/* This file is part of libmspack. * (C) 2003-2013 Stuart Caie. * * The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted * by Microsoft Corporation. * * libmspack is free software; you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License (LGPL) version 2.1 * * For further details, see the file COPYING.LIB distributed with libmspack */ /* LZX decompression implementation */ #include "system-mspack.h" #include "lzx.h" /* Microsoft's LZX document (in cab-sdk.exe) and their implementation * of the com.ms.util.cab Java package do not concur. * * In the LZX document, there is a table showing the correlation between * window size and the number of position slots. It states that the 1MB * window = 40 slots and the 2MB window = 42 slots. In the implementation, * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the * first slot whose position base is equal to or more than the required * window size'. This would explain why other tables in the document refer * to 50 slots rather than 42. * * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode * is not defined in the specification. * * The LZX document does not state the uncompressed block has an * uncompressed length field. Where does this length field come from, so * we can know how large the block is? The implementation has it as the 24 * bits following after the 3 blocktype bits, before the alignment * padding. * * The LZX document states that aligned offset blocks have their aligned * offset huffman tree AFTER the main and length trees. The implementation * suggests that the aligned offset tree is BEFORE the main and length * trees. * * The LZX document decoding algorithm states that, in an aligned offset * block, if an extra_bits value is 1, 2 or 3, then that number of bits * should be read and the result added to the match offset. This is * correct for 1 and 2, but not 3, where just a huffman symbol (using the * aligned tree) should be read. * * Regarding the E8 preprocessing, the LZX document states 'No translation * may be performed on the last 6 bytes of the input block'. This is * correct. However, the pseudocode provided checks for the *E8 leader* * up to the last 6 bytes. If the leader appears between -10 and -7 bytes * from the end, this would cause the next four bytes to be modified, at * least one of which would be in the last 6 bytes, which is not allowed * according to the spec. * * The specification states that the huffman trees must always contain at * least one element. However, many CAB files contain blocks where the * length tree is completely empty (because there are no matches), and * this is expected to succeed. * * The errors in LZX documentation appear have been corrected in the * new documentation for the LZX DELTA format. * * http://msdn.microsoft.com/en-us/library/cc483133.aspx * * However, this is a different format, an extension of regular LZX. * I have noticed the following differences, there may be more: * * The maximum window size has increased from 2MB to 32MB. This also * increases the maximum number of position slots, etc. * * If the match length is 257 (the maximum possible), this signals * a further length decoding step, that allows for matches up to * 33024 bytes long. * * The format now allows for "reference data", supplied by the caller. * If match offsets go further back than the number of bytes * decompressed so far, that is them accessing the reference data. */ /* import bit-reading macros and code */ #define BITS_TYPE struct