= jz_orf(I2C_CON, SPEED_V(100K));
else
reg |= jz_orf(I2C_CON, SPEED_V(400K));
/* Write the new controller settings */
jz_write(I2C_CON(chn), reg);
jz_write(I2C_SDASU(chn), t_SU_DAT);
jz_write(I2C_SDAHD(chn), t_HD_DAT);
if(freq <= I2C_FREQ_100K) {
jz_write(I2C_SLCNT(chn), t_LOW);
jz_write(I2C_SHCNT(chn), t_HIGH);
} else {
jz_write(I2C_FLCNT(chn), t_LOW);
jz_write(I2C_FHCNT(chn), t_HIGH);
}
/* Enable the controller */
i2c_x1000_enable(chn);
}