c876d3bbef
rbutil uses several components from the utils folder, and can be considered part of utils too. Having it in a separate folder is an arbitrary split that doesn't help anymore these days, so merge them. This also allows other utils to easily use libtools.make without the need to navigate to a different folder. Change-Id: I3fc2f4de19e3e776553efb5dea5f779dfec0dc21
905 lines
34 KiB
C
905 lines
34 KiB
C
/* This file is part of libmspack.
|
|
* (C) 2003-2013 Stuart Caie.
|
|
*
|
|
* The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted
|
|
* by Microsoft Corporation.
|
|
*
|
|
* libmspack is free software; you can redistribute it and/or modify it under
|
|
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
|
|
*
|
|
* For further details, see the file COPYING.LIB distributed with libmspack
|
|
*/
|
|
|
|
/* LZX decompression implementation */
|
|
|
|
#include "system-mspack.h"
|
|
#include "lzx.h"
|
|
|
|
/* Microsoft's LZX document (in cab-sdk.exe) and their implementation
|
|
* of the com.ms.util.cab Java package do not concur.
|
|
*
|
|
* In the LZX document, there is a table showing the correlation between
|
|
* window size and the number of position slots. It states that the 1MB
|
|
* window = 40 slots and the 2MB window = 42 slots. In the implementation,
|
|
* 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the
|
|
* first slot whose position base is equal to or more than the required
|
|
* window size'. This would explain why other tables in the document refer
|
|
* to 50 slots rather than 42.
|
|
*
|
|
* The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode
|
|
* is not defined in the specification.
|
|
*
|
|
* The LZX document does not state the uncompressed block has an
|
|
* uncompressed length field. Where does this length field come from, so
|
|
* we can know how large the block is? The implementation has it as the 24
|
|
* bits following after the 3 blocktype bits, before the alignment
|
|
* padding.
|
|
*
|
|
* The LZX document states that aligned offset blocks have their aligned
|
|
* offset huffman tree AFTER the main and length trees. The implementation
|
|
* suggests that the aligned offset tree is BEFORE the main and length
|
|
* trees.
|
|
*
|
|
* The LZX document decoding algorithm states that, in an aligned offset
|
|
* block, if an extra_bits value is 1, 2 or 3, then that number of bits
|
|
* should be read and the result added to the match offset. This is
|
|
* correct for 1 and 2, but not 3, where just a huffman symbol (using the
|
|
* aligned tree) should be read.
|
|
*
|
|
* Regarding the E8 preprocessing, the LZX document states 'No translation
|
|
* may be performed on the last 6 bytes of the input block'. This is
|
|
* correct. However, the pseudocode provided checks for the *E8 leader*
|
|
* up to the last 6 bytes. If the leader appears between -10 and -7 bytes
|
|
* from the end, this would cause the next four bytes to be modified, at
|
|
* least one of which would be in the last 6 bytes, which is not allowed
|
|
* according to the spec.
|
|
*
|
|
* The specification states that the huffman trees must always contain at
|
|
* least one element. However, many CAB files contain blocks where the
|
|
* length tree is completely empty (because there are no matches), and
|
|
* this is expected to succeed.
|
|
*
|
|
* The errors in LZX documentation appear have been corrected in the
|
|
* new documentation for the LZX DELTA format.
|
|
*
|
|
* http://msdn.microsoft.com/en-us/library/cc483133.aspx
|
|
*
|
|
* However, this is a different format, an extension of regular LZX.
|
|
* I have noticed the following differences, there may be more:
|
|
*
|
|
* The maximum window size has increased from 2MB to 32MB. This also
|
|
* increases the maximum number of position slots, etc.
|
|
*
|
|
* If the match length is 257 (the maximum possible), this signals
|
|
* a further length decoding step, that allows for matches up to
|
|
* 33024 bytes long.
|
|
*
|
|
* The format now allows for "reference data", supplied by the caller.
|
|
* If match offsets go further back than the number of bytes
|
|
* decompressed so far, that is them accessing the reference data.
