rockbox/firmware/target/mips/ingenic_jz47xx/ata-sd-jz4760.c
Solomon Peachy 0cb162a76b mips: Heavily rework DMA & caching code
Based on code originally written by Amaury Pouly (g#1789, g#1791, g#1527)
but rebased and heavily updated.

Change-Id: Ic794abb5e8d89feb4b88fc3abe854270fb28db70
2020-09-03 15:34:28 -04:00

1568 lines
46 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2016 by Roman Stolyarov
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "gcc_extensions.h"
#include "cpu.h"
#include "ata-sd-target.h"
#include "dma-target.h"
#include "led.h"
#include "sdmmc.h"
#include "logf.h"
#include "storage.h"
#include "string.h"
#include "panic.h"
#define SD_INTERRUPT 0 // COMPLETELY BROKEN!
#define SD_DMA_ENABLE 1
#define SD_DMA_INTERRUPT 1 // HANGS RANDOMLY!
#define SD_AUTO_CLOCK 1
#if NUM_DRIVES > 2
#error "JZ4760 SD driver supports NUM_DRIVES <= 2 only"
#endif
static long last_disk_activity = -1;
static tCardInfo card[NUM_DRIVES];
static char active[NUM_DRIVES];
#if defined(CONFIG_STORAGE_MULTI) || defined(HAVE_HOTSWAP)
static int sd_drive_nr = 0;
#else
#define sd_drive_nr 0
#endif
static struct mutex sd_mtx[NUM_DRIVES];
#if SD_DMA_INTERRUPT || SD_INTERRUPT
static struct semaphore sd_wakeup[NUM_DRIVES];
#endif
static int use_4bit[NUM_DRIVES];
static int num_6[NUM_DRIVES];
static int sd2_0[NUM_DRIVES];
//#define DEBUG(x...) logf(x)
#define DEBUG(x, ...)
/* volumes */
#define SD_SLOT_1 0 /* SD card 1 */
#define SD_SLOT_2 1 /* SD card 2 */
#define MSC_CHN(n) (2-n)
#define SD_IRQ_MASK(n) \
do { \
REG_MSC_IMASK(n) = 0xffff; \
REG_MSC_IREG(n) = 0xffff; \
} while (0)
/* Error codes */
enum sd_result_t
{
SD_NO_RESPONSE = -1,
SD_NO_ERROR = 0,
SD_ERROR_OUT_OF_RANGE,
SD_ERROR_ADDRESS,
SD_ERROR_BLOCK_LEN,
SD_ERROR_ERASE_SEQ,
SD_ERROR_ERASE_PARAM,
SD_ERROR_WP_VIOLATION,
SD_ERROR_CARD_IS_LOCKED,
SD_ERROR_LOCK_UNLOCK_FAILED,
SD_ERROR_COM_CRC,
SD_ERROR_ILLEGAL_COMMAND,
SD_ERROR_CARD_ECC_FAILED,
SD_ERROR_CC,
SD_ERROR_GENERAL,
SD_ERROR_UNDERRUN,
SD_ERROR_OVERRUN,
SD_ERROR_CID_CSD_OVERWRITE,
SD_ERROR_STATE_MISMATCH,
SD_ERROR_HEADER_MISMATCH,
SD_ERROR_TIMEOUT,
SD_ERROR_CRC,
SD_ERROR_DRIVER_FAILURE,
};
/* Standard MMC/SD clock speeds */
#define MMC_CLOCK_SLOW 400000 /* 400 kHz for initial setup */
#define SD_CLOCK_FAST 24000000 /* 24 MHz for SD Cards */
#define SD_CLOCK_HIGH 48000000 /* 48 MHz for SD Cards */
/* Extra commands for state control */
/* Use negative numbers to disambiguate */
#define SD_CIM_RESET -1
/* Proprietary commands, illegal/reserved according to SD Specification 2.00 */
/* class 1 */
#define SD_READ_DAT_UNTIL_STOP 11 /* adtc [31:0] dadr R1 */
/* class 3 */
#define SD_WRITE_DAT_UNTIL_STOP 20 /* adtc [31:0] data addr R1 */
/* class 4 */
#define SD_PROGRAM_CID 26 /* adtc R1 */
#define SD_PROGRAM_CSD 27 /* adtc R1 */
/* class 9 */
#define SD_GO_IRQ_STATE 40 /* bcr R5 */
/* Don't change the order of these; they are used in dispatch tables */
enum sd_rsp_t
{
RESPONSE_NONE = 0,
RESPONSE_R1 = 1,
RESPONSE_R1B = 2,
RESPONSE_R2_CID = 3,
RESPONSE_R2_CSD = 4,
RESPONSE_R3 = 5,
RESPONSE_R4 = 6,
RESPONSE_R5 = 7,
RESPONSE_R6 = 8,
RESPONSE_R7 = 9,
};
/* These are unpacked versions of the actual responses */
struct sd_response_r1
{
unsigned char cmd;
unsigned int status;
};
struct sd_response_r3
{
unsigned int ocr;
};
#define SD_CARD_BUSY 0x80000000 /* Card Power up status bit */
struct sd_request
{
int index; /* Slot index - used for CS lines */
int cmd; /* Command to send */
unsigned int arg; /* Argument to send */
enum sd_rsp_t rtype; /* Response type expected */
/* Data transfer (these may be modified at the low level) */
unsigned short nob; /* Number of blocks to transfer*/
unsigned short block_len; /* Block length */
unsigned char *buffer; /* Data buffer */
unsigned int cnt; /* Data length, for PIO */
/* Results */
unsigned char response[18]; /* Buffer to store response - CRC is optional */
enum sd_result_t result;
};
#define SD_OCR_ARG 0x00ff8000 /* Argument of OCR */
/***********************************************************************
* SD Events
*/
#define SD_EVENT_NONE 0x00 /* No events */
#define SD_EVENT_RX_DATA_DONE 0x01 /* Rx data done */
#define SD_EVENT_TX_DATA_DONE 0x02 /* Tx data done */
#define SD_EVENT_PROG_DONE 0x04 /* Programming is done */
/**************************************************************************
* Utility functions
**************************************************************************/
#define PARSE_U32(_buf,_index) \
(((unsigned int)_buf[_index]) << 24) | (((unsigned int)_buf[_index+1]) << 16) | \
(((unsigned int)_buf[_index+2]) << 8) | ((unsigned int)_buf[_index+3]);
#define PARSE_U16(_buf,_index) \
(((unsigned short)_buf[_index]) << 8) | ((unsigned short)_buf[_index+1]);
static int sd_unpack_r1(struct sd_request *request, struct sd_response_r1 *r1)
{
unsigned char *buf = request->response;
if (request->result)
return request->result;
r1->cmd = buf[0];
r1->status = PARSE_U32(buf,1);
DEBUG("sd_unpack_r1: cmd=%d status=%08x", r1->cmd, r1->status);