lzxd_stream #define BITS_VAR lzx #define BITS_ORDER_MSB #define READ_BYTES do { \ unsigned char b0, b1; \ READ_IF_NEEDED; b0 = *i_ptr++; \ READ_IF_NEEDED; b1 = *i_ptr++; \ INJECT_BITS((b1 << 8) | b0, 16); \ } while (0) #include "readbits.h" /* import huffman-reading macros and code */ #define TABLEBITS(tbl) LZX_##tbl##_TABLEBITS #define MAXSYMBOLS(tbl) LZX_##tbl##_MAXSYMBOLS #define HUFF_TABLE(tbl,idx) lzx->tbl##_table[idx] #define HUFF_LEN(tbl,idx) lzx->tbl##_len[idx] #define HUFF_ERROR return lzx->error = MSPACK_ERR_DECRUNCH #include "readhuff.h" /* BUILD_TABLE(tbl) builds a huffman lookup table from code lengths */ #define BUILD_TABLE(tbl) \ if (make_decode_table(MAXSYMBOLS(tbl), TABLEBITS(tbl), \ &HUFF_LEN(tbl,0), &HUFF_TABLE(tbl,0))) \ { \ D(("failed to build %s table", #tbl)) \ return lzx->error = MSPACK_ERR_DECRUNCH; \ } #define BUILD_TABLE_MAYBE_EMPTY(tbl) do { \ lzx->tbl##_empty = 0; \ if (make_decode_table(MAXSYMBOLS(tbl), TABLEBITS(tbl), \ &HUFF_LEN(tbl,0), &HUFF_TABLE(tbl,0))) \ { \ for (i = 0; i < MAXSYMBOLS(tbl); i++) { \ if (HUFF_LEN(tbl, i) > 0) { \ D(("failed to build %s table", #tbl)) \ return lzx->error = MSPACK_ERR_DECRUNCH; \ } \ } \ /* empty tree - allow it, but don't decode symbols with it */ \ lzx->tbl##_empty = 1; \ } \ } while (0) /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols * first to last in the given table. The code lengths are stored in their * own special LZX way. */ #define READ_LENGTHS(tbl, first, last) do { \ STORE_BITS; \ if (lzxd_read_lens(lzx, &HUFF_LEN(tbl, 0), (first), \ (unsigned int)(last))) return lzx->error; \ RESTORE_BITS; \ } while (0) static int lzxd_read_lens(struct lzxd_stream *lzx, unsigned char *lens, unsigned int first, unsigned int last) { /* bit buffer and huffman symbol decode variables */ register unsigned int bit_buffer; register int bits_left, i; register unsigned short sym; unsigned char *i_ptr, *i_end; unsigned int x, y; int z; RESTORE_BITS; /* read lengths for pretree (20 symbols, lengths stored in fixed 4 bits) */ for (x = 0; x < 20; x++) { READ_BITS(y, 4); lzx->PRETREE_len[x] = y; } BUILD_TABLE(PRETREE); for (x = first; x < last; ) { READ_HUFFSYM(PRETREE, z); if (z == 17) { /* code = 17, run of ([read 4 bits]+4) zeros */ READ_BITS(y, 4); y += 4; while (y--) lens[x++] = 0; } else if (z == 18) { /* code = 18, run of ([read 5 bits]+20) zeros */ READ_BITS(y, 5); y += 20; while (y--) lens[x++] = 0; } else if (z == 19) { /* code = 19, run of ([read 1 bit]+4) [read huffman symbol] */ READ_BITS(y, 1); y += 4; READ_HUFFSYM(PRETREE, z); z = lens[x] - z; if (z < 0) z += 17; while (y--) lens[x++] = z; } else { /* code = 0 to 16, delta current length entry */ z = lens[x] - z; if (z < 0) z += 17; lens[x++] = z; } } STORE_BITS; return MSPACK_ERR_OK; } /* LZX static data tables: * * LZX uses 'position slots' to represent match offsets. For every match, * a small 'position slot' number and a small offset from that slot are * encoded instead of one large offset. * * The number of slots is decided by how many are needed to encode the * largest offset for a given window size. This is easy when the gap between * slots is less than 128Kb, it's a linear relationship. But when extra_bits * reaches its limit of 17 (because LZX can only ensure reading 17 bits of * data at a time), we can only jump 128Kb at a time and have to start * using more and more position slots as each window size doubles. * * position_base[] is an index to the position slot bases * * extra_bits[] states how