|
|
*/
|
|
|
|
/* import bit-reading macros and code */
|
|
#define BITS_TYPE struct lzxd_stream
|
|
#define BITS_VAR lzx
|
|
#define BITS_ORDER_MSB
|
|
#define READ_BYTES do { \
|
|
unsigned char b0, b1; \
|
|
READ_IF_NEEDED; b0 = *i_ptr++; \
|
|
READ_IF_NEEDED; b1 = *i_ptr++; \
|
|
INJECT_BITS((b1 << 8) | b0, 16); \
|
|
} while (0)
|
|
#include "readbits.h"
|
|
|
|
/* import huffman-reading macros and code */
|
|
#define TABLEBITS(tbl) LZX_##tbl##_TABLEBITS
|
|
#define MAXSYMBOLS(tbl) LZX_##tbl##_MAXSYMBOLS
|
|
#define HUFF_TABLE(tbl,idx) lzx->tbl##_table[idx]
|
|
#define HUFF_LEN(tbl,idx) lzx->tbl##_len[idx]
|
|
#define HUFF_ERROR return lzx->error = MSPACK_ERR_DECRUNCH
|
|
#include "readhuff.h"
|
|
|
|
/* BUILD_TABLE(tbl) builds a huffman lookup table from code lengths */
|
|
#define BUILD_TABLE(tbl) \
|
|
if (make_decode_table(MAXSYMBOLS(tbl), TABLEBITS(tbl), \
|
|
&HUFF_LEN(tbl,0), &HUFF_TABLE(tbl,0))) \
|
|
{ \
|
|
D(("failed to build %s table", #tbl)) \
|
|
return lzx->error = MSPACK_ERR_DECRUNCH; \
|
|
}
|
|
|
|
#define BUILD_TABLE_MAYBE_EMPTY(tbl) do { \
|
|
lzx->tbl##_empty = 0; \
|
|
if (make_decode_table(MAXSYMBOLS(tbl), TABLEBITS(tbl), \
|
|
&HUFF_LEN(tbl,0), &HUFF_TABLE(tbl,0))) \
|
|
{ \
|
|
for (i = 0; i < MAXSYMBOLS(tbl); i++) { \
|
|
if (HUFF_LEN(tbl, i) > 0) { \
|
|
D(("failed to build %s table", #tbl)) \
|
|
return lzx->error = MSPACK_ERR_DECRUNCH; \
|
|
} \
|
|
} \
|
|
/* empty tree - allow it, but don't decode symbols with it */ \
|
|
lzx->tbl##_empty = 1; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
|
|
* first to last in the given table. The code lengths are stored in their
|
|
* own special LZX way.
|
|
*/
|
|
#define READ_LENGTHS(tbl, first, last) do { \
|
|
STORE_BITS; \
|
|
if (lzxd_read_lens(lzx, &HUFF_LEN(tbl, 0), (first), \
|
|
(unsigned int)(last))) return lzx->error; \
|
|
RESTORE_BITS; \
|
|
} while (0)
|
|
|
|
static int lzxd_read_lens(struct lzxd_stream *lzx, unsigned char *lens,
|
|
unsigned int first, unsigned int last)
|
|
{
|
|
/* bit buffer and huffman symbol decode variables */
|
|
register unsigned int bit_buffer;
|
|
register int bits_left, i;
|
|
register unsigned short sym;
|
|
unsigned char *i_ptr, *i_end;
|
|
|
|
unsigned int x, y;
|
|
int z;
|
|
|
|
RESTORE_BITS;
|
|
|
|
/* read lengths for pretree (20 symbols, lengths stored in fixed 4 bits) */
|
|
for (x = 0; x < 20; x++) {
|
|
READ_BITS(y, 4);
|
|
lzx->PRETREE_len[x] = y;
|
|
}
|
|
BUILD_TABLE(PRETREE);
|
|
|
|
for (x = first; x < last; ) {
|
|
READ_HUFFSYM(PRETREE, z);
|
|
if (z == 17) {
|
|
/* code = 17, run of ([read 4 bits]+4) zeros */
|
|
READ_BITS(y, 4); y += 4;
|
|
while (y--) lens[x++] = 0;
|
|
}
|
|
else if (z == 18) {
|
|
/* code = 18, run of ([read 5 bits]+20) zeros */
|
|
READ_BITS(y, 5); y += 20;
|
|
while (y--) lens[x++] = 0;
|
|
}
|
|
else if (z == 19) {
|
|
/* code = 19, run of ([read 1 bit]+4) [read huffman symbol] */
|
|
READ_BITS(y, 1); y += 4;
|
|
READ_HUFFSYM(PRETREE, z);
|
|
z = lens[x] - z; if (z < 0) z += 17;
|
|
while (y--) lens[x++] = z;
|
|
}
|
|
else {
|
|
/* code = 0 to 16, delta current length entry */
|
|
z = lens[x] - z; if (z < 0) z += 17;
|
|
lens[x++] = z;
|
|
}
|
|
}
|
|
|
|
STORE_BITS;
|
|
|
|
return MSPACK_ERR_OK;
|
|
}
|
|
|
|
/* LZX static data tables:
|
|
*
|
|
* LZX uses 'position slots' to represent match offsets. For every match,
|
|
* a small 'position slot' number and a small offset from that slot are
|
|
* encoded instead of one large offset.
|
|
*
|
|
* The number of slots is decided by how many are needed to encode the
|
|
* largest offset for a given window size. This is easy when the gap between
|
|
* slots is less than 128Kb, it's a linear relationship. But when extra_bits
|
|
* reaches its limit of 17 (because LZX can only ensure reading 17 bits of
|
|
* data at a time), we can only jump 128Kb at a time and have to start
|
|
* using more and more position slots as each window size doubles.
|
|
*
|
|
* position_base[] is an index to the position slot bases
|
|
*
|
|
* extra_bits[] states how many bits of offset-from-base data is needed.
