rockbox/firmware/target/mips/ingenic_x1000/installer-x1000.c

327 lines
8.7 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "installer-x1000.h"
#include "nand-x1000.h"
#include "core_alloc.h"
#include "file.h"
#include "microtar-rockbox.h"
#include <stddef.h>
struct update_part {
const char* filename;
size_t offset;
size_t length;
};
/* Parts of the flash to update. The offset and length are given in bytes,
* offset relative to start of flash. The region's new contents are given
* by the named file inside the update archive. If any file is missing, the
* update will fail. (gracefully! nothing is written unless the package has
* all its components)
*
* If the update file is smaller than the region size, unused space at the
* end of the region is padded with 0xff.
*
* NOTE: The current code assumes all parts are contiguous. The current
* update map fits in one eraseblock, but if it ever needs extending beyond
* that, better implement a bitmap to indicate which blocks need updating
* and which can be skipped. We don't want to erase and reprogram blocks
* for no good reason, it's bad for the flash lifespan.
*/
static const struct update_part updates[] = {
{
.filename = "spl." BOOTFILE_EXT,
.offset = 0,
.length = 12 * 1024,
},
{
.filename = "bootloader.ucl",
.offset = 0x6800,
.length = 102 * 1024,
},
};
static const int num_updates = sizeof(updates) / sizeof(struct update_part);
/* calculate the offset and length of the update image; this is constant
* for a given target, based on the update parts and the NAND chip geometry.
*/
static void get_image_loc(struct nand_drv* ndrv, size_t* offptr, size_t* lenptr)
{
size_t blk_size = ndrv->chip->page_size << ndrv->chip->log2_ppb;
size_t img_off = 0;
size_t img_len = 0;
/* calculate minimal image needed to contain all update blocks */
for(int i = 0; i < num_updates; ++i) {
img_len = MAX(img_len, updates[i].offset + updates[i].length);
img_off = MIN(img_off, updates[i].offset);
}
/* round everything to a multiple of the block size */
size_t r_off = blk_size * (img_off / blk_size);
size_t r_len = blk_size * ((img_len + img_off - r_off + blk_size - 1) / blk_size);
*offptr = r_off;
*lenptr = r_len;
}
/* Read in a single part of the update from the tarball, and patch it
* into the image */
static int patch_part(mtar_t* tar, const struct update_part* part,
uint8_t* img_buf, size_t img_off)
{
int rc = mtar_find(tar, part->filename);
if(rc != MTAR_ESUCCESS)
return IERR_BAD_FORMAT;
const mtar_header_t* h = mtar_get_header(tar);
if(h->type != 0 && h->type != MTAR_TREG)
return IERR_BAD_FORMAT;
if(h->size > part->length)
return IERR_BAD_FORMAT;
/* wipe the patched area, and read in the new data */
memset(&img_buf[part->offset - img_off], 0xff, part->length);
rc = mtar_read_data(tar, &img_buf[part->offset - img_off], h->size);
if(rc < 0 || (unsigned)rc != h->size)
return IERR_FILE_IO;
return IERR_SUCCESS;
}
struct updater {
int buf_hnd; /* core_alloc handle for our memory buffer */
size_t buf_len; /* sizeof the buffer */
uint8_t* img_buf;
size_t img_off; /* image address in flash */
size_t img_len; /* image length in flash = size of the buffer */
mtar_t* tar;
struct nand_drv* ndrv;
};
static int updater_init(struct updater* u)
{
int rc;
/* initialize stuff correctly */
u->buf_hnd = -1;
u->buf_len = 0;
u->img_buf = NULL;
u->img_off = 0;
u->img_len = 0;
u->tar = NULL;
u->ndrv = NULL;
/* open NAND */
u->ndrv = nand_init();
nand_lock(u->ndrv);
rc = nand_open(u->ndrv);