if (SD_R1_STATUS(r1->status)) {
if (r1->status & SD_R1_OUT_OF_RANGE) return SD_ERROR_OUT_OF_RANGE;
if (r1->status & SD_R1_ADDRESS_ERROR) return SD_ERROR_ADDRESS;
if (r1->status & SD_R1_BLOCK_LEN_ERROR) return SD_ERROR_BLOCK_LEN;
if (r1->status & SD_R1_ERASE_SEQ_ERROR) return SD_ERROR_ERASE_SEQ;
if (r1->status & SD_R1_ERASE_PARAM) return SD_ERROR_ERASE_PARAM;
if (r1->status & SD_R1_WP_VIOLATION) return SD_ERROR_WP_VIOLATION;
//if (r1->status & SD_R1_CARD_IS_LOCKED) return SD_ERROR_CARD_IS_LOCKED;
if (r1->status & SD_R1_LOCK_UNLOCK_FAILED) return SD_ERROR_LOCK_UNLOCK_FAILED;
if (r1->status & SD_R1_COM_CRC_ERROR) return SD_ERROR_COM_CRC;
if (r1->status & SD_R1_ILLEGAL_COMMAND) return SD_ERROR_ILLEGAL_COMMAND;
if (r1->status & SD_R1_CARD_ECC_FAILED) return SD_ERROR_CARD_ECC_FAILED;
if (r1->status & SD_R1_CC_ERROR) return SD_ERROR_CC;
if (r1->status & SD_R1_ERROR) return SD_ERROR_GENERAL;
if (r1->status & SD_R1_UNDERRUN) return SD_ERROR_UNDERRUN;
if (r1->status & SD_R1_OVERRUN) return SD_ERROR_OVERRUN;
if (r1->status & SD_R1_CSD_OVERWRITE) return SD_ERROR_CID_CSD_OVERWRITE;
}
if (buf[0] != request->cmd)
return SD_ERROR_HEADER_MISMATCH;
/* This should be last - it's the least dangerous error */
return SD_NO_ERROR;
}
static int sd_unpack_r6(struct sd_request *request, struct sd_response_r1 *r1, unsigned long *rca)
{
unsigned char *buf = request->response;
if (request->result)
return request->result;
*rca = PARSE_U16(buf,1); /* Save RCA returned by the SD Card */
*(buf+1) = 0;
*(buf+2) = 0;
return sd_unpack_r1(request, r1);
}
static int sd_unpack_r3(struct sd_request *request, struct sd_response_r3 *r3)
{
unsigned char *buf = request->response;
if (request->result) return request->result;
r3->ocr = PARSE_U32(buf,1);
DEBUG("sd_unpack_r3: ocr=%08x", r3->ocr);
if (buf[0] != 0x3f)
return SD_ERROR_HEADER_MISMATCH;
return SD_NO_ERROR;
}
/* Stop the MMC clock and wait while it happens */
static inline int jz_sd_stop_clock(const int drive)
{
register int timeout = 1000;
//DEBUG("stop MMC clock");
#if SD_AUTO_CLOCK
REG_MSC_LPM(drive) = 0; /* disable auto clock stop */
#endif
/* only stop if necessary */
if (!(REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_CLK_EN))
return SD_NO_ERROR;
REG_MSC_STRPCL(MSC_CHN(drive)) = MSC_STRPCL_CLOCK_CONTROL_STOP;
while (timeout && (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_CLK_EN))
{
timeout--;
if (timeout == 0)
{
DEBUG("Timeout on stop clock waiting");
return SD_ERROR_TIMEOUT;
}
udelay(1);
}
//DEBUG("clock off time is %d microsec", timeout);
return SD_NO_ERROR;
}
/* Start the MMC clock and operation */
static inline int jz_sd_start_clock(const int drive)
{
int reg = MSC_STRPCL_START_OP;
#if !SD_AUTO_CLOCK
reg |= (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_CLK_EN) ? 0 : MSC_STRPCL_CLOCK_CONTROL_START;
#endif
REG_MSC_STRPCL(MSC_CHN(drive)) = reg;
return SD_NO_ERROR;
}
static int jz_sd_check_status(const int drive, struct sd_request *request)
{
(void)request;
unsigned int status = REG_MSC_STAT(MSC_CHN(drive));
/* Checking for response or data timeout */
if (status & (MSC_STAT_TIME_OUT_RES | MSC_STAT_TIME_OUT_READ))
{
DEBUG("SD timeout, MSC_STAT 0x%x CMD %d", status,
request->cmd);
return SD_ERROR_TIMEOUT;
}
/* Checking for CRC error */
if (status &
(MSC_STAT_CRC_READ_ERROR | MSC_STAT_CRC_WRITE_ERROR |
MSC_STAT_CRC_RES_ERR))
{
DEBUG("SD CRC error, MSC_STAT 0x%x", status);
return SD_ERROR_CRC;
}
/* Checking for FIFO empty */
/*if(status & MSC_STAT_DATA_FIFO_EMPTY && request->rtype != RESPONSE_NONE)
{
DEBUG("SD FIFO empty, MSC_STAT 0x%x", status);
return SD_ERROR_UNDERRUN;
}*/
return SD_NO_ERROR;
}
/* Obtain response to the command and store it to response buffer */
static void jz_sd_get_response(const int drive, struct sd_request *request)
{
int i;
unsigned char *buf;
unsigned short data;
if (request->result != SD_NO_RESPONSE)
return;
DEBUG("fetch response for request %d, cmd %d", request->rtype,
request->cmd);
buf = request->response;
request->result = SD_NO_ERROR;
switch (request->rtype)
{
case RESPONSE_R1:
case RESPONSE_R1B:
case RESPONSE_R7:
case RESPONSE_R6:
case RESPONSE_R3:
case RESPONSE_R4:
case RESPONSE_R5:
{
data = REG_MSC_RES(MSC_CHN(drive));
buf[0] = (data >> 8) & 0xff;
buf[1] = data & 0xff;
data = REG_MSC_RES(MSC_CHN(drive));
buf[2] = (data >> 8) & 0xff;
buf[3] = data & 0xff;
data = REG_MSC_RES(MSC_CHN(drive));
buf[4] = data & 0xff;
DEBUG("request %d, response [%02x %02x %02x %02x %02x]",
request->rtype, buf[0], buf[1], buf[2],
buf[3], buf[4]);
break;
}
case RESPONSE_R2_CID:
case RESPONSE_R2_CSD:
{
for (i = 0; i < 16; i += 2)
{
data = REG_MSC_RES(MSC_CHN(drive));
buf[i] = (data >> 8) & 0xff;
buf[i + 1] = data & 0xff;
}
DEBUG("request %d, response []", request->rtype);
break;
}
case RESPONSE_NONE:
DEBUG("No response");
break;
default:
DEBUG("unhandled response type for request %d",
request->rtype);
break;
}
}
#if SD_DMA_ENABLE
static int jz_sd_transmit_data_dma(const int drive, struct sd_request *req);
static int jz_sd_receive_data_dma(const int drive, struct sd_request *req);
