rockbox/firmware/target/arm/imx233/i2c-imx233.c
Amaury Pouly eac1ca22bd imx233: generate register headers using headergen_v2 and update code for it
NOTE: this commit does not introduce any change, ideally even the binary should
be almost the same. I checked the disassembly by hand and there are only a few
differences here and there, mostly the compiler decides to compile very close
expressions slightly differently. I tried to run the new code on several targets
to make sure and saw no difference.

The major syntax changes of the new headers are as follows:
- BF_{WR,SET,CLR} are now superpowerful and allows to set several fileds at once:
  BF_WR(reg, field1(value1), field2(value2), ...)
- BF_CS (use like BF_WR) does a write to reg_CLR and then reg_SET instead of RMW
- there is no more need for macros like BF_{WR_,SET,CLR}_V, since one can simply
  BF_WR with field_V(name)
- the old BF_SETV macro has no trivial equivalent and is replaced with its
  its equivalent for BF_WR(reg_SET, ...)

I also rename the register headers: "regs/regs-x.h" -> "regs/x.h" to avoid the
redundant "regs".

Final note: the registers were generated using the following command:
./headergen_v2 -g imx -o ../../firmware/target/arm/imx233/regs/ desc/regs-stmp3{600,700,780}.xml

Change-Id: I7485e8b4315a0929a8edb63e7fa1edcaa54b1edc
2016-05-28 16:49:22 +02:00

276 lines
9.4 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "kernel.h"
#include "dma-imx233.h"
#include "i2c-imx233.h"
#include "pinctrl-imx233.h"
#include "string.h"
#include "regs/i2c.h"
/**
* Driver Architecture:
* The driver has two interfaces: the good'n'old i2c_* api and a more
* advanced one specific to the imx233 dma architecture. The i2c_* api is
* implemented with the imx233_i2c_* one.
* Since each i2c transfer must be split into several dma transfers and we
* cannot do dynamic allocation, we allow for at most I2C_NR_STAGES stages.
* A typical read memory transfer will require 3 stages thus 4 is safe:
* - one with start, device address and memory address
* - one with repeated start and device address
* - one with data read and stop
* To make the interface easier to use and to handle the DMA/cache related
* issues, all the data transfers are done in a statically allocated buffer
* which is managed by the driver. The driver will ensure that all transfers
* are cache aligned and will copy back the data to user buffers at the end.
* The I2C_BUFFER_SIZE define controls the size of the buffer. All transfers
* should probably fit within 512 bytes.
*/
/* Used for DMA */
struct i2c_dma_command_t
{
struct apb_dma_command_t dma;
/* PIO words */
uint32_t ctrl0;
/* copy buffer copy */
void *src;
void *dst;
/* padded to next multiple of cache line size (32 bytes) */
uint32_t pad[2];
} __attribute__((packed)) CACHEALIGN_ATTR;
__ENSURE_STRUCT_CACHE_FRIENDLY(struct i2c_dma_command_t)
#define I2C_NR_STAGES 4
#define I2C_BUFFER_SIZE 512
/* Current transfer */
static int i2c_nr_stages;
static struct i2c_dma_command_t i2c_stage[I2C_NR_STAGES];
static struct mutex i2c_mutex;