|
|
*
|
|
* They are calculated as follows:
|
|
* extra_bits[i] = 0 where i < 4
|
|
* extra_bits[i] = floor(i/2)-1 where i >= 4 && i < 36
|
|
* extra_bits[i] = 17 where i >= 36
|
|
* position_base[0] = 0
|
|
* position_base[i] = position_base[i-1] + (1 << extra_bits[i-1])
|
|
*/
|
|
static const unsigned int position_slots[11] = {
|
|
30, 32, 34, 36, 38, 42, 50, 66, 98, 162, 290
|
|
};
|
|
static const unsigned char extra_bits[36] = {
|
|
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
|
|
9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16
|
|
};
|
|
static const unsigned int position_base[290] = {
|
|
0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512,
|
|
768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768,
|
|
49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360,
|
|
786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936,
|
|
1835008, 1966080, 2097152, 2228224, 2359296, 2490368, 2621440, 2752512,
|
|
2883584, 3014656, 3145728, 3276800, 3407872, 3538944, 3670016, 3801088,
|
|
3932160, 4063232, 4194304, 4325376, 4456448, 4587520, 4718592, 4849664,
|
|
4980736, 5111808, 5242880, 5373952, 5505024, 5636096, 5767168, 5898240,
|
|
6029312, 6160384, 6291456, 6422528, 6553600, 6684672, 6815744, 6946816,
|
|
7077888, 7208960, 7340032, 7471104, 7602176, 7733248, 7864320, 7995392,
|
|
8126464, 8257536, 8388608, 8519680, 8650752, 8781824, 8912896, 9043968,
|
|
9175040, 9306112, 9437184, 9568256, 9699328, 9830400, 9961472, 10092544,
|
|
10223616, 10354688, 10485760, 10616832, 10747904, 10878976, 11010048,
|
|
11141120, 11272192, 11403264, 11534336, 11665408, 11796480, 11927552,
|
|
12058624, 12189696, 12320768, 12451840, 12582912, 12713984, 12845056,
|
|
12976128, 13107200, 13238272, 13369344, 13500416, 13631488, 13762560,
|
|
13893632, 14024704, 14155776, 14286848, 14417920, 14548992, 14680064,
|
|
14811136, 14942208, 15073280, 15204352, 15335424, 15466496, 15597568,
|
|
15728640, 15859712, 15990784, 16121856, 16252928, 16384000, 16515072,
|
|
16646144, 16777216, 16908288, 17039360, 17170432, 17301504, 17432576,
|
|
17563648, 17694720, 17825792, 17956864, 18087936, 18219008, 18350080,
|
|
18481152, 18612224, 18743296, 18874368, 19005440, 19136512, 19267584,
|
|
19398656, 19529728, 19660800, 19791872, 19922944, 20054016, 20185088,
|
|
20316160, 20447232, 20578304, 20709376, 20840448, 20971520, 21102592,
|
|
21233664, 21364736, 21495808, 21626880, 21757952, 21889024, 22020096,
|
|
22151168, 22282240, 22413312, 22544384, 22675456, 22806528, 22937600,
|
|
23068672, 23199744, 23330816, 23461888, 23592960, 23724032, 23855104,
|
|
23986176, 24117248, 24248320, 24379392, 24510464, 24641536, 24772608,
|
|
24903680, 25034752, 25165824, 25296896, 25427968, 25559040, 25690112,
|
|
25821184, 25952256, 26083328, 26214400, 26345472, 26476544, 26607616,
|
|
26738688, 26869760, 27000832, 27131904, 27262976, 27394048, 27525120,
|
|
27656192, 27787264, 27918336, 28049408, 28180480, 28311552, 28442624,
|
|
28573696, 28704768, 28835840, 28966912, 29097984, 29229056, 29360128,
|
|
29491200, 29622272, 29753344, 29884416, 30015488, 30146560, 30277632,
|
|
30408704, 30539776, 30670848, 30801920, 30932992, 31064064, 31195136,
|
|
31326208, 31457280, 31588352, 31719424, 31850496, 31981568, 32112640,
|
|
32243712, 32374784, 32505856, 32636928, 32768000, 32899072, 33030144,
|
|
33161216, 33292288, 33423360
|
|
};
|
|
|
|
static void lzxd_reset_state(struct lzxd_stream *lzx) {
|
|
int i;
|
|
|
|
lzx->R0 = 1;
|
|
lzx->R1 = 1;
|
|
lzx->R2 = 1;
|
|
lzx->header_read = 0;
|
|
lzx->block_remaining = 0;
|
|
lzx->block_type = LZX_BLOCKTYPE_INVALID;
|
|
|
|
/* initialise tables to 0 (because deltas will be applied to them) */
|
|
for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) lzx->MAINTREE_len[i] = 0;
|
|
for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) lzx->LENGTH_len[i] = 0;
|
|
}
|
|
|
|
/*-------- main LZX code --------*/
|
|
|
|
struct lzxd_stream *lzxd_init(struct mspack_system *system,
