rockbox/firmware/drivers/button.c

515 lines
12 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Daniel Stenberg
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
* Archos Jukebox Recorder button functions
*/
#include <stdlib.h>
#include "config.h"
#include "sh7034.h"
#include "system.h"
#include "button.h"
#include "kernel.h"
#include "backlight.h"
#include "adc.h"
#include "serial.h"
#include "power.h"
#include "system.h"
#include "powermgmt.h"
struct event_queue button_queue;
static int lastbtn;
#if defined(HAVE_RECORDER_KEYPAD) || defined(HAVE_ONDIO_KEYPAD)
static bool flipped; /* bottons can be flipped to match the LCD flip */
#endif
/* how often we check to see if a button is pressed */
#define POLL_FREQUENCY HZ/20
/* how long until repeat kicks in */
#define REPEAT_START 6
/* the speed repeat starts at */
#define REPEAT_INTERVAL_START 4
/* speed repeat finishes at */
#define REPEAT_INTERVAL_FINISH 2
/* Number of repeated keys before shutting off */
#define POWEROFF_COUNT 8
static int button_read(void);
static void button_tick(void)
{
static int tick = 0;
static int count = 0;
static int repeat_speed = REPEAT_INTERVAL_START;
static int repeat_count = 0;
static bool repeat = false;
int diff;
int btn;
/* Post events for the remote control */
btn = remote_control_rx();
if(btn)
{
queue_post(&button_queue, btn, NULL);
}
/* only poll every X ticks */
if ( ++tick >= POLL_FREQUENCY )
{
bool post = false;
btn = button_read();
/* Find out if a key has been released */
diff = btn ^ lastbtn;
if(diff && (btn & diff) == 0)
{
queue_post(&button_queue, BUTTON_REL | diff, NULL);
}
else
{
if ( btn )
{
/* normal keypress */
if ( btn != lastbtn )
{
post = true;
repeat = false;
repeat_speed = REPEAT_INTERVAL_START;
}
else /* repeat? */
{
if ( repeat )
{
count--;
if (count == 0) {
post = true;
/* yes we have repeat */
repeat_speed--;
if (repeat_speed < REPEAT_INTERVAL_FINISH)
repeat_speed = REPEAT_INTERVAL_FINISH;
count = repeat_speed;
repeat_count++;
/* Shutdown if we have a device which doesn't shut
down easily with the OFF key */
#ifdef HAVE_POWEROFF_ON_PB5
if(btn == BUTTON_OFF && !charger_inserted() &&
repeat_count > POWEROFF_COUNT)
power_off();
#endif
}
}
else
{
if (count++ > REPEAT_START)
{
post = true;
repeat = true;
repeat_count = 0;
/* initial repeat */
count = REPEAT_INTERVAL_START;
}
}
}
if ( post )
{
if(repeat)
queue_post(&button_queue, BUTTON_REPEAT | btn, NULL);
else
queue_post(&button_queue, btn, NULL);
backlight_on();
reset_poweroff_timer();
}
}
else
{
repeat = false;
count = 0;
}
}
lastbtn = btn & ~(BUTTON_REL | BUTTON_REPEAT);
tick = 0;
}
backlight_tick();
}
int button_get(bool block)
{
struct event ev;
if ( block || !queue_empty(&button_queue) ) {
queue_wait(&button_queue, &ev);
return ev.id;
}
return BUTTON_NONE;
}
int button_get_w_tmo(int ticks)
{
struct event ev;
queue_wait_w_tmo(&button_queue, &ev, ticks);
return (ev.id != SYS_TIMEOUT)? ev.id: BUTTON_NONE;
}
#ifdef HAVE_RECORDER_KEYPAD
/* AJBR buttons are connected to the CPU as follows:
*
* ON and OFF are connected to separate port B input pins.
*
* F1, F2, F3, and UP are connected to the AN4 analog input, each through
* a separate voltage divider. The voltage on AN4 depends on which button
* (or none, or a combination) is pressed.