static struct semaphore i2c_sema;
static uint8_t i2c_buffer[I2C_BUFFER_SIZE] CACHEALIGN_ATTR;
static uint32_t i2c_buffer_end; /* current end */
void INT_I2C_DMA(void)
{
/* reset dma channel on error */
if(imx233_dma_is_channel_error_irq(APB_I2C))
imx233_dma_reset_channel(APB_I2C);
/* clear irq flags */
imx233_dma_clear_channel_interrupt(APB_I2C);
semaphore_release(&i2c_sema);
}
void INT_I2C_ERROR(void)
{
/* reset dma channel on error */
if(imx233_dma_is_channel_error_irq(APB_I2C))
imx233_dma_reset_channel(APB_I2C);
/* clear irq flags */
imx233_dma_clear_channel_interrupt(APB_I2C);
semaphore_release(&i2c_sema);
}
static void imx233_i2c_reset(void)
{
/* clear softreset */
imx233_reset_block(&HW_I2C_CTRL0);
/* Errata (imx233):
* When RETAIN_CLOCK is set, the ninth clock pulse (ACK) is not generated. However, the SDA
* line is read at the proper timing interval. If RETAIN_CLOCK is cleared, the ninth clock pulse is
* generated.
* HW_I2C_CTRL1[ACK_MODE] has default value of 0. It should be set to 1 to enable the fix for
* this issue.
*/
#if IMX233_SUBTARGET >= 3780
BF_SET(I2C_CTRL1, ACK_MODE);
#endif
BF_SET(I2C_CTRL0, CLKGATE);
/* Fast-mode @ 400K */
HW_I2C_TIMING0 = 0x000F0007; /* tHIGH=0.6us, read at 0.3us */
HW_I2C_TIMING1 = 0x001F000F; /* tLOW=1.3us, write at 0.6us */
HW_I2C_TIMING2 = 0x0015000D;
}
void imx233_i2c_init(void)
{
BF_SET(I2C_CTRL0, SFTRST);
/* setup pins (must be done when shutdown) */
imx233_pinctrl_setup_vpin(VPIN_I2C_SCL, "i2c scl", PINCTRL_DRIVE_4mA, true);
imx233_pinctrl_setup_vpin(VPIN_I2C_SDA, "i2c sda", PINCTRL_DRIVE_4mA, true);
imx233_i2c_reset();
mutex_init(&i2c_mutex);
semaphore_init(&i2c_sema, 1, 0);
}
void imx233_i2c_begin(void)
{
mutex_lock(&i2c_mutex);
/* wakeup */
BF_CLR(I2C_CTRL0, CLKGATE);
i2c_nr_stages = 0;
i2c_buffer_end = 0;
}
enum imx233_i2c_error_t imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop)
{
if(i2c_nr_stages == I2C_NR_STAGES)
return I2C_ERROR;
/* align buffer end on cache boundary */
uint32_t start_off = CACHEALIGN_UP(i2c_buffer_end);
uint32_t end_off = start_off + size;
if(end_off > I2C_BUFFER_SIZE)
{
panicf("die");
return I2C_BUFFER_FULL;
}
i2c_buffer_end = end_off;
if(transmit)
{
/* copy data to buffer */
memcpy(i2c_buffer + start_off, buffer, size);
}
else
{
/* record pointers for finalization */
i2c_stage[i2c_nr_stages].src = i2c_buffer + start_off;
i2c_stage[i2c_nr_stages].dst = buffer;
}
if(i2c_nr_stages > 0)
{
i2c_stage[i2c_nr_stages - 1].dma.next = &i2c_stage[i2c_nr_stages].dma;
i2c_stage[i2c_nr_stages - 1].dma.cmd |= BM_APB_CHx_CMD_CHAIN;
if(!start)
i2c_stage[i2c_nr_stages - 1].ctrl0 |= BM_I2C_CTRL0_RETAIN_CLOCK;
}
i2c_stage[i2c_nr_stages].dma.buffer = i2c_buffer + start_off;
i2c_stage[i2c_nr_stages].dma.next = NULL;
i2c_stage[i2c_nr_stages].dma.cmd = BF_OR(APB_CHx_CMD,
COMMAND(transmit ? BV_APB_CHx_CMD_COMMAND__READ : BV_APB_CHx_CMD_COMMAND__WRITE),
WAIT4ENDCMD(1), CMDWORDS(1), XFER_COUNT(size));
/* assume that any read is final (send nak on last) */
i2c_stage[i2c_nr_stages].ctrl0 = BF_OR(I2C_CTRL0,
XFER_COUNT(size), DIRECTION(transmit), SEND_NAK_ON_LAST(!transmit),