|
|
struct mspack_file *input,
|
|
struct mspack_file *output,
|
|
int window_bits,
|
|
int reset_interval,
|
|
int input_buffer_size,
|
|
off_t output_length,
|
|
char is_delta)
|
|
{
|
|
unsigned int window_size = 1 << window_bits;
|
|
struct lzxd_stream *lzx;
|
|
|
|
if (!system) return NULL;
|
|
|
|
/* LZX DELTA window sizes are between 2^17 (128KiB) and 2^25 (32MiB),
|
|
* regular LZX windows are between 2^15 (32KiB) and 2^21 (2MiB)
|
|
*/
|
|
if (is_delta) {
|
|
if (window_bits < 17 || window_bits > 25) return NULL;
|
|
}
|
|
else {
|
|
if (window_bits < 15 || window_bits > 21) return NULL;
|
|
}
|
|
|
|
if (reset_interval < 0 || output_length < 0) {
|
|
D(("reset interval or output length < 0"))
|
|
return NULL;
|
|
}
|
|
|
|
/* round up input buffer size to multiple of two */
|
|
input_buffer_size = (input_buffer_size + 1) & -2;
|
|
if (input_buffer_size < 2) return NULL;
|
|
|
|
/* allocate decompression state */
|
|
if (!(lzx = (struct lzxd_stream *) system->alloc(system, sizeof(struct lzxd_stream)))) {
|
|
return NULL;
|
|
}
|
|
|
|
/* allocate decompression window and input buffer */
|
|
lzx->window = (unsigned char *) system->alloc(system, (size_t) window_size);
|
|
lzx->inbuf = (unsigned char *) system->alloc(system, (size_t) input_buffer_size);
|
|
if (!lzx->window || !lzx->inbuf) {
|
|
system->free(lzx->window);
|
|
system->free(lzx->inbuf);
|
|
system->free(lzx);
|
|
return NULL;
|
|
}
|
|
|
|
/* initialise decompression state */
|
|
lzx->sys = system;
|
|
lzx->input = input;
|
|
lzx->output = output;
|
|
lzx->offset = 0;
|
|
lzx->length = output_length;
|
|
|
|
lzx->inbuf_size = input_buffer_size;
|
|
lzx->window_size = 1 << window_bits;
|
|
lzx->ref_data_size = 0;
|
|
lzx->window_posn = 0;
|
|
lzx->frame_posn = 0;
|
|
lzx->frame = 0;
|
|
lzx->reset_interval = reset_interval;
|
|
lzx->intel_filesize = 0;
|
|
lzx->intel_curpos = 0;
|
|
lzx->intel_started = 0;
|
|
lzx->error = MSPACK_ERR_OK;
|
|
lzx->num_offsets = position_slots[window_bits - 15] << 3;
|
|
lzx->is_delta = is_delta;
|
|
|
|
lzx->o_ptr = lzx->o_end = &lzx->e8_buf[0];
|
|
lzxd_reset_state(lzx);
|
|
INIT_BITS;
|
|
return lzx;
|
|
}
|
|
|
|
int lzxd_set_reference_data(struct lzxd_stream *lzx,
|
|
struct mspack_system *system,
|
|
struct mspack_file *input,
|
|
unsigned int length)
|
|
{
|
|
if (!lzx) return MSPACK_ERR_ARGS;
|
|
|
|
if (!lzx->is_delta) {
|
|
D(("only LZX DELTA streams support reference data"))
|
|
return MSPACK_ERR_ARGS;
|
|
}
|
|
if (lzx->offset) {
|
|
D(("too late to set reference data after decoding starts"))
|
|
return MSPACK_ERR_ARGS;
|
|
}
|
|
if (length > lzx->window_size) {
|
|
D(("reference length (%u) is longer than the window", length))
|
|
return MSPACK_ERR_ARGS;
|
|
}
|
|
if (length > 0 && (!system || !input)) {
|
|
D(("length > 0 but no system or input"))
|
|
return MSPACK_ERR_ARGS;
|
|
}
|
|
|
|
lzx->ref_data_size = length;
|
|
if (length > 0) {
|
|
/* copy reference data */
|
|
unsigned char *pos = &lzx->window[lzx->window_size - length];
|
|
int bytes = system->read(input, pos, length);
|
|
/* length can't be more than 2^25, so no signedness problem */
|
|
if (bytes < (int)length) return MSPACK_ERR_READ;
|
|
}
|
|
lzx->ref_data_size = length;
|
|
return MSPACK_ERR_OK;
|
|
}
|
|
|
|
void lzxd_set_output_length(struct lzxd_stream *lzx, off_t out_bytes) {
|
|
if (lzx && out_bytes > 0) lzx->length = out_bytes;
|
|
}
|
|
|
|
int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|
/* bitstream and huffman reading variables */
|
|
register unsigned int bit_buffer;
|
|
register int bits_left, i=0;
|
|
unsigned char *i_ptr, *i_end;
|
|
register unsigned short sym;
|
|
|
|
int match_length, length_footer, extra, verbatim_bits, bytes_todo;
|
|
int this_run, main_element, aligned_bits, j, warned = 0;
|
|
unsigned char *window, *runsrc, *rundest, buf[12];
|
|
unsigned int frame_size=0, end_frame, match_offset, window_posn;
|
|
unsigned int R0, R1, R2;
|
|
|
|
/* easy answers */
|
|