*
* DOWN, PLAY, LEFT, and RIGHT are likewise connected to AN5. */
/* Button analog voltage levels */
#ifdef HAVE_FMADC
/* FM Recorder super-special levels */
#define LEVEL1 150
#define LEVEL2 385
#define LEVEL3 545
#define LEVEL4 700
#else
/* plain bog standard Recorder levels */
#define LEVEL1 250
#define LEVEL2 500
#define LEVEL3 700
#define LEVEL4 900
#endif
/*
*Initialize buttons
*/
void button_init()
{
#ifndef SIMULATOR
/* Set PB4 and PB8 as input pins */
PBCR1 &= 0xfffc; /* PB8MD = 00 */
PBCR2 &= 0xfcff; /* PB4MD = 00 */
PBIOR &= ~(PBDR_BTN_ON|PBDR_BTN_OFF); /* Inputs */
#endif
queue_init(&button_queue);
lastbtn = 0;
tick_add_task(button_tick);
reset_poweroff_timer();
flipped = false;
}
/*
* helper function to swap UP/DOWN, LEFT/RIGHT, F1/F3
*/
static int button_flip(int button)
{
int newbutton;
newbutton = button &
~(BUTTON_UP | BUTTON_DOWN
| BUTTON_LEFT | BUTTON_RIGHT
| BUTTON_F1 | BUTTON_F3);
if (button & BUTTON_UP)
newbutton |= BUTTON_DOWN;
if (button & BUTTON_DOWN)
newbutton |= BUTTON_UP;
if (button & BUTTON_LEFT)
newbutton |= BUTTON_RIGHT;
if (button & BUTTON_RIGHT)
newbutton |= BUTTON_LEFT;
if (button & BUTTON_F1)
newbutton |= BUTTON_F3;
if (button & BUTTON_F3)
newbutton |= BUTTON_F1;
return newbutton;
}
/*
* set the flip attribute
* better only call this when the queue is empty
*/
void button_set_flip(bool flip)
{
if (flip != flipped) /* not the current setting */
{
/* avoid race condition with the button_tick() */
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
lastbtn = button_flip(lastbtn);
flipped = flip;
set_irq_level(oldlevel);
}
}
/*
* Get button pressed from hardware
*/
static int button_read(void)
{
int btn = BUTTON_NONE;
/* Check port B pins for ON and OFF */
int data;
#ifdef HAVE_FMADC
/* TODO: use proper defines here, and not the numerics in the
function argument */
if ( adc_read(3) < 512 )
btn |= BUTTON_ON;
if ( adc_read(2) > 512 )
btn |= BUTTON_OFF;
#else
data = PBDR;
if ((data & PBDR_BTN_ON) == 0)
btn |= BUTTON_ON;
else if ((data & PBDR_BTN_OFF) == 0)
btn |= BUTTON_OFF;
#endif
/* Check F1-3 and UP */
data = adc_read(ADC_BUTTON_ROW1);
if (data >= LEVEL4)
btn |= BUTTON_F3;
else if (data >= LEVEL3)
btn |= BUTTON_UP;
else if (data >= LEVEL2)
btn |= BUTTON_F2;
else if (data >= LEVEL1)
btn |= BUTTON_F1;
/* Some units have mushy keypads, so pressing UP also activates
the Left/Right buttons. Let's combat that by skipping the AN5
checks when UP is pressed. */
if(!(btn & BUTTON_UP))
{
/* Check DOWN, PLAY, LEFT, RIGHT */
data = adc_read(ADC_BUTTON_ROW2);
if (data >= LEVEL4)
btn |= BUTTON_DOWN;
else if (data >= LEVEL3) {
#ifdef HAVE_FMADC
btn |= BUTTON_RIGHT;
#else
btn |= BUTTON_PLAY;
#endif
}
else if (data >= LEVEL2)
btn |= BUTTON_LEFT;
else if (data >= LEVEL1) {
#ifdef HAVE_FMADC
btn |= BUTTON_PLAY;
#else
btn |= BUTTON_RIGHT;
#endif
}
}
if (btn && flipped)
return button_flip(btn); /* swap upside down */
return btn;
}
#elif defined(HAVE_PLAYER_KEYPAD)
/* The player has two buttons on port pins:
STOP: PA11
ON: PA5
The rest are on analog inputs:
LEFT: AN0