#endif
static int jz_sd_receive_data(const int drive, struct sd_request *req)
{
unsigned int nob = req->nob;
unsigned int wblocklen = (unsigned int) (req->block_len + 3) >> 2; /* length in word */
unsigned char *buf = req->buffer;
unsigned int *wbuf = (unsigned int *) buf;
unsigned int waligned = (((unsigned int) buf & 0x3) == 0); /* word aligned ? */
unsigned int stat, data, cnt;
#if SD_DMA_ENABLE
/* Use DMA if we can */
if ((int)req->buffer & 0x3 == 0)
return jz_sd_receive_data_dma(drive, req);
#endif
for (; nob >= 1; nob--)
{
long deadline = current_tick + (HZ * 65);
do {
stat = REG_MSC_STAT(MSC_CHN(drive));
if (stat & MSC_STAT_TIME_OUT_READ)
return SD_ERROR_TIMEOUT;
else if (stat & MSC_STAT_CRC_READ_ERROR)
return SD_ERROR_CRC;
else if ((stat & MSC_STAT_DATA_FIFO_AFULL) ||
!(stat & MSC_STAT_DATA_FIFO_EMPTY))
/* Ready to read data */
break;
yield();
} while (TIME_BEFORE(current_tick, deadline));
/* Read data from RXFIFO. It could be FULL or PARTIAL FULL */
DEBUG("Receive Data = %d", wblocklen);
cnt = wblocklen;
while (cnt)
{
if (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_DATA_FIFO_EMPTY)
{
if (TIME_AFTER(current_tick, deadline))
return SD_ERROR_TIMEOUT;
continue;
}
data = REG_MSC_RXFIFO(MSC_CHN(drive));
if (waligned)
*wbuf++ = data;
else
{
*buf++ = (unsigned char) (data >> 0);
*buf++ = (unsigned char) (data >> 8);
*buf++ = (unsigned char) (data >> 16);
*buf++ = (unsigned char) (data >> 24);
}
cnt--;
}
}
return SD_NO_ERROR;
}
static int jz_sd_transmit_data(const int drive, struct sd_request *req)
{
unsigned int nob = req->nob;
unsigned int wblocklen = (unsigned int) (req->block_len + 3) >> 2; /* length in word */
unsigned char *buf = req->buffer;
unsigned int *wbuf = (unsigned int *) buf;
unsigned int waligned = (((unsigned int) buf & 0x3) == 0); /* word aligned ? */
unsigned int stat, data, cnt;
#if SD_DMA_ENABLE
/* Use DMA if we can */
if ((int)req->buffer & 0x3 == 0)
return jz_sd_transmit_data_dma(drive, req);
#endif
for (; nob >= 1; nob--)
{
long deadline = current_tick + (HZ * 65);
do {
stat = REG_MSC_STAT(MSC_CHN(drive));
if (stat &
(MSC_STAT_CRC_WRITE_ERROR |
MSC_STAT_CRC_WRITE_ERROR_NOSTS))
return SD_ERROR_CRC;
else if (!(stat & MSC_STAT_DATA_FIFO_FULL))
/* Ready to write data */
break;
yield();
} while (TIME_BEFORE(current_tick, deadline));
/* Write data to TXFIFO */
cnt = wblocklen;
while (cnt)
{
if (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_DATA_FIFO_FULL)
{
if (TIME_AFTER(current_tick, deadline))
return SD_ERROR_TIMEOUT;
continue;
}
if (waligned)
REG_MSC_TXFIFO(MSC_CHN(drive)) = *wbuf++;
else
{
data = *buf++;
data |= *buf++ << 8;
data |= *buf++ << 16;
data |= *buf++ << 24;
REG_MSC_TXFIFO(MSC_CHN(drive)) = data;
}
cnt--;
}
}
return SD_NO_ERROR;
}
#if SD_DMA_ENABLE
static int jz_sd_receive_data_dma(const int drive, struct sd_request *req)
{
/* flush dcache */
discard_dcache_range(req->buffer, req->cnt);
/* setup dma channel */
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(drive)) = 0;
REG_DMAC_DSAR(DMA_SD_RX_CHANNEL(drive)) = PHYSADDR(MSC_RXFIFO(MSC_CHN(drive))); /* DMA source addr */
REG_DMAC_DTAR(DMA_SD_RX_CHANNEL(drive)) = PHYSADDR((unsigned long)req->buffer); /* DMA dest addr */
REG_DMAC_DTCR(DMA_SD_RX_CHANNEL(drive)) = (req->cnt + 3) >> 2; /* DMA transfer count */
REG_DMAC_DRSR(DMA_SD_RX_CHANNEL(drive)) = (drive == SD_SLOT_1) ? DMAC_DRSR_RS_MSC2IN : DMAC_DRSR_RS_MSC1IN; /* DMA request type */
REG_DMAC_DCMD(DMA_SD_RX_CHANNEL(drive)) =
#if SD_DMA_INTERRUPT
DMAC_DCMD_TIE | /* Enable DMA interrupt */
#endif
DMAC_DCMD_DAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
DMAC_DCMD_DS_32BIT;
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(drive)) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;
/* wait for dma completion */
#if SD_DMA_INTERRUPT
semaphore_wait(&sd_wakeup[drive], TIMEOUT_BLOCK);
#else
while (REG_DMAC_DTCR(DMA_SD_RX_CHANNEL(drive)))
yield();
#endif
/* clear status and disable channel */
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(drive)) = 0;
return SD_NO_ERROR;
}
static int jz_sd_transmit_data_dma(const int drive, struct sd_request *req)
{
/* flush dcache */
commit_discard_dcache_range(req->buffer, req->cnt);
/* setup dma channel */
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(drive)) = 0;
REG_DMAC_DSAR(DMA_SD_TX_CHANNEL(drive)) = PHYSADDR((unsigned long) req->buffer); /* DMA source addr */
REG_DMAC_DTAR(DMA_SD_TX_CHANNEL(drive)) = PHYSADDR(MSC_TXFIFO(MSC_CHN(drive))); /* DMA dest addr */
REG_DMAC_DTCR(DMA_SD_TX_CHANNEL(drive)) = (req->cnt + 3) >> 2; /* DMA transfer count */
REG_DMAC_DRSR(DMA_SD_TX_CHANNEL(drive)) = (drive == SD_SLOT_1) ? DMAC_DRSR_RS_MSC2OUT : DMAC_DRSR_RS_MSC1OUT; /* DMA request type */
REG_DMAC_DCMD(DMA_SD_TX_CHANNEL(drive)) =
#if SD_DMA_INTERRUPT
DMAC_DCMD_TIE | /* Enable DMA interrupt */
#endif
DMAC_DCMD_SAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
DMAC_DCMD_DS_32BIT;
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(drive)) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;