if (!lzx || (out_bytes < 0)) return MSPACK_ERR_ARGS;
|
|
if (lzx->error) return lzx->error;
|
|
|
|
/* flush out any stored-up bytes before we begin */
|
|
i = lzx->o_end - lzx->o_ptr;
|
|
if ((off_t) i > out_bytes) i = (int) out_bytes;
|
|
if (i) {
|
|
if (lzx->sys->write(lzx->output, lzx->o_ptr, i) != i) {
|
|
return lzx->error = MSPACK_ERR_WRITE;
|
|
}
|
|
lzx->o_ptr += i;
|
|
lzx->offset += i;
|
|
out_bytes -= i;
|
|
}
|
|
if (out_bytes == 0) return MSPACK_ERR_OK;
|
|
|
|
/* restore local state */
|
|
RESTORE_BITS;
|
|
window = lzx->window;
|
|
window_posn = lzx->window_posn;
|
|
R0 = lzx->R0;
|
|
R1 = lzx->R1;
|
|
R2 = lzx->R2;
|
|
|
|
end_frame = (unsigned int)((lzx->offset + out_bytes) / LZX_FRAME_SIZE) + 1;
|
|
|
|
while (lzx->frame < end_frame) {
|
|
/* have we reached the reset interval? (if there is one?) */
|
|
if (lzx->reset_interval && ((lzx->frame % lzx->reset_interval) == 0)) {
|
|
if (lzx->block_remaining) {
|
|
/* this is a file format error, we can make a best effort to extract what we can */
|
|
D(("%d bytes remaining at reset interval", lzx->block_remaining))
|
|
if (!warned) {
|
|
lzx->sys->message(NULL, "WARNING; invalid reset interval detected during LZX decompression");
|
|
warned++;
|
|
}
|
|
}
|
|
|
|
/* re-read the intel header and reset the huffman lengths */
|
|
lzxd_reset_state(lzx);
|
|
R0 = lzx->R0;
|
|
R1 = lzx->R1;
|
|
R2 = lzx->R2;
|
|
}
|
|
|
|
/* LZX DELTA format has chunk_size, not present in LZX format */
|
|
if (lzx->is_delta) {
|
|
ENSURE_BITS(16);
|
|
REMOVE_BITS(16);
|
|
}
|
|
|
|
/* read header if necessary */
|
|
if (!lzx->header_read) {
|
|
/* read 1 bit. if bit=0, intel filesize = 0.
|
|
* if bit=1, read intel filesize (32 bits) */
|
|
j = 0; READ_BITS(i, 1); if (i) { READ_BITS(i, 16); READ_BITS(j, 16); }
|
|
lzx->intel_filesize = (i << 16) | j;
|
|
lzx->header_read = 1;
|
|
}
|
|
|
|
/* calculate size of frame: all frames are 32k except the final frame
|
|
* which is 32kb or less. this can only be calculated when lzx->length
|
|
* has been filled in. */
|
|
frame_size = LZX_FRAME_SIZE;
|
|
if (lzx->length && (lzx->length - lzx->offset) < (off_t)frame_size) {
|
|
frame_size = lzx->length - lzx->offset;
|
|
}
|
|
|
|
/* decode until one more frame is available */
|
|
bytes_todo = lzx->frame_posn + frame_size - window_posn;
|
|
while (bytes_todo > 0) {
|
|
/* initialise new block, if one is needed */
|
|
if (lzx->block_remaining == 0) {
|
|
/* realign if previous block was an odd-sized UNCOMPRESSED block */
|
|
if ((lzx->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) &&
|
|
(lzx->block_length & 1))
|
|
{
|
|
READ_IF_NEEDED;
|
|
i_ptr++;
|
|
}
|
|
|
|
/* read block type (3 bits) and block length (24 bits) */
|
|
READ_BITS(lzx->block_type, 3);
|
|
READ_BITS(i, 16); READ_BITS(j, 8);
|
|
lzx->block_remaining = lzx->block_length = (i << 8) | j;
|
|
/*D(("new block t%d len %u", lzx->block_type, lzx->block_length))*/
|
|
|
|
/* read individual block headers */
|
|
switch (lzx->block_type) {
|
|
case LZX_BLOCKTYPE_ALIGNED:
|
|
/* read lengths of and build aligned huffman decoding tree */
|
|
for (i = 0; i < 8; i++) { READ_BITS(j, 3); lzx->ALIGNED_len[i] = j; }
|
|
BUILD_TABLE(ALIGNED);
|
|
/* rest of aligned header is same as verbatim */ /*@fallthrough@*/
|
|
case LZX_BLOCKTYPE_VERBATIM:
|
|
/* read lengths of and build main huffman decoding tree */
|
|
READ_LENGTHS(MAINTREE, 0, 256);
|
|
READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + lzx->num_offsets);
|
|
BUILD_TABLE(MAINTREE);
|
|
/* if the literal 0xE8 is anywhere in the block... */
|
|
if (lzx->MAINTREE_len[0xE8] != 0) lzx->intel_started = 1;
|
|
/* read lengths of and build lengths huffman decoding tree */
|
|
READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS);
|
|
BUILD_TABLE_MAYBE_EMPTY(LENGTH);
|
|
break;
|
|
|
|
case LZX_BLOCKTYPE_UNCOMPRESSED:
|
|
/* because we can't assume otherwise */
|
|
lzx->intel_started = 1;
|
|
|
|
/* read 1-16 (not 0-15) bits to align to bytes */
|
|
