rockbox/lib/rbcodec/dsp/compressor.c
Michael Sevakis 78a45b47de Cleanup and simplify latest DSP code incarnation.
Some things can just be a bit simpler in handling the list of stages
and some things, especially format change handling, can be simplified
for each stage implementation. Format changes are sent through the
configure() callback.

Hide some internal details and variables from processing stages and
let the core deal with it.

Do some miscellaneous cleanup and keep things a bit better factored.

Change-Id: I19dd8ce1d0b792ba914d426013088a49a52ecb7e
2013-05-04 13:43:33 -04:00

405 lines
14 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 Jeffrey Goode
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include <stdbool.h>
#include <sys/types.h>
#include "fixedpoint.h"
#include "fracmul.h"
#include <string.h>
/* Define LOGF_ENABLE to enable logf output in this file */
/*#define LOGF_ENABLE*/
#include "logf.h"
#include "dsp_proc_entry.h"
#include "compressor.h"
static struct compressor_settings curr_set; /* Cached settings */
static int32_t comp_rel_slope IBSS_ATTR; /* S7.24 format */
static int32_t comp_makeup_gain IBSS_ATTR; /* S7.24 format */
static int32_t comp_curve[66] IBSS_ATTR; /* S7.24 format */
static int32_t release_gain IBSS_ATTR; /* S7.24 format */
#define UNITY (1L << 24) /* unity gain in S7.24 format */
/** COMPRESSOR UPDATE
* Called via the menu system to configure the compressor process */
static bool compressor_update(const struct compressor_settings *settings)
{
/* make settings values useful */
int threshold = settings->threshold;
bool auto_gain = settings->makeup_gain == 1;
static const int comp_ratios[] = { 2, 4, 6, 10, 0 };
int ratio = comp_ratios[settings->ratio];
bool soft_knee = settings->knee == 1;
int release = settings->release_time * NATIVE_FREQUENCY / 1000;
bool changed = false;
bool active = threshold < 0;
if (memcmp(settings, &curr_set, sizeof (curr_set)))
{
/* Compressor settings have changed since last call */
changed = true;
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
if (settings->threshold != curr_set.threshold)
{
logf(" Compressor Threshold: %d dB\tEnabled: %s",
threshold, active ? "Yes" : "No");
}
if (settings->makeup_gain != curr_set.makeup_gain)
{
logf(" Compressor Makeup Gain: %s",
auto_gain ? "Auto" : "Off");
}
if (settings->ratio != cur_set.ratio)
{
if (ratio)
{ logf(" Compressor Ratio: %d:1", ratio); }
else
{ logf(" Compressor Ratio: Limit"); }
}
if (settings->knee != cur_set.knee)
{
logf(" Compressor Knee: %s", soft_knee?"Soft":"Hard");
}
if (settings->release_time != cur_set.release_time)
{
logf(" Compressor Release: %d", release);
}
#endif
curr_set = *settings;
}
if (!changed || !active)
return active;
/* configure variables for compressor operation */
static const int32_t db[] = {
/* positive db equivalents in S15.16 format */
0x000000, 0x241FA4, 0x1E1A5E, 0x1A94C8,
0x181518, 0x1624EA, 0x148F82, 0x1338BD,
0x120FD2, 0x1109EB, 0x101FA4, 0x0F4BB6,
0x0E8A3C, 0x0DD840, 0x0D3377, 0x0C9A0E,
0x0C0A8C, 0x0B83BE, 0x0B04A5, 0x0A8C6C,
0x0A1A5E, 0x09ADE1, 0x094670, 0x08E398,
0x0884F6, 0x082A30, 0x07D2FA, 0x077F0F,
0x072E31, 0x06E02A, 0x0694C8, 0x064BDF,
0x060546, 0x05C0DA, 0x057E78, 0x053E03,
0x04FF5F, 0x04C273, 0x048726, 0x044D64,
0x041518, 0x03DE30, 0x03A89B, 0x037448,
0x03412A, 0x030F32, 0x02DE52, 0x02AE80,
0x027FB0, 0x0251D6, 0x0224EA, 0x01F8E2,
0x01CDB4, 0x01A359, 0x0179C9, 0x0150FC,
0x0128EB, 0x010190, 0x00DAE4, 0x00B4E1,
0x008F82, 0x006AC1, 0x004699, 0x002305};
struct curve_point
{
int32_t db; /* S15.16 format */
int32_t offset; /* S15.16 format */
} db_curve[5];
/** Set up the shape of the compression curve first as decibel
values */