/* wait for dma completion */
#if SD_DMA_INTERRUPT
semaphore_wait(&sd_wakeup[drive], TIMEOUT_BLOCK);
#else
while (REG_DMAC_DTCR(DMA_SD_TX_CHANNEL(drive)))
yield();
#endif
/* clear status and disable channel */
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(drive)) = 0;
return SD_NO_ERROR;
}
#if SD_DMA_INTERRUPT
void DMA_CALLBACK(DMA_SD_RX_CHANNEL0)(void)
{
if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_AR)
{
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_AR;
panicf("SD RX DMA address error");
}
if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_HLT)
{
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_HLT;
panicf("SD RX DMA halt");
}
if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_TT)
{
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_TT;
//sd_rx_dma_callback();
semaphore_release(&sd_wakeup[SD_SLOT_1]);
}
}
void DMA_CALLBACK(DMA_SD_RX_CHANNEL1)(void)
{
if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_AR)
{
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_AR;
panicf("SD RX DMA address error");
}
if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_HLT)
{
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_HLT;
panicf("SD RX DMA halt");
}
if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_TT)
{
REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_TT;
//sd_rx_dma_callback();
semaphore_release(&sd_wakeup[SD_SLOT_2]);
}
}
void DMA_CALLBACK(DMA_SD_TX_CHANNEL0)(void)
{
if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_AR)
{
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_AR;
panicf("SD TX DMA address error");
}
if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_HLT)
{
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_HLT;
panicf("SD TX DMA halt");
}
if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_TT)
{
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_TT;
//sd_tx_dma_callback();
semaphore_release(&sd_wakeup[SD_SLOT_1]);
}
}
void DMA_CALLBACK(DMA_SD_TX_CHANNEL1)(void)
{
if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_AR)
{
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_AR;
panicf("SD TX DMA address error");
}
if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_HLT)
{
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_HLT;
panicf("SD TX DMA halt");
}
if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_TT)
{
REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_TT;
//sd_tx_dma_callback();
semaphore_release(&sd_wakeup[SD_SLOT_2]);
}
}
#endif /* SD_DMA_INTERRUPT */
#endif /* SD_DMA_ENABLE */
#ifndef HAVE_ADJUSTABLE_CPU_FREQ
#define cpu_frequency __cpm_get_pllout2()
#endif
static inline unsigned int jz_sd_calc_clkrt(const int drive, unsigned int rate)
{
unsigned int clkrt = 0;
unsigned int clk_src = cpu_frequency / __cpm_get_mscdiv(); /* MSC_CLK */
if (!sd2_0[drive] && rate > SD_CLOCK_FAST)
rate = SD_CLOCK_FAST;
while (rate < clk_src)
{
clkrt++;
clk_src >>= 1;
}
return clkrt;
}
/* Set the MMC clock frequency */
static void jz_sd_set_clock(const int drive, unsigned int rate)
{
int clkrt;
clkrt = jz_sd_calc_clkrt(drive, rate);
REG_MSC_CLKRT(MSC_CHN(drive)) = clkrt;
DEBUG("set clock to %u Hz clkrt=%d", rate, clkrt);
}
/********************************************************************************************************************
** Name: int jz_sd_exec_cmd()
** Function: send command to the card, and get a response
** Input: struct sd_request *req: SD request
** Output: 0: right >0: error code
********************************************************************************************************************/
static int jz_sd_exec_cmd(const int drive, struct sd_request *request)
{
unsigned int cmdat = 0, events = 0;
int retval;
#if !SD_INTERRUPT
long deadline = current_tick + (HZ * 5);
#endif
/* Indicate we have no result yet */
request->result = SD_NO_RESPONSE;
if (request->cmd == SD_CIM_RESET) {
/* On reset, 1-bit bus width */
use_4bit[drive] = 0;
/* On reset, stop SD clock */
jz_sd_stop_clock(drive);
/* Reset MMC/SD controller */
__msc_reset(MSC_CHN(drive));
/* Drop SD clock down to lowest speed */
jz_sd_set_clock(drive, MMC_CLOCK_SLOW);
#if SD_AUTO_CLOCK
/* Re-enable clocks */
REG_MSC_STRPCL(MSC_CHN(drive)) = MSC_STRPCL_CLOCK_CONTROL_START;
REG_MSC_LPM(drive) = MSC_SET_LPM;
#endif
}
/* mask all interrupts and clear status */
SD_IRQ_MASK(MSC_CHN(drive));
/* open interrupt */
REG_MSC_IMASK(MSC_CHN(drive)) = ~(MSC_IMASK_END_CMD_RES | MSC_IMASK_DATA_TRAN_DONE | MSC_IMASK_PRG_DONE);
/* Set command type and events */
switch (request->cmd)
{
/* SD core extra command */
case SD_CIM_RESET:
cmdat |= MSC_CMDAT_INIT; /* Initialization sequence sent prior to command */
break;
/* bc - broadcast - no response */
case SD_GO_IDLE_STATE:
case SD_SET_DSR:
break;
/* bcr - broadcast with response */
case SD_APP_OP_COND:
case SD_ALL_SEND_CID:
case SD_GO_IRQ_STATE:
break;
/* adtc - addressed with data transfer */
case SD_SEND_SCR:
/* SD card returns SCR register as data.