MENU: AN1
RIGHT: AN2
PLAY: AN3
*/
void button_init(void)
{
/* set port pins as input */
PAIOR &= ~0x820;
queue_init(&button_queue);
lastbtn = 0;
tick_add_task(button_tick);
reset_poweroff_timer();
}
static int button_read(void)
{
int porta = PADR;
int btn = BUTTON_NONE;
/* buttons are active low */
if(adc_read(0) < 0x180)
btn |= BUTTON_LEFT;
if(adc_read(1) < 0x180)
btn |= BUTTON_MENU;
if(adc_read(2) < 0x180)
btn |= BUTTON_RIGHT;
if(adc_read(3) < 0x180)
btn |= BUTTON_PLAY;
if ( !(porta & 0x20) )
btn |= BUTTON_ON;
if ( !(porta & 0x800) )
btn |= BUTTON_STOP;
return btn;
}
#elif defined(HAVE_NEO_KEYPAD)
static bool mStation = false;
void button_init(void)
{
/* set port pins as input */
PAIOR &= ~0x4000; /* PA14 for stop button */
queue_init(&button_queue);
lastbtn = 0;
tick_add_task(button_tick);
reset_poweroff_timer();
}
int button_read(void)
{
int btn=BUTTON_NONE;
btn|=((~PCDR)&0xFF);
/* mStation does not have a stop button and this floods the button queue
with stops if used on a mStation */
if (!mStation)
btn|=((~(PADR>>6))&0x100);
return btn;
}
/* This function adds a button press event to the button queue, and this
really isn't anything Neo-specific but might be subject for adding to
the generic button driver */
int button_add(unsigned int button)
{
queue_post(&button_queue,button,NULL);
return 1;
}
#elif defined HAVE_ONDIO_KEYPAD
/*
* helper function to swap UP/DOWN, LEFT/RIGHT
*/
static int button_flip(int button)
{
int newbutton;
newbutton = button &
~(BUTTON_UP | BUTTON_DOWN
| BUTTON_LEFT | BUTTON_RIGHT);
if (button & BUTTON_UP)
newbutton |= BUTTON_DOWN;
if (button & BUTTON_DOWN)
newbutton |= BUTTON_UP;
if (button & BUTTON_LEFT)
newbutton |= BUTTON_RIGHT;
if (button & BUTTON_RIGHT)
newbutton |= BUTTON_LEFT;
return newbutton;
}
/*
* set the flip attribute
* better only call this when the queue is empty
*/
void button_set_flip(bool flip)
{
if (flip != flipped) /* not the current setting */
{
/* avoid race condition with the button_tick() */
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
lastbtn = button_flip(lastbtn);
flipped = flip;
set_irq_level(oldlevel);
}
}
/* The Ondio its 6 buttons on analog inputs:
OPTION: AN2 (used as MENU for now)
ON/OFF: AN3
LEFT/RIGHT/UP/DOWN: AN4
We map them like the player keys for now, although this is far from optimal.
*/
void button_init(void)
{
queue_init(&button_queue);
lastbtn = 0;
tick_add_task(button_tick);
reset_poweroff_timer();
}
static int button_read(void)
{
int btn = BUTTON_NONE;
int data = adc_read(ADC_BUTTON_ROW1);
if(adc_read(ADC_BUTTON_OPTION) > 0x200) /* active high */
btn |= BUTTON_MENU;
if(adc_read(ADC_BUTTON_ONOFF) < 0x120) /* active low */
btn |= BUTTON_OFF;
/* Check the 4 direction keys, hard-coded analog limits for now */
if (data >= 0x2EF)
btn |= BUTTON_LEFT;
else if (data >= 0x246)
btn |= BUTTON_RIGHT;
else if (data >= 0x19D)
btn |= BUTTON_UP;
else if (data >= 0x0A1)
btn |= BUTTON_DOWN;
return btn;
}
#endif
int button_status(void)
{
return button_read();
}
void button_clear_queue(void)
{
queue_clear(&button_queue);
}