rockbox/firmware/target/coldfire/iaudio/x5/lcd-x5.c

683 lines
19 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2004 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
/** Initialized in lcd_init_device() **/
/* Is the power turned on? */
static bool power_on;
/* Is the display turned on? */
static bool display_on;
/* Amount of vertical offset. Used for flip offset correction/detection. */
static int y_offset;
/* Amount of roll offset (0-127). */
static int roll_offset;
/* Reverse flag. Must be remembered when display is turned off. */
static unsigned short disp_control_rev;
/* Forward declarations */
static void lcd_display_off(void);
/* A15(0x8000) && CS1->CS, A1(0x0002)->RS */
#define LCD_CMD *(volatile unsigned short *)0xf0008000
#define LCD_DATA *(volatile unsigned short *)0xf0008002
/* register defines for the Renesas HD66773R */
#define R_START_OSC 0x00
#define R_DEVICE_CODE_READ 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_AC_CONTROL 0x02
#define R_POWER_CONTROL1 0x03
#define R_POWER_CONTROL2 0x04
#define R_ENTRY_MODE 0x05
#define R_COMPARE_REG 0x06
#define R_DISP_CONTROL 0x07
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_POWER_CONTROL3 0x0c
#define R_POWER_CONTROL4 0x0d
#define R_POWER_CONTROL5 0x0e
#define R_GATE_SCAN_START_POS 0x0f
#define R_VERT_SCROLL_CONTROL 0x11
#define R_1ST_SCR_DRV_POS 0x14
#define R_2ND_SCR_DRV_POS 0x15
#define R_HORIZ_RAM_ADDR_POS 0x16
#define R_VERT_RAM_ADDR_POS 0x17
#define R_RAM_WRITE_DATA_MASK 0x20
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_RAM_READ_DATA 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_POS 0x3a
#define R_GAMMA_AMP_ADJ_NEG 0x3b
/* called very frequently - inline! */
static inline void lcd_write_reg(int reg, int val)
{
LCD_CMD = 0x0000; /* MSB is ~always~ 0 */
LCD_CMD = reg << 1;
LCD_DATA = (val >> 8) << 1;
LCD_DATA = val << 1;
}
/* called very frequently - inline! */
static inline void lcd_begin_write_gram(void)
{
LCD_CMD = 0x0000;
LCD_CMD = R_WRITE_DATA_2_GRAM << 1;
}
static inline void lcd_write_one(unsigned short px)
{
unsigned short pxsr = px >> 8;
LCD_DATA = pxsr + (pxsr & 0x1F8);
LCD_DATA = px << 1;
}
/* Write two pixels to gram from a long */
/* called very frequently - inline! */
static inline void lcd_write_two(unsigned long px2)
{
unsigned short px2sr = px2 >> 24;
LCD_DATA = px2sr + (px2sr & 0x1F8);
LCD_DATA = px2 >> 15;
px2sr = px2 >> 8;
LCD_DATA = px2sr + (px2sr & 0x1F8);
LCD_DATA = px2 << 1;
}
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val)
{
/* Clamp val in range 0-14, 16-30 */
if (val < 1)
val = 0;
else if (val <= 15)
--val;
else if (val > 30)
val = 30;
lcd_write_reg(R_POWER_CONTROL5, 0x2018 + (val << 8));
}
void lcd_set_invert_display(bool yesno)
{
if (yesno == (disp_control_rev == 0x0000))
return;
disp_control_rev = yesno ? 0x0000 : 0x0004;
if (!display_on)
return;
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL, 0x0033 | disp_control_rev);
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
if (yesno == (y_offset != 0))
return;
y_offset = yesno ? 4 : 0;
if (!power_on)
return;
/* SCN4-0=000x0 (G1/G160) */
lcd_write_reg(R_GATE_SCAN_START_POS, yesno ? 0x0000 : 0x0002);
/* SM=0, GS=x, SS=x, NL4-0=10011 (G1-G160)*/
lcd_write_reg(R_DRV_OUTPUT_CONTROL, yesno ? 0x0013 : 0x0313);
/* HEA7-0=0xxx, HSA7-0=0xxx */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, yesno ? 0x8304 : 0x7f00);
}
/* Rolls up the lcd display by the specified amount of lines.