PRE_SEND_START(start), POST_SEND_STOP(stop), MASTER_MODE(1));
i2c_nr_stages++;
return I2C_SUCCESS;
}
static enum imx233_i2c_error_t imx233_i2c_finalize(void)
{
discard_dcache_range(i2c_buffer, I2C_BUFFER_SIZE);
for(int i = 0; i < i2c_nr_stages; i++)
{
struct i2c_dma_command_t *c = &i2c_stage[i];
if(BF_RDX(c->dma.cmd, APB_CHx_CMD, COMMAND) == BV_APB_CHx_CMD_COMMAND__WRITE)
memcpy(c->dst, c->src, BF_RDX(c->dma.cmd, APB_CHx_CMD, XFER_COUNT));
}
return I2C_SUCCESS;
}
enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout)
{
if(i2c_nr_stages == 0)
return I2C_ERROR;
i2c_stage[i2c_nr_stages - 1].dma.cmd |= BM_APB_CHx_CMD_SEMAPHORE | BM_APB_CHx_CMD_IRQONCMPLT;
BF_CLR(I2C_CTRL1, SLAVE_IRQ, SLAVE_STOP_IRQ, MASTER_LOSS_IRQ, EARLY_TERM_IRQ,
OVERSIZE_XFER_TERM_IRQ, NO_SLAVE_ACK_IRQ, DATA_ENGINE_CMPLT_IRQ, BUS_FREE_IRQ);
imx233_dma_reset_channel(APB_I2C);
imx233_icoll_enable_interrupt(INT_SRC_I2C_DMA, true);
imx233_icoll_enable_interrupt(INT_SRC_I2C_ERROR, true);
imx233_dma_enable_channel_interrupt(APB_I2C, true);
imx233_dma_start_command(APB_I2C, &i2c_stage[0].dma);
enum imx233_i2c_error_t ret;
if(semaphore_wait(&i2c_sema, timeout) == OBJ_WAIT_TIMEDOUT)
{
imx233_dma_reset_channel(APB_I2C);
imx233_i2c_reset();
ret = I2C_TIMEOUT;
}
else if(BF_RD(I2C_CTRL1, MASTER_LOSS_IRQ))
ret = I2C_MASTER_LOSS;
else if(BF_RD(I2C_CTRL1, NO_SLAVE_ACK_IRQ))
{
/* the core doesn't like this error, this is a workaround to prevent lock up */
#if IMX233_SUBTARGET >= 3780
BF_SET(I2C_CTRL1, CLR_GOT_A_NAK);
#endif
imx233_dma_reset_channel(APB_I2C);
imx233_i2c_reset();
ret = I2C_NO_SLAVE_ACK;
}
else if(BF_RD(I2C_CTRL1, EARLY_TERM_IRQ))
ret = I2C_SLAVE_NAK;
else
ret = imx233_i2c_finalize();
/* sleep */
BF_SET(I2C_CTRL0, CLKGATE);
mutex_unlock(&i2c_mutex);
return ret;
}
void i2c_init(void)
{
}
int i2c_write(int device, const unsigned char* buf, int count)
{
uint8_t addr = device;
imx233_i2c_begin();
imx233_i2c_add(true, true, &addr, 1, false); /* start + dev addr */
imx233_i2c_add(false, true, (void *)buf, count, true); /* data + stop */
return imx233_i2c_end(10);
}
int i2c_read(int device, unsigned char* buf, int count)
{
uint8_t addr = device | 1;
imx233_i2c_begin();
imx233_i2c_add(true, true, &addr, 1, false); /* start + dev addr */
imx233_i2c_add(false, false, buf, count, true); /* data + stop */
return imx233_i2c_end(10);
}
int i2c_readmem(int device, int address, unsigned char* buf, int count)
{
uint8_t start[2] = {device, address};
uint8_t addr_rd = device | 1;
imx233_i2c_begin();
imx233_i2c_add(true, true, start, 2, false); /* start + dev addr + addr */
imx233_i2c_add(true, true, &addr_rd, 1, false); /* start + dev addr */
imx233_i2c_add(false, false, buf, count, true); /* data + stop */
return imx233_i2c_end(10);
}
int i2c_writemem(int device, int address, const unsigned char* buf, int count)
{
uint8_t start[2] = {device, address};
imx233_i2c_begin();
imx233_i2c_add(true, true, start, 2, false); /* start + dev addr + addr */
imx233_i2c_add(false, true, (void *)buf, count, true); /* data + stop */
return imx233_i2c_end(10);
}