if(rc != NAND_SUCCESS) {
rc = IERR_NAND_OPEN;
goto error;
}
get_image_loc(u->ndrv, &u->img_off, &u->img_len);
/* buf_len is a bit oversized here, but it's not really important */
u->buf_len = u->img_len + sizeof(mtar_t) + 2*CACHEALIGN_SIZE;
u->buf_hnd = core_alloc_ex("boot_image", u->buf_len, &buflib_ops_locked);
if(u->buf_hnd < 0) {
rc = IERR_OUT_OF_MEMORY;
goto error;
}
/* allocate from the buffer */
uint8_t* buffer = (uint8_t*)core_get_data(u->buf_hnd);
size_t buf_len = u->buf_len;
CACHEALIGN_BUFFER(buffer, buf_len);
u->img_buf = buffer;
buffer += u->img_len;
buf_len -= u->img_len;
CACHEALIGN_BUFFER(buffer, buf_len);
u->tar = (mtar_t*)buffer;
memset(u->tar, 0, sizeof(mtar_t));
rc = IERR_SUCCESS;
error:
return rc;
}
static void updater_cleanup(struct updater* u)
{
if(u->tar && mtar_is_open(u->tar))
mtar_close(u->tar);
if(u->buf_hnd >= 0)
core_free(u->buf_hnd);
if(u->ndrv) {
nand_close(u->ndrv);
nand_unlock(u->ndrv);
}
}
int install_bootloader(const char* filename)
{
struct updater u;
int rc = updater_init(&u);
if(rc != IERR_SUCCESS)
goto error;
/* get the image */
rc = nand_read_bytes(u.ndrv, u.img_off, u.img_len, u.img_buf);
if(rc != NAND_SUCCESS) {
rc = IERR_NAND_READ;
goto error;
}
/* get the tarball */
rc = mtar_open(u.tar, filename, O_RDONLY);
if(rc != MTAR_ESUCCESS) {
if(rc == MTAR_EOPENFAIL)
rc = IERR_FILE_NOT_FOUND;
else if(rc == MTAR_EREADFAIL)
rc = IERR_FILE_IO;
else
rc = IERR_BAD_FORMAT;
goto error;
}
/* patch stuff */
for(int i = 0; i < num_updates; ++i) {
rc = patch_part(u.tar, &updates[i], u.img_buf, u.img_off);
if(rc != IERR_SUCCESS)
goto error;
}
/* write back the patched image */
rc = nand_write_bytes(u.ndrv, u.img_off, u.img_len, u.img_buf);
if(rc != NAND_SUCCESS) {
rc = IERR_NAND_WRITE;
goto error;
}
rc = IERR_SUCCESS;
error:
updater_cleanup(&u);
return rc;
}
int backup_bootloader(const char* filename)
{
int rc, fd = 0;
struct updater u;
rc = updater_init(&u);
if(rc != IERR_SUCCESS)
goto error;
/* read image */
rc = nand_read_bytes(u.ndrv, u.img_off, u.img_len, u.img_buf);
if(rc != NAND_SUCCESS) {
rc = IERR_NAND_READ;
goto error;
}
/* write to file */
fd = open(filename, O_CREAT|O_TRUNC|O_WRONLY);
if(fd < 0) {
rc = IERR_FILE_IO;
goto error;
}
ssize_t cnt = write(fd, u.img_buf, u.img_len);
if(cnt < 0 || (size_t)cnt != u.img_len) {
rc = IERR_FILE_IO;
goto error;
}
rc = IERR_SUCCESS;
error:
if(fd >= 0)
close(fd);
updater_cleanup(&u);
return rc;
}
int restore_bootloader(const char* filename)
{
int rc, fd = 0;
struct updater u;
rc = updater_init(&u);
if(rc != IERR_SUCCESS)
goto error;
/* read from file */
fd = open(filename, O_RDONLY);
if(fd < 0) {
rc = IERR_FILE_NOT_FOUND;
goto error;
}
ssize_t cnt = read(fd, u.img_buf, u.img_len);
if(cnt < 0 || (size_t)cnt != u.img_len) {
rc = IERR_FILE_IO;
goto error;
}
/* write image */
rc = nand_write_bytes(u.ndrv, u.img_off, u.img_len, u.img_buf);
if(rc != NAND_SUCCESS) {
rc = IERR_NAND_WRITE;
goto error;
}
rc = IERR_SUCCESS;
error:
if(fd >= 0)
close(fd);
updater_cleanup(&u);
return rc;
}
const char* installer_strerror(int rc)
{
switch(rc) {
case IERR_SUCCESS: return "Success";
case IERR_OUT_OF_MEMORY: return "Out of memory";
case IERR_FILE_NOT_FOUND: return "File not found";
case IERR_FILE_IO: return "Disk I/O error";
case IERR_BAD_FORMAT: return "Bad archive";
case IERR_NAND_OPEN: return "NAND open error";
case IERR_NAND_READ: return "NAND read error";
case IERR_NAND_WRITE: return "NAND write error";
default: return "Unknown error!?";
}
}