rockbox/firmware/target/arm/imx31/gigabeat-s/lcd-gigabeat-s.c

364 lines
9.6 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 by Will Robertson
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <sys/types.h>
#include "inttypes.h"
#include "config.h"
#include "system.h"
#include "cpu.h"
#include "spi-imx31.h"
#include "mc13783.h"
#include "string.h"
#include "lcd.h"
#include "kernel.h"
#include "lcd-target.h"
#include "backlight-target.h"
#define MAIN_LCD_IDMAC_CHANNEL 14
#define LCDADDR(x, y) (&lcd_framebuffer[(y)][(x)])
/* Copies a rectangle from one framebuffer to another. Can be used in
single transfer mode with width = num pixels, and height = 1 which
allows a full-width rectangle to be copied more efficiently. */
extern void lcd_copy_buffer_rect(fb_data *dst, const fb_data *src,
int width, int height);
static bool lcd_on = true;
static bool lcd_powered = true;
static unsigned lcd_yuv_options = 0;
#if 0
/* Initialization data from OF bootloader. Identical to Gigabeat F/X. */
static const unsigned char lcd_init_data[50] =
{
/* Reg Val */
0x0f, 0x01,
0x09, 0x06,
0x16, 0xa6,
0x1e, 0x49,
0x1f, 0x26,
0x0b, 0x2f, /* Set contrast 0-63 */
0x0c, 0x2b,
0x19, 0x5e,
0x1a, 0x15,
0x1b, 0x15,
0x1d, 0x01,
0x00, 0x03,
0x01, 0x10,
0x02, 0x0a,
0x06, 0x04, /* Set the orientation 2=upside down, 4=normal */
0x08, 0x2e,
0x24, 0x12,
0x25, 0x3f,
0x26, 0x0b,
0x27, 0x00,
0x28, 0x00,
0x29, 0xf6,
0x2a, 0x03,
0x2b, 0x0a,
0x04, 0x01, /* Display ON */
};
#endif
static const struct spi_node lcd_spi_node =
{
/* Original firmware settings for LCD panel commication */
CSPI3_NUM, /* CSPI module 3 */
CSPI_CONREG_CHIP_SELECT_SS1 | /* Chip select 1 */
CSPI_CONREG_DRCTL_DONT_CARE | /* Don't care about CSPI_RDY */
CSPI_CONREG_DATA_RATE_DIV_16 | /* Clock = IPG_CLK/16 = 4,125,000Hz. */
CSPI_BITCOUNT(32-1) | /* All 32 bits are to be transferred */
CSPI_CONREG_SSPOL | /* SS active high */
CSPI_CONREG_PHA | /* Phase 1 operation */
CSPI_CONREG_POL | /* Active low polarity */
CSPI_CONREG_MODE, /* Master mode */
0, /* SPI clock - no wait states */
};
static void lcd_write_reg(unsigned reg, unsigned val)
{
/* packet: |00|rr|01|vv| */
uint32_t packet = ((reg & 0xff) << 16) | 0x0100 | (val & 0xff);
struct spi_transfer_desc xfer;
xfer.node = &lcd_spi_node;
xfer.txbuf = &packet;
xfer.rxbuf = NULL;
xfer.count = 1;
xfer.callback = NULL;
xfer.next = NULL;
if (spi_transfer(&xfer))
{
/* Just busy wait; the interface is not used very much */
while (!spi_transfer_complete(&xfer));
}
}
static void lcd_enable_interface(bool enable)
{
if (enable)
{
spi_enable_module(&lcd_spi_node);
}
else
{
spi_disable_module(&lcd_spi_node);
}
}
static void lcd_set_power(bool powered)
{
if (powered)
{
lcd_powered = false;
lcd_write_reg(0x04, 0x00);
lcd_enable_interface(false);
bitclr32(&GPIO3_DR, (1 << 12));
mc13783_clear(MC13783_REGULATOR_MODE1, MC13783_VCAMEN);
}
else
{
mc13783_set(MC13783_REGULATOR_MODE1, MC13783_VCAMEN);
bitset32(&GPIO3_DR, (1 << 12));
lcd_enable_interface(true);
lcd_write_reg(0x04, 0x01);
lcd_powered = true;
}
}
/* LCD init */
void INIT_ATTR lcd_init_device(void)
{
/* Move the framebuffer */
#ifdef BOOTLOADER
/* Only do this once to avoid flicker */
memset(FRAME, 0x00, FRAME_SIZE);
#endif
IPU_IPU_IMA_ADDR = ((0x1 << 16) | (MAIN_LCD_IDMAC_CHANNEL << 4)) + (1 << 3);
IPU_IPU_IMA_DATA = FRAME_PHYS_ADDR;
lcd_enable_interface(true);
#ifdef HAVE_LCD_CONTRAST