SD core expect it in the response buffer,
after normal response. */
request->buffer =
(unsigned char *) ((unsigned int) request->response + 5);
request->block_len = 8;
request->nob = 1;
case SD_READ_DAT_UNTIL_STOP:
case SD_READ_SINGLE_BLOCK:
case SD_READ_MULTIPLE_BLOCK:
#if SD_DMA_ENABLE
cmdat |=
MSC_CMDAT_DATA_EN | MSC_CMDAT_READ | MSC_CMDAT_DMA_EN;
#else
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_READ;
#endif
events = SD_EVENT_RX_DATA_DONE;
break;
case SD_SWITCH_FUNC:
if (request->arg == 0x2)
{
DEBUG("Use 4-bit bus width");
use_4bit[drive] = 1;
}
else
{
DEBUG("Use 1-bit bus width");
use_4bit[drive] = 0;
}
if (num_6[drive] < 2)
{
#if SD_DMA_ENABLE
cmdat |=
MSC_CMDAT_DATA_EN | MSC_CMDAT_READ |
MSC_CMDAT_DMA_EN;
#else
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_READ;
#endif
events = SD_EVENT_RX_DATA_DONE;
}
break;
case SD_WRITE_DAT_UNTIL_STOP:
case SD_WRITE_BLOCK:
case SD_WRITE_MULTIPLE_BLOCK:
case SD_PROGRAM_CID:
case SD_PROGRAM_CSD:
// case SD_LOCK_UNLOCK:
#if SD_DMA_ENABLE
cmdat |=
MSC_CMDAT_DATA_EN | MSC_CMDAT_WRITE | MSC_CMDAT_DMA_EN;
#else
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_WRITE;
#endif
events = SD_EVENT_TX_DATA_DONE | SD_EVENT_PROG_DONE;
break;
case SD_STOP_TRANSMISSION:
events = SD_EVENT_PROG_DONE;
break;
/* ac - no data transfer */
default:
break;
}
/* Set response type */
switch (request->rtype)
{
case RESPONSE_NONE:
break;
case RESPONSE_R1B:
cmdat |= MSC_CMDAT_BUSY;
/* FALLTHRU */
case RESPONSE_R1:
case RESPONSE_R7:
cmdat |= MSC_CMDAT_RESPONSE_R1;
break;
case RESPONSE_R2_CID:
case RESPONSE_R2_CSD:
cmdat |= MSC_CMDAT_RESPONSE_R2;
break;
case RESPONSE_R3:
cmdat |= MSC_CMDAT_RESPONSE_R3;
break;
case RESPONSE_R4:
cmdat |= MSC_CMDAT_RESPONSE_R4;
break;
case RESPONSE_R5:
cmdat |= MSC_CMDAT_RESPONSE_R5;
break;
case RESPONSE_R6:
cmdat |= MSC_CMDAT_RESPONSE_R6;
break;
default:
break;
}
/* use 4-bit bus width when possible */
if (use_4bit[drive])
cmdat |= MSC_CMDAT_BUS_WIDTH_4BIT;
/* Set command index */
if (request->cmd == SD_CIM_RESET)
REG_MSC_CMD(MSC_CHN(drive)) = SD_GO_IDLE_STATE;
else
REG_MSC_CMD(MSC_CHN(drive)) = request->cmd;
/* Set argument */
REG_MSC_ARG(MSC_CHN(drive)) = request->arg;
/* Set block length and nob */
REG_MSC_BLKLEN(MSC_CHN(drive)) = request->block_len;
REG_MSC_NOB(MSC_CHN(drive)) = request->nob;
/* Set command */
REG_MSC_CMDAT(MSC_CHN(drive)) = cmdat;
DEBUG("Send cmd %d cmdat: %x arg: %x resp %d", request->cmd,
cmdat, request->arg, request->rtype);
/* Start SD clock and send command to card */
jz_sd_start_clock(drive);
/* Wait for command completion */
#if SD_INTERRUPT
semaphore_wait(&sd_wakeup[drive], HZ * 5);
#else
while (!(REG_MSC_IREG(MSC_CHN(drive)) & MSC_IREG_END_CMD_RES))
{
if (TIME_AFTER(current_tick, deadline))
return SD_ERROR_TIMEOUT;
yield();
}
REG_MSC_IREG(MSC_CHN(drive)) = MSC_IREG_END_CMD_RES; /* clear flag */
#endif
/* Check for status */
retval = jz_sd_check_status(drive, request);
if (retval)
return retval;
/* Complete command with no response */
if (request->rtype == RESPONSE_NONE)
return SD_NO_ERROR;
/* Get response */
jz_sd_get_response(drive, request);
/* Start data operation */
if (events & (SD_EVENT_RX_DATA_DONE | SD_EVENT_TX_DATA_DONE))
{
if (events & SD_EVENT_RX_DATA_DONE)
{
retval = jz_sd_receive_data(drive, request);
}
if (retval)
return retval;
if (events & SD_EVENT_TX_DATA_DONE)
{
retval = jz_sd_transmit_data(drive, request);
}
if (retval)
return retval;
#if SD_INTERRUPT
semaphore_wait(&sd_wakeup[drive], HZ * 5);
#else
/* Wait for Data Done */
while (!(REG_MSC_IREG(MSC_CHN(drive)) & MSC_IREG_DATA_TRAN_DONE))
yield();
REG_MSC_IREG(MSC_CHN(drive)) = MSC_IREG_DATA_TRAN_DONE; /* clear status */
#endif
}
/* Wait for Prog Done event */
if (events & SD_EVENT_PROG_DONE)
{
#if SD_INTERRUPT
semaphore_wait(&sd_wakeup[drive], HZ * 5);
#else
while (!(REG_MSC_IREG(MSC_CHN(drive)) & MSC_IREG_PRG_DONE))
yield();
REG_MSC_IREG(MSC_CHN(drive)) = MSC_IREG_PRG_DONE; /* clear status */
#endif
}
/* Command completed */
#if !SD_AUTO_CLOCK
jz_sd_stop_clock(drive); /* stop SD clock */
#endif
return SD_NO_ERROR; /* return successfully */
}
/*******************************************************************************************************************
** Name: int sd_chkcard()
** Function: check whether card is insert entirely
** Input: NULL
** Output: 1: insert entirely 0: not insert entirely
********************************************************************************************************************/
static int jz_sd_chkcard(const int drive)
{
return (__gpio_get_pin((drive == SD_SLOT_1) ? PIN_SD1_CD : PIN_SD2_CD) == 0 ? 1 : 0);
}
/* MSC interrupt handlers */