if (bits_left == 0) ENSURE_BITS(16);
|
|
bits_left = 0; bit_buffer = 0;
|
|
|
|
/* read 12 bytes of stored R0 / R1 / R2 values */
|
|
for (rundest = &buf[0], i = 0; i < 12; i++) {
|
|
READ_IF_NEEDED;
|
|
*rundest++ = *i_ptr++;
|
|
}
|
|
R0 = buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
|
|
R1 = buf[4] | (buf[5] << 8) | (buf[6] << 16) | (buf[7] << 24);
|
|
R2 = buf[8] | (buf[9] << 8) | (buf[10] << 16) | (buf[11] << 24);
|
|
break;
|
|
|
|
default:
|
|
D(("bad block type"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
}
|
|
|
|
/* decode more of the block:
|
|
* run = min(what's available, what's needed) */
|
|
this_run = lzx->block_remaining;
|
|
if (this_run > bytes_todo) this_run = bytes_todo;
|
|
|
|
/* assume we decode exactly this_run bytes, for now */
|
|
bytes_todo -= this_run;
|
|
lzx->block_remaining -= this_run;
|
|
|
|
/* decode at least this_run bytes */
|
|
switch (lzx->block_type) {
|
|
case LZX_BLOCKTYPE_VERBATIM:
|
|
while (this_run > 0) {
|
|
READ_HUFFSYM(MAINTREE, main_element);
|
|
if (main_element < LZX_NUM_CHARS) {
|
|
/* literal: 0 to LZX_NUM_CHARS-1 */
|
|
window[window_posn++] = main_element;
|
|
this_run--;
|
|
}
|
|
else {
|
|
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
|
|
main_element -= LZX_NUM_CHARS;
|
|
|
|
/* get match length */
|
|
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
|
|
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
|
|
if (lzx->LENGTH_empty) {
|
|
D(("LENGTH symbol needed but tree is empty"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
READ_HUFFSYM(LENGTH, length_footer);
|
|
match_length += length_footer;
|
|
}
|
|
match_length += LZX_MIN_MATCH;
|
|
|
|
/* get match offset */
|
|
switch ((match_offset = (main_element >> 3))) {
|
|
case 0: match_offset = R0; break;
|
|
case 1: match_offset = R1; R1=R0; R0 = match_offset; break;
|
|
case 2: match_offset = R2; R2=R0; R0 = match_offset; break;
|
|
case 3: match_offset = 1; R2=R1; R1=R0; R0 = match_offset; break;
|
|
default:
|
|
extra = (match_offset >= 36) ? 17 : extra_bits[match_offset];
|
|
READ_BITS(verbatim_bits, extra);
|
|
match_offset = position_base[match_offset] - 2 + verbatim_bits;
|
|
R2 = R1; R1 = R0; R0 = match_offset;
|
|
}
|
|
|
|
/* LZX DELTA uses max match length to signal even longer match */
|
|
if (match_length == LZX_MAX_MATCH && lzx->is_delta) {
|
|
int extra_len = 0;
|
|
ENSURE_BITS(3); /* 4 entry huffman tree */
|
|
if (PEEK_BITS(1) == 0) {
|
|
REMOVE_BITS(1); /* '0' -> 8 extra length bits */
|
|
READ_BITS(extra_len, 8);
|
|
}
|
|
else if (PEEK_BITS(2) == 2) {
|
|
REMOVE_BITS(2); /* '10' -> 10 extra length bits + 0x100 */
|
|
READ_BITS(extra_len, 10);
|
|
extra_len += 0x100;
|
|
}
|
|
else if (PEEK_BITS(3) == 6) {
|
|
REMOVE_BITS(3); /* '110' -> 12 extra length bits + 0x500 */
|
|
READ_BITS(extra_len, 12);
|
|
extra_len += 0x500;
|
|
}
|
|
else {
|
|
REMOVE_BITS(3); /* '111' -> 15 extra length bits */
|
|
READ_BITS(extra_len, 15);
|
|
}
|
|
match_length += extra_len;
|
|
}
|
|
|
|
if ((window_posn + match_length) > lzx->window_size) {
|
|
D(("match ran over window wrap"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* copy match */
|
|
rundest = &window[window_posn];
|
|
i = match_length;
|
|
/* does match offset wrap the window? */
|
|
if (match_offset > window_posn) {
|
|
if (match_offset > lzx->offset &&
|
|
(match_offset - window_posn) > lzx->ref_data_size)
|
|
{
|
|
D(("match offset beyond LZX stream"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
/* j = length from match offset to end of window */
|
|
j = match_offset - window_posn;
|
|
if (j > (int) lzx->window_size) {
|
|
D(("match offset beyond window boundaries"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
runsrc = &window[lzx->window_size - j];
|
|
if (j < i) {
|
|
/* if match goes over the window edge, do two copy runs */
|
|
i -= j; while (j-- > 0) *rundest++ = *runsrc++;
|
|
runsrc = window;
|
|
}
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
else {
|
|