* Lines that are rolled out over the top of the screen are
* rolled in from the bottom again. This is a hardware
* remapping only and all operations on the lcd are affected.
* ->
* @param int lines - The number of lines that are rolled.
* The value must be 0 <= pixels < LCD_HEIGHT.
* Call lcd_update() afterwards */
void lcd_roll(int lines)
{
/* Just allow any value mod LCD_HEIGHT-1. Assumes LCD_HEIGHT == 128. */
if (lines < 0)
lines = -lines & 127;
else
lines = (128 - (lines & 127)) & 127;
roll_offset = lines;
}
static void lcd_power_on(void)
{
/* Be sure standby bit is clear. */
/* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x0000);
/** Power ON Sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 99 */
lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscillation */
/* 10ms or more for oscillation circuit to stabilize */
sleep(HZ/50);
/* Instruction (1) for power setting; VC2-0, VRH3-0, CAD,
VRL3-0, VCM4-0, VDV4-0 */
/* VC2-0=001 */
lcd_write_reg(R_POWER_CONTROL3, 0x0001);
/* VRL3-0=0100, PON=0, VRH3-0=0001 */
lcd_write_reg(R_POWER_CONTROL4, 0x0401);
/* CAD=1 */
lcd_write_reg(R_POWER_CONTROL2, 0x8000);
/* VCOMG=0, VDV4-0=10011 (19), VCM4-0=11000 */
lcd_write_reg(R_POWER_CONTROL5, 0x1318);
/* Instruction (2) for power setting; BT2-0, DC2-0, AP2-0 */
/* BT2-0=000, DC2-0=001, AP2-0=011, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x002c);
/* Instruction (3) for power setting; VCOMG = "1" */
/* VCOMG=1, VDV4-0=10011 (19), VCM4-0=11000 */
lcd_write_reg(R_POWER_CONTROL5, 0x3318);
/* 40ms or more; time for step-up circuits 1,2 to stabilize */
sleep(HZ/25);
/* Instruction (4) for power setting; PON = "1" */
/* VRL3-0=0100, PON=1, VRH3-0=0001 */
lcd_write_reg(R_POWER_CONTROL4, 0x0411);
/* 40ms or more; time for step-up circuit 4 to stabilize */
sleep(HZ/25);
/* Instructions for other mode settings (in register order). */
/* SM=0, GS=x, SS=x, NL4-0=10011 (G1-G160)*/
lcd_write_reg(R_DRV_OUTPUT_CONTROL, y_offset ? 0x0013 : 0x0313);
/* FLD1-0=01 (1 field), B/C=1, EOR=1 (C-pat), NW5-0=000000 (1 row) */
lcd_write_reg(R_DRV_AC_CONTROL, 0x0700);
/* DIT=1, BGR=1, HWM=0, I/D1-0=11, AM=1, LG2-0=000 */
lcd_write_reg(R_ENTRY_MODE, 0x9038);
/* CP15-0=0000000000000000 */
lcd_write_reg(R_COMPARE_REG, 0x0000);
/* NO1-0=01, SDT1-0=00, EQ1-0=00, DIV1-0=00, RTN3-00000 */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x4000);
/* SCN4-0=000x0 (G1/G160) */
lcd_write_reg(R_GATE_SCAN_START_POS, y_offset ? 0x0000 : 0x0002);
/* VL7-0=0x00 */
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0x0000);
/* SE17-10(End)=0x9f (159), SS17-10(Start)=0x00 */
lcd_write_reg(R_1ST_SCR_DRV_POS, 0x9f00);
/* SE27-20(End)=0x5c (92), SS27-20(Start)=0x00 */
lcd_write_reg(R_2ND_SCR_DRV_POS, 0x5c00);
/* HEA7-0=0xxx, HSA7-0=0xxx */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, y_offset ? 0x8304 : 0x7f00);
/* PKP12-10=0x0, PKP02-00=0x0 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0003);
/* PKP32-30=0x4, PKP22-20=0x0 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0400);