many bits of offset-from-base data is needed. * * They are calculated as follows: * extra_bits[i] = 0 where i < 4 * extra_bits[i] = floor(i/2)-1 where i >= 4 && i < 36 * extra_bits[i] = 17 where i >= 36 * position_base[0] = 0 * position_base[i] = position_base[i-1] + (1 << extra_bits[i-1]) */ static const unsigned int position_slots[11] = { 30, 32, 34, 36, 38, 42, 50, 66, 98, 162, 290 }; static const unsigned char extra_bits[36] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16 }; static const unsigned int position_base[290] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360, 786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936, 1835008, 1966080, 2097152, 2228224, 2359296, 2490368, 2621440, 2752512, 2883584, 3014656, 3145728, 3276800, 3407872, 3538944, 3670016, 3801088, 3932160, 4063232, 4194304, 4325376, 4456448, 4587520, 4718592, 4849664, 4980736, 5111808, 5242880, 5373952, 5505024, 5636096, 5767168, 5898240, 6029312, 6160384, 6291456, 6422528, 6553600, 6684672, 6815744, 6946816, 7077888, 7208960, 7340032, 7471104, 7602176, 7733248, 7864320, 7995392, 8126464, 8257536, 8388608, 8519680, 8650752, 8781824, 8912896, 9043968, 9175040, 9306112, 9437184, 9568256, 9699328, 9830400, 9961472, 10092544, 10223616, 10354688, 10485760, 10616832, 10747904, 10878976, 11010048, 11141120, 11272192, 11403264, 11534336, 11665408, 11796480, 11927552, 12058624, 12189696, 12320768, 12451840, 12582912, 12713984, 12845056, 12976128, 13107200, 13238272, 13369344, 13500416, 13631488, 13762560, 13893632, 14024704, 14155776, 14286848, 14417920, 14548992, 14680064, 14811136, 14942208, 15073280, 15204352, 15335424, 15466496, 15597568, 15728640, 15859712, 15990784, 16121856, 16252928, 16384000, 16515072, 16646144, 16777216, 16908288, 17039360, 17170432, 17301504, 17432576, 17563648, 17694720, 17825792, 17956864, 18087936, 18219008, 18350080, 18481152, 18612224, 18743296, 18874368, 19005440, 19136512, 19267584, 19398656, 19529728, 19660800, 19791872, 19922944, 20054016, 20185088, 20316160, 20447232, 20578304, 20709376, 20840448, 20971520, 21102592, 21233664, 21364736, 21495808, 21626880, 21757952, 21889024, 22020096, 22151168, 22282240, 22413312, 22544384, 22675456, 22806528, 22937600, 23068672, 23199744, 23330816, 23461888, 23592960, 23724032, 23855104, 23986176, 24117248, 24248320, 24379392, 24510464, 24641536, 24772608, 24903680, 25034752, 25165824, 25296896, 25427968, 25559040, 25690112, 25821184, 25952256, 26083328, 26214400, 26345472, 26476544, 26607616, 26738688, 26869760, 27000832, 27131904, 27262976, 27394048, 27525120, 27656192, 27787264, 27918336, 28049408, 28180480, 28311552, 28442624, 28573696, 28704768, 28835840, 28966912, 29097984, 29229056, 29360128, 29491200, 29622272, 29753344, 29884416, 30015488, 30146560, 30277632, 30408704, 30539776, 30670848, 30801920, 30932992, 31064064, 31195136, 31326208, 31457280, 31588352, 31719424, 31850496, 31981568, 32112640, 32243712, 32374784, 32505856, 32636928, 32768000, 32899072, 33030144, 33161216, 33292288, 33423360 }; static void lzxd_reset_state(struct lzxd_stream *lzx) { int i; lzx->R0 = 1; lzx->R1 = 1; lzx->R2 = 1; lzx->header_read = 0; lzx->block_remaining = 0; lzx->block_type = LZX_BLOCKTYPE_INVALID; /* initialise tables to 0 (because deltas will be applied to them) */ for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) lzx->MAINTREE_len[i] = 0; for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) lzx->LENGTH_len[i] = 0; } /*-------- main LZX code --------*/ struct lzxd_stream *lzxd_init(struct mspack_system *system, struct mspack_file *input, struct mspack_file *output, int window_bits, int reset_interval, int input_buffer_size, off_t output_length, char is_delta) { unsigned int window_size = 1 << window_bits; struct lzxd_stream *lzx; if (!system) return NULL; /* LZX DELTA window sizes are between 2^17 (128KiB) and 2^25 (32MiB), * regular LZX windows are between 2^15 (32KiB) and 2^21 (2MiB) */ if (is_delta) { if (window_bits < 17 || window_bits > 25) return NULL; } else { if (window_bits < 15 || window_bits > 21) return NULL; } if (reset_interval < 0 || output_length < 0) { D(("reset interval or output length < 0")) return NULL; } /* round up input buffer size to multiple of two */ input_buffer_size = (input_buffer_size + 1) & -2; if (input_buffer_size < 2) return NULL; /* allocate decompression state */ if (!(lzx = (struct lzxd_stream *) system->alloc(system, sizeof(struct lzxd_stream)))) { return NULL; } /* allocate decompression window and input buffer */ lzx->window = (unsigned char *) system->alloc(system, (size_t) window_size); lzx->inbuf = (unsigned char *) system->alloc(system, (size_t) input_buffer_size); if (!lzx->window || !lzx->inbuf) { system->free(lzx->window); system->free(lzx->inbuf); system->free(lzx); return NULL; } /* initialise decompression state */ lzx->sys = system; lzx->input = input; lzx->output = output; lzx->offset = 0; lzx->length = output_length; lzx->inbuf_size = input_buffer_size; lzx->window_size = 1 << window_bits; lzx->ref_data_size = 0; lzx->window_posn = 0; lzx->frame_posn = 0; lzx->frame = 0; lzx->reset_interval = reset_interval; lzx->intel_filesize = 0; lzx->intel_curpos = 0; lzx->intel_started = 0; lzx->error = MSPACK_ERR_OK; lzx->num_offsets = position_slots[window_bits - 15] << 3; lzx->is_delta = is_delta; lzx->o_ptr = lzx->o_end = &lzx->e8_buf[0]; lzxd_reset_state(lzx); INIT_BITS; return lzx; } int lzxd_set_reference_data(struct lzxd_stream *lzx, struct mspack_system *system, struct mspack_file *input, unsigned int length) { if (!lzx) return MSPACK_ERR_ARGS; if (!lzx->is_delta) { D(("only LZX DELTA streams support reference data")) return MSPACK_ERR_ARGS; } if (lzx->offset) { D(("too late to set reference data after decoding starts")) return MSPACK_ERR_ARGS; } if (length > lzx->window_size) { D(("reference length (%u) is longer than the window", length)) return MSPACK_ERR_ARGS; } if (length > 0 && (!system || !input)) { D(("length > 0 but no system or input")) return MSPACK_ERR_ARGS; } lzx->ref_data_size = length; if (length > 0) { /* copy reference data */ unsigned char *pos = &lzx->window[lzx->window_size - length]; int bytes = system->read(input, pos, length); /* length can't be more than 2^25, so no signedness problem */ if (bytes < (int)length) return MSPACK_ERR_READ; } lzx->ref_data_size = length; return MSPACK_ERR_OK; } void lzxd_set_output_length(struct lzxd_stream *lzx, off_t out_bytes) { if (lzx && out_bytes > 0) lzx->length = out_bytes; } int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) { /* bitstream and huffman reading variables */ register unsigned int bit_buffer; register int bits_left, i=0; unsigned char *i_ptr, *i_end; register unsigned short sym; int match_length, length_footer, extra, verbatim_bits, bytes_todo; int this_run, main_element, aligned_bits, j, warned = 0; unsigned char *window, *runsrc, *rundest, buf[12]; unsigned int frame_size=0, end_frame, match_offset, window_posn; unsigned int R0, R1, R2; /* easy answers */ if (!lzx || (out_bytes < 0)) return MSPACK_ERR_ARGS; if (lzx->error) return lzx->error; /* flush out any stored-up bytes before we begin */ i = lzx->o_end - lzx->o_ptr; if ((off_t) i > out_bytes) i = (int) out_bytes; if (i) { if (lzx->sys->write(lzx->output, lzx->o_ptr, i) != i) { return lzx->error = MSPACK_ERR_WRITE; } lzx->o_ptr += i; lzx->offset += i; out_bytes -= i; } if (out_bytes == 0) return MSPACK_ERR_OK; /* restore local state */ RESTORE_BITS; window = lzx->window; window_posn = lzx->window_posn; R0 = lzx->R0; R1 = lzx->R1; R2 = lzx->R2; end_frame = (unsigned int)((lzx->offset + out_bytes) / LZX_FRAME_SIZE) + 1; while (lzx->frame < end_frame) { /* have we reached the reset interval? (if there is one?) */ if (lzx->reset_interval && ((lzx->frame % lzx->reset_interval) == 0)) { if (lzx->block_remaining) { /* this is a file format error, we can make a best effort to extract what we can */ D(("%d bytes remaining at reset interval", lzx->block_remaining)) if (!warned) { lzx->sys->message(NULL, "WARNING; invalid reset interval detected during LZX decompression"); warned++; } } /* re-read the intel header and reset the huffman lengths */ lzxd_reset_state(lzx); R0 = lzx->R0; R1 = lzx->R1; R2 = lzx->R2; } /* LZX DELTA format has chunk_size, not present in LZX format */ if (lzx->is_delta) { ENSURE_BITS(16); REMOVE_BITS(16); } /* read header if necessary */ if (!lzx->header_read) { /* read 1 bit. if bit=0, intel filesize = 0. * if bit=1, read intel filesize (32 bits) */ j = 0; READ_BITS(i, 1); if (i) { READ_BITS(i, 16); READ_BITS(j, 16); } lzx->intel_filesize = (i << 16) | j; lzx->header_read = 1; } /* calculate size of frame: all frames are 32k except the final frame * which is 32kb or less. this can only be calculated when lzx->length * has been filled in. */ frame_size = LZX_FRAME_SIZE; if (lzx->length && (lzx->length - lzx->offset) < (off_t)frame_size) { frame_size = lzx->length - lzx->offset; } /* decode until one more frame is available */ bytes_todo = lzx->frame_posn + frame_size - window_posn; while (bytes_todo > 0) { /* initialise new block, if one is needed */ if (lzx->block_remaining == 0) { /* realign if previous block was an odd-sized UNCOMPRESSED block */ if ((lzx->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) && (lzx->block_length & 1)) { READ_IF_NEEDED; i_ptr++; } /* read block type (3 bits) and block length (24 bits) */ READ_BITS(lzx->block_type, 3); READ_BITS(i, 16); READ_BITS(j, 8); lzx->block_remaining = lzx->block_length = (i << 8) | j; /*D(("new block t%d len %u", lzx->block_type, lzx->block_length))*/ /* read individual block headers */ switch (lzx->block_type) { case LZX_BLOCKTYPE_ALIGNED: /* read lengths of and build aligned huffman decoding tree */ for (i = 0; i < 8; i++) { READ_BITS(j, 3); lzx->ALIGNED_len[i] = j; } BUILD_TABLE(ALIGNED); /* rest of aligned header is same as verbatim */ /*@fallthrough@*/ case LZX_BLOCKTYPE_VERBATIM: /* read lengths of and build main huffman decoding tree */ READ_LENGTHS(MAINTREE, 0, 256); READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + lzx->num_offsets); BUILD_TABLE(MAINTREE); /* if the literal 0xE8 is anywhere in the block... */ if (lzx->MAINTREE_len[0xE8] != 0) lzx->intel_started = 1; /* read lengths of and build lengths huffman decoding tree */ READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS); BUILD_TABLE_MAYBE_EMPTY(LENGTH); break; case LZX_BLOCKTYPE_UNCOMPRESSED: /* because we can't assume otherwise */ lzx->intel_started = 1; /* read 1-16 (not 