runsrc = rundest - match_offset;
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
|
|
this_run -= match_length;
|
|
window_posn += match_length;
|
|
}
|
|
} /* while (this_run > 0) */
|
|
break;
|
|
|
|
case LZX_BLOCKTYPE_ALIGNED:
|
|
while (this_run > 0) {
|
|
READ_HUFFSYM(MAINTREE, main_element);
|
|
if (main_element < LZX_NUM_CHARS) {
|
|
/* literal: 0 to LZX_NUM_CHARS-1 */
|
|
window[window_posn++] = main_element;
|
|
this_run--;
|
|
}
|
|
else {
|
|
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
|
|
main_element -= LZX_NUM_CHARS;
|
|
|
|
/* get match length */
|
|
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
|
|
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
|
|
if (lzx->LENGTH_empty) {
|
|
D(("LENGTH symbol needed but tree is empty"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
READ_HUFFSYM(LENGTH, length_footer);
|
|
match_length += length_footer;
|
|
}
|
|
match_length += LZX_MIN_MATCH;
|
|
|
|
/* get match offset */
|
|
switch ((match_offset = (main_element >> 3))) {
|
|
case 0: match_offset = R0; break;
|
|
case 1: match_offset = R1; R1 = R0; R0 = match_offset; break;
|
|
case 2: match_offset = R2; R2 = R0; R0 = match_offset; break;
|
|
default:
|
|
extra = (match_offset >= 36) ? 17 : extra_bits[match_offset];
|
|
match_offset = position_base[match_offset] - 2;
|
|
if (extra > 3) {
|
|
/* verbatim and aligned bits */
|
|
extra -= 3;
|
|
READ_BITS(verbatim_bits, extra);
|
|
match_offset += (verbatim_bits << 3);
|
|
READ_HUFFSYM(ALIGNED, aligned_bits);
|
|
match_offset += aligned_bits;
|
|
}
|
|
else if (extra == 3) {
|
|
/* aligned bits only */
|
|
READ_HUFFSYM(ALIGNED, aligned_bits);
|
|
match_offset += aligned_bits;
|
|
}
|
|
else if (extra > 0) { /* extra==1, extra==2 */
|
|
/* verbatim bits only */
|
|
READ_BITS(verbatim_bits, extra);
|
|
match_offset += verbatim_bits;
|
|
}
|
|
else /* extra == 0 */ {
|
|
/* ??? not defined in LZX specification! */
|
|
match_offset = 1;
|
|
}
|
|
/* update repeated offset LRU queue */
|
|
R2 = R1; R1 = R0; R0 = match_offset;
|
|
}
|
|
|
|
/* LZX DELTA uses max match length to signal even longer match */
|
|
if (match_length == LZX_MAX_MATCH && lzx->is_delta) {
|
|
int extra_len = 0;
|
|
ENSURE_BITS(3); /* 4 entry huffman tree */
|
|
if (PEEK_BITS(1) == 0) {
|
|
REMOVE_BITS(1); /* '0' -> 8 extra length bits */
|
|
READ_BITS(extra_len, 8);
|
|
}
|
|
else if (PEEK_BITS(2) == 2) {
|
|
REMOVE_BITS(2); /* '10' -> 10 extra length bits + 0x100 */
|
|
READ_BITS(extra_len, 10);
|
|
extra_len += 0x100;
|
|
}
|
|
else if (PEEK_BITS(3) == 6) {
|
|
REMOVE_BITS(3); /* '110' -> 12 extra length bits + 0x500 */
|
|
READ_BITS(extra_len, 12);
|
|
extra_len += 0x500;
|
|
}
|
|
else {
|
|
REMOVE_BITS(3); /* '111' -> 15 extra length bits */
|
|
READ_BITS(extra_len, 15);
|
|
}
|
|
match_length += extra_len;
|
|
}
|
|
|
|
if ((window_posn + match_length) > lzx->window_size) {
|
|
D(("match ran over window wrap"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* copy match */
|
|
rundest = &window[window_posn];
|
|
i = match_length;
|
|
/* does match offset wrap the window? */
|
|
if (match_offset > window_posn) {
|
|
if (match_offset > lzx->offset &&
|
|
(match_offset - window_posn) > lzx->ref_data_size)
|
|
{
|
|
D(("match offset beyond LZX stream"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
/* j = length from match offset to end of window */
|
|
j = match_offset - window_posn;
|
|
if (j > (int) lzx->window_size) {
|
|
D(("match offset beyond window boundaries"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
runsrc = &window[lzx->window_size - j];
|
|
if (j < i) {
|
|
/* if match goes over the window edge, do two copy runs */
|
|
i -= j; while (j-- > 0) *rundest++ = *runsrc++;
|
|
runsrc = window;
|
|
}
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
else {
|
|
runsrc = rundest - match_offset;
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
|
|
this_run -= match_length;
|
|
window_posn += match_length;
|
|
}
|
|