/* PKP52-50=0x4, PKP42-40=0x7 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0407);
/* PRP12-10=0x3, PRP02-00=0x5 */
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0305);
/* PKN12-10=0x0, PKN02-00=0x3 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0003);
/* PKN32-30=0x7, PKN22-20=0x4 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0704);
/* PKN52-50=0x4, PRN42-40=0x7 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0407);
/* PRN12-10=0x5, PRN02-00=0x3 */
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0503);
/* VRP14-10=0x14, VRP03-00=0x09 */
lcd_write_reg(R_GAMMA_AMP_ADJ_POS, 0x1409);
/* VRN14-00=0x06, VRN03-00=0x02 */
lcd_write_reg(R_GAMMA_AMP_ADJ_NEG, 0x0602);
/* 100ms or more; time for step-up circuits to stabilize */
sleep(HZ/10);
power_on = true;
}
static void lcd_power_off(void)
{
/* Display must be off first */
if (display_on)
lcd_display_off();
power_on = false;
/** Power OFF sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 99 */
/* Step-up1 halt setting bit */
/* BT2-0=110, DC2-0=001, AP2-0=011, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x062c);
/* Step-up3,4 halt setting bit */
/* VRL3-0=0100, PON=0, VRH3-0=0001 */
lcd_write_reg(R_POWER_CONTROL4, 0x0401);
/* VCOMG=0, VDV4-0=10011, VCM4-0=11000 */
lcd_write_reg(R_POWER_CONTROL5, 0x1318);
/* Wait 100ms or more */
sleep(HZ/10);
/* Step-up2,amp halt setting bit */
/* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x0000);
}
static void lcd_display_on(void)
{
/* Be sure power is on first */
if (!power_on)
lcd_power_on();
/** Display ON Sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 97 */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=0, DTE=0, REV=0, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL, 0x0001);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL, 0x0021 | disp_control_rev);
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL, 0x0023 | disp_control_rev);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL, 0x0033 | disp_control_rev);
display_on = true;
}
static void lcd_display_off(void)
{
display_on = false;
/** Display OFF sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 97 */
/* EQ1-0=00 already */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=10 */
lcd_write_reg(R_DISP_CONTROL, 0x0032 | disp_control_rev);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=10 */
lcd_write_reg(R_DISP_CONTROL, 0x0022 | disp_control_rev);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=0, DTE=0, REV=0, D1-0=00 */
lcd_write_reg(R_DISP_CONTROL, 0x0000);
}
/* LCD init */
void lcd_init_device(void)
{
/* Reset settings */
power_on = false;
display_on = false;
y_offset = 0;
roll_offset = 0;
disp_control_rev = 0x0004;
/* LCD Reset */
and_l(~0x00000010, &GPIO1_OUT);
or_l(0x00000010, &GPIO1_ENABLE);
or_l(0x00000010, &GPIO1_FUNCTION);
sleep(HZ/100);
or_l(0x00000010, &GPIO1_OUT);
sleep(HZ/100);
lcd_display_on();
}
void lcd_enable(bool on)
{
if (on == display_on)
return;
if (on)
{
lcd_display_on();
/* Probably out of sync and we don't wanna pepper the code with
lcd_update() calls for this. */