lcd_set_contrast(DEFAULT_CONTRAST_SETTING);
#endif
#ifdef HAVE_LCD_INVERT
lcd_set_invert_display(false);
#endif
#ifdef HAVE_LCD_FLIP
lcd_set_flip(false);
#endif
}
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
fb_data *dst, *src;
if (!lcd_on)
return;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* Clip right */
if (x < 0)
width += x, x = 0; /* Clip left */
if (width <= 0)
return; /* nothing left to do */
if (y + height > LCD_HEIGHT)
height = LCD_HEIGHT - y; /* Clip bottom */
if (y < 0)
height += y, y = 0; /* Clip top */
if (height <= 0)
return; /* nothing left to do */
/* TODO: It may be faster to swap the addresses of lcd_driver_framebuffer
* and lcd_framebuffer */
dst = (fb_data *)FRAME + LCD_WIDTH*y + x;
src = &lcd_framebuffer[y][x];
/* Copy part of the Rockbox framebuffer to the second framebuffer */
if (width < LCD_WIDTH)
{
/* Not full width - do line-by-line */
lcd_copy_buffer_rect(dst, src, width, height);
}
else
{
/* Full width - copy as one line */
lcd_copy_buffer_rect(dst, src, LCD_WIDTH*height, 1);
}
}
void lcd_sleep(void)
{
if (!lcd_powered)
return;
IPU_IDMAC_CHA_EN &= ~(1ul << MAIN_LCD_IDMAC_CHANNEL);
lcd_enable(false);
lcd_set_power(false);
_backlight_lcd_sleep();
}
void lcd_enable(bool state)
{
if (state == lcd_on)
return;
if (state)
{
if (!lcd_powered)
lcd_set_power(true);
IPU_IDMAC_CHA_EN |= 1ul << MAIN_LCD_IDMAC_CHANNEL;
sleep(HZ/50);
lcd_on = true;
lcd_update();
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else
{
lcd_on = false;
}
}
bool lcd_active(void)
{
return lcd_on;
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
if (!lcd_on)
return;
lcd_copy_buffer_rect((fb_data *)FRAME, &lcd_framebuffer[0][0],
LCD_WIDTH*LCD_HEIGHT, 1);
}
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(fb_data *dst,
unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(fb_data *dst,
unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
/* Performance function to blit a YUV bitmap directly to the LCD */
/* For the Gigabeat - show it rotated */
/* So the LCD_WIDTH is now the height */
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
/* Caches for chroma data so it only need be recaculated every other
line */
unsigned char const * yuv_src[3];
off_t z;
if (!lcd_on)
return;
/* Sorry, but width and height must be >= 2 or else */
width &= ~1;
height >>= 1;
y = LCD_WIDTH - 1 - y;
fb_data *dst = (fb_data*)FRAME + x * LCD_WIDTH + y;
z = stride*src_y;
yuv_src[0] = src[0] + z + src_x;
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
if (lcd_yuv_options & LCD_YUV_DITHER)
{
do
{
lcd_write_yuv420_lines_odither(dst, yuv_src, width, stride, y, x);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
dst -= 2;
y -= 2;
}
while (--height > 0);
}
else
{
do
{
lcd_write_yuv420_lines(dst, yuv_src, width, stride);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
dst -= 2;
}
while (--height > 0);
}
}
#ifdef HAVE_LCD_CONTRAST
void lcd_set_contrast(int val)
{
if (!lcd_on)
return;
lcd_write_reg(0x0b, val);
}
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
#endif /* HAVE_LCD_CONTRAST */
#ifdef HAVE_LCD_INVERT
void lcd_set_invert_display(bool yesno)
{
if (!lcd_on)
return;
lcd_write_reg(0x27, yesno ? 0x10 : 00);
}
#endif /* HAVE_LCD_INVERT */
#ifdef HAVE_LCD_FLIP
void lcd_set_flip(bool yesno)
{
if (!lcd_on)
return;
lcd_write_reg(0x06, yesno ? 0x02 : 0x04);
}
#endif /* HAVE_LCD_FLIP */