} /* while (this_run > 0) */
|
|
break;
|
|
|
|
case LZX_BLOCKTYPE_UNCOMPRESSED:
|
|
/* as this_run is limited not to wrap a frame, this also means it
|
|
* won't wrap the window (as the window is a multiple of 32k) */
|
|
rundest = &window[window_posn];
|
|
window_posn += this_run;
|
|
while (this_run > 0) {
|
|
if ((i = i_end - i_ptr) == 0) {
|
|
READ_IF_NEEDED;
|
|
}
|
|
else {
|
|
if (i > this_run) i = this_run;
|
|
lzx->sys->copy(i_ptr, rundest, (size_t) i);
|
|
rundest += i;
|
|
i_ptr += i;
|
|
this_run -= i;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return lzx->error = MSPACK_ERR_DECRUNCH; /* might as well */
|
|
}
|
|
|
|
/* did the final match overrun our desired this_run length? */
|
|
if (this_run < 0) {
|
|
if ((unsigned int)(-this_run) > lzx->block_remaining) {
|
|
D(("overrun went past end of block by %d (%d remaining)",
|
|
-this_run, lzx->block_remaining ))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
lzx->block_remaining -= -this_run;
|
|
}
|
|
} /* while (bytes_todo > 0) */
|
|
|
|
/* streams don't extend over frame boundaries */
|
|
if ((window_posn - lzx->frame_posn) != frame_size) {
|
|
D(("decode beyond output frame limits! %d != %d",
|
|
window_posn - lzx->frame_posn, frame_size))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* re-align input bitstream */
|
|
if (bits_left > 0) ENSURE_BITS(16);
|
|
if (bits_left & 15) REMOVE_BITS(bits_left & 15);
|
|
|
|
/* check that we've used all of the previous frame first */
|
|
if (lzx->o_ptr != lzx->o_end) {
|
|
D(("%ld avail bytes, new %d frame",
|
|
(long)(lzx->o_end - lzx->o_ptr), frame_size))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* does this intel block _really_ need decoding? */
|
|
if (lzx->intel_started && lzx->intel_filesize &&
|
|
(lzx->frame <= 32768) && (frame_size > 10))
|
|
{
|
|
unsigned char *data = &lzx->e8_buf[0];
|
|
unsigned char *dataend = &lzx->e8_buf[frame_size - 10];
|
|
signed int curpos = lzx->intel_curpos;
|
|
signed int filesize = lzx->intel_filesize;
|
|
signed int abs_off, rel_off;
|
|
|
|
/* copy e8 block to the e8 buffer and tweak if needed */
|
|
lzx->o_ptr = data;
|
|
lzx->sys->copy(&lzx->window[lzx->frame_posn], data, frame_size);
|
|
|
|
while (data < dataend) {
|
|
if (*data++ != 0xE8) { curpos++; continue; }
|
|
abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);
|
|
if ((abs_off >= -curpos) && (abs_off < filesize)) {
|
|
rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize;
|
|
data[0] = (unsigned char) rel_off;
|
|
data[1] = (unsigned char) (rel_off >> 8);
|
|
data[2] = (unsigned char) (rel_off >> 16);
|
|
data[3] = (unsigned char) (rel_off >> 24);
|
|
}
|
|
data += 4;
|
|
curpos += 5;
|
|
}
|
|
lzx->intel_curpos += frame_size;
|
|
}
|
|
else {
|
|
lzx->o_ptr = &lzx->window[lzx->frame_posn];
|
|
if (lzx->intel_filesize) lzx->intel_curpos += frame_size;
|
|
}
|
|
lzx->o_end = &lzx->o_ptr[frame_size];
|
|
|
|
/* write a frame */
|
|
i = (out_bytes < (off_t)frame_size) ? (unsigned int)out_bytes : frame_size;
|
|
if (lzx->sys->write(lzx->output, lzx->o_ptr, i) != i) {
|
|
return lzx->error = MSPACK_ERR_WRITE;
|
|
}
|
|
lzx->o_ptr += i;
|
|
lzx->offset += i;
|
|
out_bytes -= i;
|
|
|
|
/* advance frame start position */
|
|
lzx->frame_posn += frame_size;
|
|
lzx->frame++;
|
|
|
|
/* wrap window / frame position pointers */
|
|
if (window_posn == lzx->window_size) window_posn = 0;
|
|
if (lzx->frame_posn == lzx->window_size) lzx->frame_posn = 0;
|
|
|
|
} /* while (lzx->frame < end_frame) */
|
|
|
|
if (out_bytes) {
|
|
D(("bytes left to output"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* store local state */
|
|
STORE_BITS;
|
|
lzx->window_posn = window_posn;
|
|
lzx->R0 = R0;
|
|
lzx->R1 = R1;
|
|
lzx->R2 = R2;
|
|
|
|
return MSPACK_ERR_OK;
|
|
}
|
|
|
|
void lzxd_free(struct lzxd_stream *lzx) {
|
|
struct mspack_system *sys;
|
|
if (lzx) {
|
|
sys = lzx->sys;
|
|
sys->free(lzx->inbuf);
|
|
sys->free(lzx->window);
|
|
sys->free(lzx);
|
|
}
|
|
}
|