lcd_update();
}
else
{
lcd_display_off();
}
}
void lcd_sleep(void)
{
if (power_on)
lcd_power_off();
/* Set standby mode */
/* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=1 */
lcd_write_reg(R_POWER_CONTROL1, 0x0001);
}
/*** update functions ***/
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit(const fb_data* data, int x, int by, int width,
int bheight, int stride)
{
/* TODO: Implement lcd_blit() */
(void)data;
(void)x;
(void)by;
(void)width;
(void)bheight;
(void)stride;
/*if(display_on)*/
}
/* Performance function to blit a YUV bitmap directly to the LCD */
/* Assumes YCrCb 4:2:0. */
/*
See http://en.wikipedia.org/wiki/YCbCr
ITU-R BT.601 (formerly CCIR 601):
|Y'| | 0.299000 0.587000 0.114000| |R|
|Pb| = |-0.168736 -0.331264 0.500000| |G| or 0.564334 * (B - Y')
|Pr| | 0.500000 -0.418688 0.081312| |B| or 0.713267 * (R - Y')
Scaled, normalized and rounded:
|Y'| | 65 129 25| |R| + 16 : 16->235
|Cb| = |-38 -74 112| |G| + 128 : 16->240
|Cr| |112 -94 -18| |B| + 128 : 16->240
The inverse:
|R| |1.000000 -0.000001 1.402000| |Y'|
|G| = |1.000000 -0.334136 -0.714136| |Pb|
|B| |1.000000 1.772000 0.000000| |Pr|
Scaled, normalized, rounded and tweaked to yield RGB 666:
|R| |298 0 409| |Y' - 16| / 1024
|G| = |298 -100 -208| |Cb - 128| / 1024
|B| |298 516 0| |Cr - 128| / 1024
*/
void lcd_yuv_blit(unsigned char * const [3], int, int, int,
int, int, int, int) ICODE_ATTR;
void lcd_yuv_blit(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
const unsigned char *ysrc, *usrc, *vsrc;
int uv_stepper, uv_step, y_end;
if (!display_on)
return;
width = (width + 1) & ~1;
height = (height + 1) & ~1;
y_end = y + height;
/* Set start position and window */
lcd_write_reg(R_RAM_ADDR_SET, (x << 8) |
(((y + roll_offset) & 127) + y_offset));
lcd_write_reg(R_VERT_RAM_ADDR_POS, ((x + width - 1) << 8) | x);
lcd_begin_write_gram();
ysrc = src[0] + src_y*stride + src_x;
usrc = src[1] + (src_y*stride >> 2) + (src_x >> 1);
vsrc = src[2] + (usrc - src[1]);
stride = stride - width; /* Use end of current line->start of next */
uv_stepper = (stride >> 1) - (width >> 1);
uv_step = uv_stepper - (stride >> 1);
do
{
const unsigned char *ysrc_end = ysrc + width;
do
{
int lum, cb, cr;
int rv, guv, bu;
int r, g, b;
lum = 298* *ysrc++ - 4768; /* 298*16 */
cb = *usrc++ - 128;
cr = *vsrc++ - 128;
bu = 516*cb;
guv = -100*cb - 208*cr;
rv = 409*cr;
r = (lum + rv) >> 10;
g = (lum + guv) >> 10;
b = (lum + bu) >> 10;
if ((unsigned)r > 63)
r = (r < 0) ? 0 : 63;
if ((unsigned)g > 63)
g = (g < 0) ? 0 : 63;
if ((unsigned)b > 63)
b = (b < 0) ? 0 : 63;
LCD_DATA = (r << 3) | (g >> 3);
LCD_DATA = (g << 6) | b;
lum = 298* *ysrc++ - 4768; /* 298*16 */
r = (lum + rv) >> 10;
g = (lum + guv) >> 10;
b = (lum + bu) >> 10;
if ((unsigned)r > 63)
r = (r < 0) ? 0 : 63;
if ((unsigned)g > 63)
g = (g < 0) ? 0 : 63;
if ((unsigned)b > 63)
b = (b < 0) ? 0 : 63;
LCD_DATA = (r << 3) | (g >> 3);
LCD_DATA = (g << 6) | b;
}
while (ysrc < ysrc_end);
usrc += uv_step;
vsrc += uv_step;
uv_step = uv_stepper - uv_step;
ysrc += stride;
}
while (++y < y_end);
}
/* Update the display.