/* db_curve[0] = bottom of knee
[1] = threshold
[2] = top of knee
[3] = 0 db input
[4] = ~+12db input (2 bits clipping overhead) */
db_curve[1].db = threshold << 16;
if (soft_knee)
{
/* bottom of knee is 3dB below the threshold for soft knee*/
db_curve[0].db = db_curve[1].db - (3 << 16);
/* top of knee is 3dB above the threshold for soft knee */
db_curve[2].db = db_curve[1].db + (3 << 16);
if (ratio)
/* offset = -3db * (ratio - 1) / ratio */
db_curve[2].offset = (int32_t)((long long)(-3 << 16)
* (ratio - 1) / ratio);
else
/* offset = -3db for hard limit */
db_curve[2].offset = (-3 << 16);
}
else
{
/* bottom of knee is at the threshold for hard knee */
db_curve[0].db = threshold << 16;
/* top of knee is at the threshold for hard knee */
db_curve[2].db = threshold << 16;
db_curve[2].offset = 0;
}
/* Calculate 0db and ~+12db offsets */
db_curve[4].db = 0xC0A8C; /* db of 2 bits clipping */
if (ratio)
{
/* offset = threshold * (ratio - 1) / ratio */
db_curve[3].offset = (int32_t)((long long)(threshold << 16)
* (ratio - 1) / ratio);
db_curve[4].offset = (int32_t)((long long)-db_curve[4].db
* (ratio - 1) / ratio) + db_curve[3].offset;
}
else
{
/* offset = threshold for hard limit */
db_curve[3].offset = (threshold << 16);
db_curve[4].offset = -db_curve[4].db + db_curve[3].offset;
}
/** Now set up the comp_curve table with compression offsets in the
form of gain factors in S7.24 format */
/* comp_curve[0] is 0 (-infinity db) input */
comp_curve[0] = UNITY;
/* comp_curve[1 to 63] are intermediate compression values
corresponding to the 6 MSB of the input values of a non-clipped
signal */
for (int i = 1; i < 64; i++)
{
/* db constants are stored as positive numbers;
make them negative here */
int32_t this_db = -db[i];
/* no compression below the knee */
if (this_db <= db_curve[0].db)
comp_curve[i] = UNITY;
/* if soft knee and below top of knee,
interpolate along soft knee slope */
else if (soft_knee && (this_db <= db_curve[2].db))
comp_curve[i] = fp_factor(fp_mul(
((this_db - db_curve[0].db) / 6),
db_curve[2].offset, 16), 16) << 8;
/* interpolate along ratio slope above the knee */
else
comp_curve[i] = fp_factor(fp_mul(
fp_div((db_curve[1].db - this_db), db_curve[1].db, 16),
db_curve[3].offset, 16), 16) << 8;
}
/* comp_curve[64] is the compression level of a maximum level,
non-clipped signal */
comp_curve[64] = fp_factor(db_curve[3].offset, 16) << 8;
/* comp_curve[65] is the compression level of a maximum level,
clipped signal */
comp_curve[65] = fp_factor(db_curve[4].offset, 16) << 8;
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
logf("\n *** Compression Offsets ***");
/* some settings for display only, not used in calculations */
db_curve[0].offset = 0;
db_curve[1].offset = 0;
db_curve[3].db = 0;
for (int i = 0; i <= 4; i++)
{
logf("Curve[%d]: db: % 6.2f\toffset: % 6.2f", i,
(float)db_curve[i].db / (1 << 16),
(float)db_curve[i].offset / (1 << 16));
}
logf("\nGain factors:");
for (int i = 1; i <= 65; i++)
{
DEBUGF("%02d: %.6f ", i, (float)comp_curve[i] / UNITY);
if (i % 4 == 0) DEBUGF("\n");
}
DEBUGF("\n");
#endif
/* if using auto peak, then makeup gain is max offset -
.1dB headroom */
comp_makeup_gain = auto_gain ?
fp_factor(-(db_curve[3].offset) - 0x199A, 16) << 8 : UNITY;
logf("Makeup gain:\t%.6f", (float)comp_makeup_gain / UNITY);
/* calculate per-sample gain change a rate of 10db over release time
*/
comp_rel_slope = 0xAF0BB2 / release;
logf("Release slope:\t%.6f", (float)comp_rel_slope / UNITY);
release_gain = UNITY;
return active;
}
/** GET COMPRESSION GAIN
* Returns the required gain factor in S7.24 format in order to compress the
* sample in accordance with the compression curve. Always 1 or less.