#if SD_INTERRUPT
void MSC2(void) /* SD_SLOT_1 */
{
logf("MSC2 interrupt");
if (REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) & MSC_IREG_END_CMD_RES) {
REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) = MSC_IREG_END_CMD_RES; /* clear flag */
semaphore_release(&sd_wakeup[SD_SLOT_1]);
}
if (REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) & MSC_IREG_PRG_DONE) {
REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) = MSC_IREG_PRG_DONE; /* clear flag */
semaphore_release(&sd_wakeup[SD_SLOT_1]);
}
if (REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) & MSC_IREG_DATA_TRAN_DONE) {
REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) = MSC_IREG_DATA_TRAN_DONE; /* clear flag */
semaphore_release(&sd_wakeup[SD_SLOT_1]);
}
}
/* MSC interrupt handlers */
void MSC1(void) /* SD_SLOT_2 */
{
logf("MSC1 interrupt");
if (REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) & MSC_IREG_END_CMD_RES) {
REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) = MSC_IREG_END_CMD_RES; /* clear flag */
semaphore_release(&sd_wakeup[SD_SLOT_2]);
}
if (REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) & MSC_IREG_PRG_DONE) {
REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) = MSC_IREG_PRG_DONE; /* clear flag */
semaphore_release(&sd_wakeup[SD_SLOT_2]);
}
if (REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) & MSC_IREG_DATA_TRAN_DONE) {
REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) = MSC_IREG_DATA_TRAN_DONE; /* clear flag */
semaphore_release(&sd_wakeup[SD_SLOT_2]);
}
}
#endif
#ifdef HAVE_HOTSWAP
static void sd_gpio_setup_irq(const int drive, bool inserted)
{
int pin = (drive == SD_SLOT_1) ? PIN_SD1_CD : PIN_SD2_CD;
int irq = (drive == SD_SLOT_1) ? IRQ_SD1_CD : IRQ_SD2_CD;
if(inserted)
__gpio_as_irq_rise_edge(pin);
else
__gpio_as_irq_fall_edge(pin);
system_enable_irq(irq);
}
#endif
/*******************************************************************************************************************
** Name: void sd_hardware_init()
** Function: initialize the hardware condiction that access sd card
** Input: NULL
** Output: NULL
********************************************************************************************************************/
static void jz_sd_hardware_init(const int drive)
{
if (drive == SD_SLOT_1)
__cpm_start_msc2(); /* enable mmc2 clock */
else
__cpm_start_msc1(); /* enable mmc1 clock */
#ifdef HAVE_HOTSWAP
sd_gpio_setup_irq(drive, jz_sd_chkcard(drive));
#endif
__msc_reset(MSC_CHN(drive)); /* reset mmc/sd controller */
SD_IRQ_MASK(MSC_CHN(drive)); /* mask all IRQs */
#if SD_AUTO_CLOCK
REG_MSC_STRPCL(MSC_CHN(drive)) = MSC_STRPCL_CLOCK_CONTROL_START; /* Enable clocks */
REG_MSC_LPM(drive) = MSC_SET_LPM; /* enable auto clock stop */
#else
jz_sd_stop_clock(drive); /* stop SD clock */
#endif
}
static void sd_send_cmd(const int drive, struct sd_request *request, int cmd, unsigned int arg,
unsigned short nob, unsigned short block_len,
enum sd_rsp_t rtype, unsigned char* buffer)
{
int retval;
request->cmd = cmd;
request->arg = arg;
request->rtype = rtype;
request->nob = nob;
request->block_len = block_len;
request->buffer = buffer;
request->cnt = nob * block_len;
retval = jz_sd_exec_cmd(drive, request);
if (retval)
request->result = retval;
}
static void sd_simple_cmd(const int drive, struct sd_request *request, int cmd, unsigned int arg,
enum sd_rsp_t rtype)
{
sd_send_cmd(drive, request, cmd, arg, 0, 0, rtype, NULL);
}
static int sd_exec_acmd(const int drive, struct sd_request *request, int cmd, unsigned int arg)
{
struct sd_response_r1 r1;
int retval;
sd_simple_cmd(drive, request, SD_APP_CMD, card[drive].rca, RESPONSE_R1);
retval = sd_unpack_r1(request, &r1);
if (!retval)
{
sd_simple_cmd(drive, request, cmd, arg, RESPONSE_R1);
retval = sd_unpack_r1(request, &r1);
}
return retval;
}
#define SD_INIT_DOING 0
#define SD_INIT_PASSED 1
#define SD_INIT_FAILED 2
static int sd_init_card_state(const int drive, struct sd_request *request)
{
struct sd_response_r1 r1;
struct sd_response_r3 r3;
int retval, i, ocr = 0x40300000;
switch (request->cmd)
{
case SD_GO_IDLE_STATE: /* No response to parse */
sd_simple_cmd(drive, request, SD_SEND_IF_COND, 0x1AA, RESPONSE_R1);
break;
case SD_SEND_IF_COND:
retval = sd_unpack_r1(request, &r1);
sd_simple_cmd(drive, request, SD_APP_CMD, 0, RESPONSE_R1);
break;
case SD_APP_CMD:
if (sd_unpack_r1(request, &r1))
return SD_INIT_FAILED;
sd_simple_cmd(drive, request, SD_APP_OP_COND, ocr, RESPONSE_R3);
break;
case SD_APP_OP_COND:
retval = sd_unpack_r3(request, &r3);
if (retval)
return SD_INIT_FAILED;
DEBUG("sd_init_card_state: read ocr value = 0x%08x", r3.ocr);