This must be called after all other LCD functions that change the
lcd frame buffer. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
/* Optimized for full-screen write. */
const unsigned long *ptr, *ptr_end;
if (!display_on)
return;
/* Set start position and window */
/* Just add roll offset to start address. CP will roll back around. */
lcd_write_reg(R_RAM_ADDR_SET, y_offset + roll_offset); /* X == 0 */
lcd_write_reg(R_VERT_RAM_ADDR_POS, (LCD_WIDTH-1) << 8);
lcd_begin_write_gram();
ptr = (unsigned long *)lcd_framebuffer;
ptr_end = ptr + LCD_WIDTH*LCD_HEIGHT/2;
do
{
/* 16 words per turns out to be about optimal according to
test_fps. */
lcd_write_two(*ptr++);
#ifndef BOOTLOADER
lcd_write_two(*ptr++);
lcd_write_two(*ptr++);
lcd_write_two(*ptr++);
lcd_write_two(*ptr++);
lcd_write_two(*ptr++);
lcd_write_two(*ptr++);
lcd_write_two(*ptr++);
#endif
}
while (ptr < ptr_end);
} /* lcd_update */
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
int y_end;
int odd_lead, odd_trail;
int duff;
const unsigned long *ptr, *duff_end;
int stride; /* Actually end of currline -> start of next */
if (!display_on)
return;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* Clip right */
if (x < 0)
width += x, x = 0; /* Clip left */
if (width <= 0)
return; /* nothing left to do */
y_end = y + height;
if (y_end > LCD_HEIGHT)
y_end = LCD_HEIGHT; /* Clip bottom */
if (y < 0)
y = 0; /* Clip top */
if (y >= y_end)
return; /* nothing left to do */
/* Set start position and window */
lcd_write_reg(R_RAM_ADDR_SET, (x << 8) |
(((y + roll_offset) & 127) + y_offset));
lcd_write_reg(R_VERT_RAM_ADDR_POS, ((x + width - 1) << 8) | x);
lcd_begin_write_gram();
ptr = (unsigned long *)&lcd_framebuffer[y][x];
/* Aligning source reads to long boundaries helps 2% - 3% with IRAM
buffer. DK with DRAM. */
odd_lead = x & 1;
if (odd_lead)
{
duff = width - 1;
odd_trail = duff & 1;
duff >>= 1;
}
else
{
duff = width >> 1;
odd_trail = width & 1;
}
duff_end = ptr + duff;
#ifndef BOOTLOADER
duff &= 7;
#endif
stride = LCD_WIDTH - width + odd_trail; /* See odd_trail below */
do
{
if (odd_lead)
{
/* Write odd start pixel. */
lcd_write_one(*(unsigned short *)ptr);
ptr = (unsigned long *)((short *)ptr + 1);
}
if (ptr < duff_end)
{
#ifdef BOOTLOADER
do
lcd_write_two(*ptr);
while (++ptr < duff_end);
#else
switch (duff)
{
do
{
case 0: lcd_write_two(*ptr++);
case 7: lcd_write_two(*ptr++);
case 6: lcd_write_two(*ptr++);
case 5: lcd_write_two(*ptr++);
case 4: lcd_write_two(*ptr++);
case 3: lcd_write_two(*ptr++);
case 2: lcd_write_two(*ptr++);
case 1: lcd_write_two(*ptr++);
}
while (ptr < duff_end);
} /* end switch */
#endif /* BOOTLOADER */
duff_end += LCD_WIDTH/2;
}
if (odd_trail)
{
/* Finish remaining odd pixel. */
lcd_write_one(*(unsigned short *)ptr);
/* Stride increased by one pixel. */
}
ptr = (unsigned long *)((short *)ptr + stride);
}
while (++y < y_end);
}