0-15) bits to align to bytes */ if (bits_left == 0) ENSURE_BITS(16); bits_left = 0; bit_buffer = 0; /* read 12 bytes of stored R0 / R1 / R2 values */ for (rundest = &buf[0], i = 0; i < 12; i++) { READ_IF_NEEDED; *rundest++ = *i_ptr++; } R0 = buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); R1 = buf[4] | (buf[5] << 8) | (buf[6] << 16) | (buf[7] << 24); R2 = buf[8] | (buf[9] << 8) | (buf[10] << 16) | (buf[11] << 24); break; default: D(("bad block type")) return lzx->error = MSPACK_ERR_DECRUNCH; } } /* decode more of the block: * run = min(what's available, what's needed) */ this_run = lzx->block_remaining; if (this_run > bytes_todo) this_run = bytes_todo; /* assume we decode exactly this_run bytes, for now */ bytes_todo -= this_run; lzx->block_remaining -= this_run; /* decode at least this_run bytes */ switch (lzx->block_type) { case LZX_BLOCKTYPE_VERBATIM: while (this_run > 0) { READ_HUFFSYM(MAINTREE, main_element); if (main_element < LZX_NUM_CHARS) { /* literal: 0 to LZX_NUM_CHARS-1 */ window[window_posn++] = main_element; this_run--; } else { /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ main_element -= LZX_NUM_CHARS; /* get match length */ match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; if (match_length == LZX_NUM_PRIMARY_LENGTHS) { if (lzx->LENGTH_empty) { D(("LENGTH symbol needed but tree is empty")) return lzx->error = MSPACK_ERR_DECRUNCH; } READ_HUFFSYM(LENGTH, length_footer); match_length += length_footer; } match_length += LZX_MIN_MATCH; /* get match offset */ switch ((match_offset = (main_element >> 3))) { case 0: match_offset = R0; break; case 1: match_offset = R1; R1=R0; R0 = match_offset; break; case 2: match_offset = R2; R2=R0; R0 = match_offset; break; case 3: match_offset = 1; R2=R1; R1=R0; R0 = match_offset; break; default: extra = (match_offset >= 36) ? 17 : extra_bits[match_offset]; READ_BITS(verbatim_bits, extra); match_offset = position_base[match_offset] - 2 + verbatim_bits; R2 = R1; R1 = R0; R0 = match_offset; } /* LZX DELTA uses max match length to signal even longer match */ if (match_length == LZX_MAX_MATCH && lzx->is_delta) { int extra_len = 0; ENSURE_BITS(3); /* 4 entry huffman tree */ if (PEEK_BITS(1) == 0) { REMOVE_BITS(1); /* '0' -> 8 extra length bits */ READ_BITS(extra_len, 8); } else if (PEEK_BITS(2) == 2) { REMOVE_BITS(2); /* '10' -> 10 extra length bits + 0x100 */ READ_BITS(extra_len, 10); extra_len += 0x100; } else if (PEEK_BITS(3) == 6) { REMOVE_BITS(3); /* '110' -> 12 extra length bits + 0x500 */ READ_BITS(extra_len, 12); extra_len += 0x500; } else { REMOVE_BITS(3); /* '111' -> 15 extra length bits */ READ_BITS(extra_len, 15); } match_length += extra_len; } if ((window_posn + match_length) > lzx->window_size) { D(("match ran over window wrap")) return lzx->error = MSPACK_ERR_DECRUNCH; } /* copy match */ rundest = &window[window_posn]; i = match_length; /* does match offset wrap the window? */ if (match_offset > window_posn) { if (match_offset > lzx->offset && (match_offset - window_posn) > lzx->ref_data_size) { D(("match offset beyond LZX stream")) return lzx->error = MSPACK_ERR_DECRUNCH; } /* j = length from match offset to end of window */ j = match_offset - window_posn; if (j > (int) lzx->window_size) { D(("match offset beyond window boundaries")) return lzx->error = MSPACK_ERR_DECRUNCH; } runsrc = &window[lzx->window_size - j]; if (j < i) { /* if match goes over the window edge, do two copy runs */ i -= j; while (j-- > 0) *rundest++ = *runsrc++; runsrc = window; } while (i-- > 0) *rundest++ = *runsrc++; } else { runsrc = rundest - match_offset; while (i-- > 0) *rundest++ = *runsrc++; } this_run -= match_length; window_posn += match_length; } } /* while (this_run > 0) */ break; case LZX_BLOCKTYPE_ALIGNED: while (this_run > 0) { READ_HUFFSYM(MAINTREE, main_element); if (main_element < LZX_NUM_CHARS) { /* literal: 0 to LZX_NUM_CHARS-1 */ window[window_posn++] = main_element; this_run--; } else { /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ main_element -= LZX_NUM_CHARS; /* get match length */ match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; if (match_length == LZX_NUM_PRIMARY_LENGTHS) { if (lzx->LENGTH_empty) { D(("LENGTH symbol needed but tree is empty")) return lzx->error = MSPACK_ERR_DECRUNCH; } READ_HUFFSYM(LENGTH, length_footer); match_length += length_footer; } match_length += LZX_MIN_MATCH; /* get match offset */ switch ((match_offset = (main_element >> 3))) { case 0: match_offset = R0; break; case 1: match_offset = R1; R1 = R0; R0 = match_offset; break; case 2: match_offset = R2; R2 = R0; R0 = match_offset; break; default: extra = (match_offset >= 36) ? 17 : extra_bits[match_offset]; match_offset = position_base[match_offset] - 2; if (extra > 3) { /* verbatim and aligned bits */ extra -= 3; READ_BITS(verbatim_bits, extra); match_offset += (verbatim_bits << 3); READ_HUFFSYM(ALIGNED, aligned_bits); match_offset += aligned_bits; } else if (extra == 3) { /* aligned bits only */ READ_HUFFSYM(ALIGNED, aligned_bits); match_offset += aligned_bits; } else if (extra > 0) { /* extra==1, extra==2 */ /* verbatim bits only */ READ_BITS(verbatim_bits, extra); match_offset += verbatim_bits; } else /* extra == 0 */ { /* ??? not defined in LZX specification! */ match_offset = 1; } /* update repeated offset LRU queue */ R2 = R1; R1 = R0; R0 = match_offset; } /* LZX DELTA uses max match length to signal even longer match */ if (match_length == LZX_MAX_MATCH && lzx->is_delta) { int extra_len = 0; ENSURE_BITS(3); /* 4 entry huffman tree */ if (PEEK_BITS(1) == 0) { REMOVE_BITS(1); /* '0' -> 8 extra length bits */ READ_BITS(extra_len, 8); } else if (PEEK_BITS(2) == 2) { REMOVE_BITS(2); /* '10' -> 10 extra length bits + 0x100 */ READ_BITS(extra_len, 10); extra_len += 0x100; } else if (PEEK_BITS(3) == 6) { REMOVE_BITS(3); /* '110' -> 12 extra length bits + 0x500 */ READ_BITS(extra_len, 12); extra_len += 0x500; } else { REMOVE_BITS(3); /* '111' -> 15 extra length bits */ READ_BITS(extra_len, 15); } match_length += extra_len; } if ((window_posn + match_length) > lzx->window_size) { D(("match ran over window wrap")) return lzx->error = MSPACK_ERR_DECRUNCH; } /* copy match */ rundest = &window[window_posn]; i = match_length; /* does match offset wrap the window? */ if (match_offset > window_posn) { if (match_offset > lzx->offset && (match_offset - window_posn) > lzx->ref_data_size) { D(("match offset beyond LZX stream")) return lzx->error = MSPACK_ERR_DECRUNCH; } /* j = length from match offset to end of window */ j = match_offset - window_posn; if (j > (int) lzx->window_size) { D(("match offset beyond window boundaries")) return lzx->error = MSPACK_ERR_DECRUNCH; } runsrc = &window[lzx->window_size - j]; if (j < i) { /* if match goes over the window edge, do two copy runs */ i -= j; while (j-- > 0) *rundest++ = *runsrc++; runsrc = window; } while (i-- > 0) *rundest++ = *runsrc++; } else { runsrc = rundest - match_offset; while (i-- > 0) *rundest++ = *runsrc++; } this_run -= match_length; window_posn += match_length; } } /* while (this_run > 0) */ break; case LZX_BLOCKTYPE_UNCOMPRESSED: /* as this_run is limited not to wrap a frame, this also means it * won't wrap the window (as the window is a multiple of 32k) */ rundest = &window[window_posn]; window_posn += this_run; while (this_run > 0) { if ((i = i_end - i_ptr) == 0) { READ_IF_NEEDED; } else { if (i > this_run) i = this_run; lzx->sys->copy(i_ptr, rundest, (size_t) i); rundest += i; i_ptr += i; this_run -= i; } } break; default: return lzx->error = MSPACK_ERR_DECRUNCH; /* might as well */ } /* did the final match overrun our desired this_run length? */ if (this_run < 0) { if ((unsigned int)(-this_run) > lzx->block_remaining) { D(("overrun went past end of block by %d (%d remaining)", -this_run, lzx->block_remaining )) return lzx->error = MSPACK_ERR_DECRUNCH; } lzx->block_remaining -= -this_run; } } /* while (bytes_todo > 0) */ /* streams don't extend over frame boundaries */ if ((window_posn - lzx->frame_posn) != frame_size) { D(("decode beyond output frame limits! %d != %d", window_posn - lzx->frame_posn, frame_size)) return lzx->error = MSPACK_ERR_DECRUNCH; } /* re-align input bitstream */ if (bits_left > 0) ENSURE_BITS(16); if (bits_left & 15) REMOVE_BITS(bits_left & 15); /* check that we've used all of the previous frame first */ if (lzx->o_ptr != lzx->o_end) { D(("%ld avail bytes, new %d frame", (long)(lzx->o_end - lzx->o_ptr), frame_size)) return lzx->error = MSPACK_ERR_DECRUNCH; } /* does this intel block _really_ need decoding? */ if (lzx->intel_started && lzx->intel_filesize && (lzx->frame <= 32768) && (frame_size > 10)) { unsigned char *data = &lzx->e8_buf[0]; unsigned char *dataend = &lzx->e8_buf[frame_size - 10]; signed int curpos = lzx->intel_curpos; signed int filesize = lzx->intel_filesize; signed int abs_off, rel_off; /* copy e8 block to the e8 buffer and tweak if needed */ lzx->o_ptr = data; lzx->sys->copy(&lzx->window[lzx->frame_posn], data, frame_size); while (data < dataend) { if (*data++ != 0xE8) { curpos++; continue; } abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24); if ((abs_off >= -curpos) && (abs_off < filesize)) { rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize; data[0] = (unsigned char) rel_off; data[1] = (unsigned char) (rel_off >> 8); data[2] = (unsigned char) (rel_off >> 16); data[3] = (unsigned char) (rel_off >> 24); } data += 4; curpos += 5; } lzx->intel_curpos += frame_size; } else { lzx->o_ptr = &lzx->window[lzx->frame_posn]; if (lzx->intel_filesize) lzx->intel_curpos += frame_size; } lzx->o_end = &lzx->o_ptr[frame_size]; /* write a frame */ i = (out_bytes < (off_t)frame_size) ? (unsigned int)out_bytes : frame_size; if (lzx->sys->write(lzx->output, lzx->o_ptr, i) != i) { return lzx->error = MSPACK_ERR_WRITE; } lzx->o_ptr += i; lzx->offset += i; out_bytes -= i; /* advance frame start position */ lzx->frame_posn += frame_size; lzx->frame++; /* wrap window / frame position pointers */ if (window_posn == lzx->window_size) window_posn = 0; if (lzx->frame_posn == lzx->window_size) lzx->frame_posn = 0; } /* while (lzx->frame < end_frame) */ if (out_bytes) { D(("bytes left to output")) return lzx->error = MSPACK_ERR_DECRUNCH; } /* store local state */ STORE_BITS; lzx->window_posn = window_posn; lzx->R0 = R0; lzx->R1 = R1; lzx->R2 = R2; return MSPACK_ERR_OK; } void lzxd_free(struct lzxd_stream *lzx) { struct mspack_system *sys; if (lzx) { sys = lzx->sys; sys->free(lzx->inbuf); sys->free(lzx->window); sys->free(lzx); } }