card[drive].ocr = r3.ocr;
if(!(r3.ocr & SD_CARD_BUSY || ocr == 0))
{
sleep(HZ / 100);
sd_simple_cmd(drive, request, SD_APP_CMD, 0, RESPONSE_R1);
}
else
{
/* Set the data bus width to 4 bits */
use_4bit[drive] = 1;
sd_simple_cmd(drive, request, SD_ALL_SEND_CID, 0, RESPONSE_R2_CID);
}
break;
case SD_ALL_SEND_CID:
if (request->result)
return SD_INIT_FAILED;
for(i=0; i<4; i++)
card[drive].cid[i] = ((request->response[1+i*4]<<24) | (request->response[2+i*4]<<16) |
(request->response[3+i*4]<< 8) | request->response[4+i*4]);
logf("CID: %08lx%08lx%08lx%08lx", card[drive].cid[0], card[drive].cid[1], card[drive].cid[2], card[drive].cid[3]);
sd_simple_cmd(drive, request, SD_SEND_RELATIVE_ADDR, 0, RESPONSE_R6);
break;
case SD_SEND_RELATIVE_ADDR:
retval = sd_unpack_r6(request, &r1, &card[drive].rca);
card[drive].rca = card[drive].rca << 16;
DEBUG("sd_init_card_state: Get RCA from SD: 0x%04lx Status: %x", card[drive].rca, r1.status);
if (retval)
{
DEBUG("sd_init_card_state: unable to SET_RELATIVE_ADDR error=%d",
retval);
return SD_INIT_FAILED;
}
sd_simple_cmd(drive, request, SD_SEND_CSD, card[drive].rca, RESPONSE_R2_CSD);
break;
case SD_SEND_CSD:
if (request->result)
return SD_INIT_FAILED;
for(i=0; i<4; i++)
card[drive].csd[i] = ((request->response[1+i*4]<<24) | (request->response[2+i*4]<<16) |
(request->response[3+i*4]<< 8) | request->response[4+i*4]);
sd_parse_csd(&card[drive]);
sd2_0[drive] = (card_extract_bits(card[drive].csd, 127, 2) == 1);
logf("CSD: %08lx%08lx%08lx%08lx", card[drive].csd[0], card[drive].csd[1], card[drive].csd[2], card[drive].csd[3]);
DEBUG("SD card is ready");
jz_sd_set_clock(drive, SD_CLOCK_FAST);
return SD_INIT_PASSED;
default:
DEBUG("sd_init_card_state: error! Illegal last cmd %d", request->cmd);
return SD_INIT_FAILED;
}
return SD_INIT_DOING;
}
static int sd_switch(const int drive, struct sd_request *request, int mode, int group,
unsigned char value, unsigned char * resp)
{
unsigned int arg;
mode = !!mode;
value &= 0xF;
arg = (mode << 31 | 0x00FFFFFF);
arg &= ~(0xF << (group * 4));
arg |= value << (group * 4);
sd_send_cmd(drive, request, SD_SWITCH_FUNC, arg, 1, 64, RESPONSE_R1, resp);
return 0;
}
/*
* Fetches and decodes switch information
*/
static int sd_read_switch(const int drive, struct sd_request *request)
{
unsigned int status[64 / 4];
memset((unsigned char *)status, 0, 64);
sd_switch(drive, request, 0, 0, 1, (unsigned char*) status);
if (((unsigned char *)status)[13] & 0x02)
return 0;
else
return 1;
}
/*
* Test if the card supports high-speed mode and, if so, switch to it.
*/
static int sd_switch_hs(const int drive, struct sd_request *request)
{
unsigned int status[64 / 4];
sd_switch(drive, request, 1, 0, 1, (unsigned char*) status);
return 0;
}
static int sd_select_card(const int drive)
{
struct sd_request request;
struct sd_response_r1 r1;
int retval;
sd_simple_cmd(drive, &request, SD_SELECT_CARD, card[drive].rca,
RESPONSE_R1B);
retval = sd_unpack_r1(&request, &r1);
if (retval)
return retval;
if (sd2_0[drive])
{
retval = sd_read_switch(drive, &request);
if (!retval)
{
sd_switch_hs(drive, &request);
jz_sd_set_clock(drive, SD_CLOCK_HIGH);
}
}
num_6[drive] = 3;
retval = sd_exec_acmd(drive, &request, SD_SET_BUS_WIDTH, 2);
if (retval)
return retval;
retval = sd_exec_acmd(drive, &request, SD_SET_CLR_CARD_DETECT, 0);
if (retval)
return retval;
card[drive].initialized = 1;
return 0;
}
static int __sd_init_device(const int drive)
{
int retval = 0;
long deadline;
struct sd_request init_req;
/* Initialise card data as blank */
memset(&card[drive], 0, sizeof(tCardInfo));
sd2_0[drive] = 0;
num_6[drive] = 0;
use_4bit[drive] = 0;
active[drive] = 0;
/* reset mmc/sd controller */
jz_sd_hardware_init(drive);
sd_simple_cmd(drive, &init_req, SD_CIM_RESET, 0, RESPONSE_NONE);
sd_simple_cmd(drive, &init_req, SD_GO_IDLE_STATE, 0, RESPONSE_NONE);
sleep(HZ/2); /* Give the card/controller some rest */
deadline = current_tick + HZ;
do {
retval = sd_init_card_state(drive, &init_req);
} while (TIME_BEFORE(current_tick, deadline) && (retval == SD_INIT_DOING));
retval = (retval == SD_INIT_PASSED ? sd_select_card(drive) : -1);
if (drive == SD_SLOT_1)
__cpm_stop_msc2(); /* disable SD1 clock */
else
__cpm_stop_msc1(); /* disable SD2 clock */
return retval;
}
int sd_init(void)
{
static bool inited = false;
sd_init_gpio(); /* init GPIO */
#if SD_DMA_ENABLE
__dmac_channel_enable_clk(DMA_SD_RX_CHANNEL(SD_SLOT_1));
__dmac_channel_enable_clk(DMA_SD_RX_CHANNEL(SD_SLOT_2));
__dmac_channel_enable_clk(DMA_SD_TX_CHANNEL(SD_SLOT_1));
__dmac_channel_enable_clk(DMA_SD_TX_CHANNEL(SD_SLOT_2));
#endif
if(!inited)
{