*/
static inline int32_t get_compression_gain(struct sample_format *format,
int32_t sample)
{
const int frac_bits_offset = format->frac_bits - 15;
/* sample must be positive */
if (sample < 0)
sample = -(sample + 1);
/* shift sample into 15 frac bit range */
if (frac_bits_offset > 0)
sample >>= frac_bits_offset;
if (frac_bits_offset < 0)
sample <<= -frac_bits_offset;
/* normal case: sample isn't clipped */
if (sample < (1 << 15))
{
/* index is 6 MSB, rem is 9 LSB */
int index = sample >> 9;
int32_t rem = (sample & 0x1FF) << 22;
/* interpolate from the compression curve:
higher gain - ((rem / (1 << 31)) * (higher gain - lower gain)) */
return comp_curve[index] - (FRACMUL(rem,
(comp_curve[index] - comp_curve[index + 1])));
}
/* sample is somewhat clipped, up to 2 bits of overhead */
if (sample < (1 << 17))
{
/* straight interpolation:
higher gain - ((clipped portion of sample * 4/3
/ (1 << 31)) * (higher gain - lower gain)) */
return comp_curve[64] - (FRACMUL(((sample - (1 << 15)) / 3) << 16,
(comp_curve[64] - comp_curve[65])));
}
/* sample is too clipped, return invalid value */
return -1;
}
/** DSP interface **/
/** SET COMPRESSOR
* Enable or disable the compressor based upon the settings
*/
void dsp_set_compressor(const struct compressor_settings *settings)
{
/* enable/disable the compressor depending upon settings */
bool enable = compressor_update(settings);
struct dsp_config *dsp = dsp_get_config(CODEC_IDX_AUDIO);
dsp_proc_enable(dsp, DSP_PROC_COMPRESSOR, enable);
dsp_proc_activate(dsp, DSP_PROC_COMPRESSOR, true);
}
/** COMPRESSOR PROCESS
* Changes the gain of the samples according to the compressor curve
*/
static void compressor_process(struct dsp_proc_entry *this,
struct dsp_buffer **buf_p)
{
struct dsp_buffer *buf = *buf_p;
int count = buf->remcount;
int32_t *in_buf[2] = { buf->p32[0], buf->p32[1] };
const int num_chan = buf->format.num_channels;
while (count-- > 0)
{
/* use lowest (most compressed) gain factor of the output buffer
sample pair for both samples (mono is also handled correctly here)
*/
int32_t sample_gain = UNITY;
for (int ch = 0; ch < num_chan; ch++)
{
int32_t this_gain = get_compression_gain(&buf->format, *in_buf[ch]);
if (this_gain < sample_gain)
sample_gain = this_gain;
}
/* perform release slope; skip if no compression and no release slope
*/
if ((sample_gain != UNITY) || (release_gain != UNITY))
{
/* if larger offset than previous slope, start new release slope
*/
if ((sample_gain <= release_gain) && (sample_gain > 0))
{
release_gain = sample_gain;
}
else
/* keep sloping towards unity gain (and ignore invalid value) */
{
release_gain += comp_rel_slope;
if (release_gain > UNITY)
{
release_gain = UNITY;
}
}
}
/* total gain factor is the product of release gain and makeup gain,
but avoid computation if possible */
int32_t total_gain = ((release_gain == UNITY) ? comp_makeup_gain :
(comp_makeup_gain == UNITY) ? release_gain :
FRACMUL_SHL(release_gain, comp_makeup_gain, 7));
/* Implement the compressor: apply total gain factor (if any) to the
output buffer sample pair/mono sample */
if (total_gain != UNITY)
{
for (int ch = 0; ch < num_chan; ch++)
{
*in_buf[ch] = FRACMUL_SHL(total_gain, *in_buf[ch], 7);
}
}
in_buf[0]++;
in_buf[1]++;
}
(void)this;
}
/* DSP message hook */
static intptr_t compressor_configure(struct dsp_proc_entry *this,
struct dsp_config *dsp,
unsigned int setting,
intptr_t value)
{
switch (setting)
{
case DSP_PROC_INIT:
if (value != 0)
break; /* Already enabled */
this->process = compressor_process;
/* Fall-through */
case DSP_RESET:
case DSP_FLUSH:
release_gain = UNITY;
break;
}
return 0;
(void)dsp;
}
/* Database entry */
DSP_PROC_DB_ENTRY(
COMPRESSOR,
compressor_configure);