__cpm_stop_msc0(); /* We don't use MSC0 */
#if SD_DMA_INTERRUPT || SD_INTERRUPT
semaphore_init(&sd_wakeup[SD_SLOT_1], 1, 0);
semaphore_init(&sd_wakeup[SD_SLOT_2], 1, 0);
#endif
mutex_init(&sd_mtx[SD_SLOT_1]);
mutex_init(&sd_mtx[SD_SLOT_2]);
#if SD_INTERRUPT
system_enable_irq(IRQ_MSC2);
system_enable_irq(IRQ_MSC1);
#endif
#if SD_DMA_ENABLE && SD_DMA_INTERRUPT
system_enable_irq(DMA_IRQ(DMA_SD_RX_CHANNEL(SD_SLOT_1)));
system_enable_irq(DMA_IRQ(DMA_SD_RX_CHANNEL(SD_SLOT_2)));
system_enable_irq(DMA_IRQ(DMA_SD_TX_CHANNEL(SD_SLOT_1)));
system_enable_irq(DMA_IRQ(DMA_SD_TX_CHANNEL(SD_SLOT_2)));
#endif
inited = true;
}
for (int drive = 0; drive < NUM_DRIVES; drive++) {
mutex_lock(&sd_mtx[drive]);
__sd_init_device(drive);
mutex_unlock(&sd_mtx[drive]);
}
return 0;
}
static inline bool card_detect_target(const int drive)
{
return (jz_sd_chkcard(drive) == 1);
}
tCardInfo* card_get_info_target(const int drive)
{
return &card[drive];
}
static inline void sd_start_transfer(const int drive)
{
mutex_lock(&sd_mtx[drive]);
if (drive == SD_SLOT_1)
__cpm_start_msc2();
else
__cpm_start_msc1();
active[drive] = 1;
led(active[SD_SLOT_1] || active[SD_SLOT_2]);
}
static inline void sd_stop_transfer(const int drive)
{
active[drive] = 0;
led(active[SD_SLOT_1] || active[SD_SLOT_2]);
if (drive == SD_SLOT_1)
__cpm_stop_msc2();
else
__cpm_stop_msc1();
mutex_unlock(&sd_mtx[drive]);
}
int sd_transfer_sectors(IF_MD(const int drive,) unsigned long start, int count, void* buf, bool write)
{
struct sd_request request;
struct sd_response_r1 r1;
int retval = -1;
#ifndef HAVE_MULTIDRIVE
const int drive = 0;
#endif
sd_start_transfer(drive);
if (!card_detect_target(drive) || count < 1 || (start + count) > card[drive].numblocks)
goto err;
if(card[drive].initialized == 0 && !__sd_init_device(drive))
goto err;
sd_simple_cmd(drive, &request, SD_SEND_STATUS, card[drive].rca, RESPONSE_R1);
if ((retval = sd_unpack_r1(&request, &r1)))
goto err;
sd_simple_cmd(drive, &request, SD_SET_BLOCKLEN, SD_BLOCK_SIZE, RESPONSE_R1);
if ((retval = sd_unpack_r1(&request, &r1)))
goto err;
sd_send_cmd(drive, &request,
(count > 1) ?
(write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK) :
(write ? SD_WRITE_BLOCK : SD_READ_SINGLE_BLOCK),
sd2_0[drive] ? start : (start * SD_BLOCK_SIZE),
count, SD_BLOCK_SIZE, RESPONSE_R1, buf);
if ((retval = sd_unpack_r1(&request, &r1)))
goto err;
if (count > 1)
{
sd_simple_cmd(drive, &request, SD_STOP_TRANSMISSION, 0, RESPONSE_R1B);
retval = sd_unpack_r1(&request, &r1);
if (!write && retval == SD_ERROR_OUT_OF_RANGE)
retval = 0;
}
err:
last_disk_activity = current_tick;
sd_stop_transfer(drive);
return retval;
}
int sd_read_sectors(IF_MD(int drive,) unsigned long start, int count, void* buf)
{
return sd_transfer_sectors(IF_MD(drive,) start, count, buf, false);
}
int sd_write_sectors(IF_MD(int drive,) unsigned long start, int count, const void* buf)
{
return sd_transfer_sectors(IF_MD(drive,) start, count, (void*)buf, true);
}
long sd_last_disk_activity(void)
{
return last_disk_activity;
}
int sd_spinup_time(void)
{
return 0;
}
void sd_enable(bool on)
{
(void)on;
}
bool sd_disk_is_active(void)
{
return false;
}
int sd_soft_reset(void)
{
return 0;
}
#ifdef HAVE_HOTSWAP
bool sd_removable(IF_MD_NONVOID(const int drive))
{
#ifdef HAVE_MULTIDRIVE
(void)drive;
#endif
return true;
}
static int sd_oneshot_callback(struct timeout *tmo)
{
int slot = (int) tmo->data;
int state = card_detect_target(slot);
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
queue_broadcast(state ? SYS_HOTSWAP_INSERTED : SYS_HOTSWAP_EXTRACTED,
sd_drive_nr + slot);
sd_gpio_setup_irq(slot, state);
return 0;
}
/* called on insertion/removal interrupt */
void GPIO_SD1_CD(void)
{
static struct timeout sd1_oneshot;
timeout_register(&sd1_oneshot, sd_oneshot_callback, (3*HZ/10), SD_SLOT_1);
}
void GPIO_SD2_CD(void)
{
static struct timeout sd2_oneshot;
timeout_register(&sd2_oneshot, sd_oneshot_callback, (3*HZ/10), SD_SLOT_2);
}
bool sd_present(IF_MD_NONVOID(const int drive))
{
#ifndef HAVE_MULTIDRIVE
const int drive = 0;
#endif
return card_detect_target(drive);
}
#endif
#ifdef CONFIG_STORAGE_MULTI
int sd_num_drives(int first_drive)
{
sd_drive_nr = first_drive;
return NUM_DRIVES;
}
#endif /* CONFIG_STORAGE_MULTI */
int sd_event(long id, intptr_t data)
{
int rc = 0;
switch (id)
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
mutex_lock(&sd_mtx[data]); /* lock-out card activity */
card[data].initialized = 0;
if (id == SYS_HOTSWAP_INSERTED)
__sd_init_device(data);
mutex_unlock(&sd_mtx[data]);
break;
#endif /* HAVE_HOTSWAP */
default:
rc = storage_event_default_handler(id, data, last_disk_activity,
STORAGE_SD);
break;
}
return rc;
}