rockbox/apps/dsp.c

949 lines
27 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 Miika Pekkarinen
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <inttypes.h>
#include <string.h>
#include "dsp.h"
#include "kernel.h"
#include "playback.h"
#include "system.h"
#include "settings.h"
#include "replaygain.h"
#include "debug.h"
/* The "dither" code to convert the 24-bit samples produced by libmad was
* taken from the coolplayer project - coolplayer.sourceforge.net
*/
/* 16-bit samples are scaled based on these constants. The shift should be
* no more than 15.
*/
#define WORD_SHIFT 12
#define WORD_FRACBITS 27
#define NATIVE_DEPTH 16
#define SAMPLE_BUF_SIZE 256
#define RESAMPLE_BUF_SIZE (256 * 4) /* Enough for 11,025 Hz -> 44,100 Hz*/
#define DEFAULT_REPLAYGAIN 0x01000000
/* These are the constants for the filters in the crossfeed */
#define ATT 0x0CCCCCCDL /* 0.1 */
#define ATT_COMP 0x73333333L /* 0.9 */
#define LOW 0x4CCCCCCDL /* 0.6 */
#define LOW_COMP 0x33333333L /* 0.4 */
#define HIGH_NEG 0x9999999AL /* -0.2 */
#define HIGH_COMP 0x66666666L /* 0.8 */
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
/* Multiply two S.31 fractional integers and return the sign bit and the
* 31 most significant bits of the result.
*/
#define FRACMUL(x, y) \
({ \
long t; \
asm volatile ("mac.l %[a], %[b], %%acc0\n\t" \
"movclr.l %%acc0, %[t]\n\t" \
: [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
t; \
})
/* Multiply one S.31-bit and one S8.23 fractional integer and return the
* sign bit and the 31 most significant bits of the result.
*/
#define FRACMUL_8(x, y) \
({ \
long t; \
long u; \
asm volatile ("mac.l %[a], %[b], %%acc0\n\t" \
"move.l %%accext01, %[u]\n\t" \
"movclr.l %%acc0, %[t]\n\t" \
: [t] "=r" (t), [u] "=r" (u) : [a] "r" (x), [b] "r" (y)); \
(t << 8) | (u & 0xff); \
})
/* Multiply one S.31-bit and one S8.23 fractional integer and return the
* sign bit and the 31 most significant bits of the result. Load next value
* to multiply with into x from s (and increase s); x must contain the
* initial value.
*/
#define FRACMUL_8_LOOP(x, y, s) \
({ \
long t; \
long u; \
asm volatile ("mac.l %[a], %[b], (%[c])+, %[a], %%acc0\n\t" \
"move.l %%accext01, %[u]\n\t" \
"movclr.l %%acc0, %[t]\n\t" \
: [a] "+r" (x), [c] "+a" (s), [t] "=r" (t), [u] "=r" (u) \
: [b] "r" (y)); \
(t << 8) | (u & 0xff); \
})
#define ACC(acc, x, y) \
(void)acc; \
asm volatile ("mac.l %[a], %[b], %%acc0" \
: : [a] "i,r" (x), [b] "i,r" (y));
#define GET_ACC(acc) \
({ \
long t; \
(void)acc; \
asm volatile ("movclr.l %%acc0, %[t]" \
: [t] "=r" (t)); \
t; \
})
#define ACC_INIT(acc, x, y) ACC(acc, x, y)
#else
#define ACC_INIT(acc, x, y) acc = FRACMUL(x, y)
#define ACC(acc, x, y) acc += FRACMUL(x, y)
#define GET_ACC(acc) acc
#define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31))
#define FRACMUL_8(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 23))
#define FRACMUL_8_LOOP(x, y, s) \
({ \
long t = x; \
x = *(s)++; \
(long) (((((long long) (t)) * ((long long) (y))) >> 23)); \
})
#endif
struct dsp_config
{
long frequency;
long clip_min;
long clip_max;
long track_gain;
long album_gain;
long track_peak;
long album_peak;
long replaygain; /* Note that this is in S8.23 format. */
int sample_depth;
int sample_bytes;
int stereo_mode;
int frac_bits;
bool dither_enabled;
bool new_gain;
bool crossfeed_enabled;
};
struct resample_data
{
long last_sample;
long phase;
long delta;
};
struct dither_data
{
long error[3];
long random;
};
struct crossfeed_data
{
long lowpass[2];
long highpass[2];
long delay[2][13];
int index;
};
static struct dsp_config dsp_conf[2] IBSS_ATTR;
static struct dither_data dither_data[2] IBSS_ATTR;
static struct resample_data resample_data[2][2] IBSS_ATTR;
struct crossfeed_data crossfeed_data IBSS_ATTR;
extern int current_codec;
struct dsp_config *dsp;
/* The internal format is 32-bit samples, non-interleaved, stereo. This
* format is similar to the raw output from several codecs, so the amount
* of copying needed is minimized for that case.
*/
static long sample_buf[SAMPLE_BUF_SIZE] IBSS_ATTR;
static long resample_buf[RESAMPLE_BUF_SIZE] IBSS_ATTR;
/* Convert at most count samples to the internal format, if needed. Returns
* number of samples ready for further processing. Updates src to point
* past the samples "consumed" and dst is set to point to the samples to
* consume. Note that for mono, dst[0] equals dst[1], as there is no point
* in processing the same data twice.
*/
static int convert_to_internal(char* src[], int count, long* dst[])
{
count = MIN(SAMPLE_BUF_SIZE / 2, count);
if ((dsp->sample_depth <= NATIVE_DEPTH)
|| (dsp->stereo_mode == STEREO_INTERLEAVED))
{
dst[0] = &sample_buf[0];
dst[1] = (dsp->stereo_mode == STEREO_MONO)
? dst[0] : &sample_buf[SAMPLE_BUF_SIZE / 2];
}
else
{
dst[0] = (long*) src[0];
dst[1] = (long*) ((dsp->stereo_mode == STEREO_MONO) ? src[0] : src[1]);
}
if (dsp->sample_depth <= NATIVE_DEPTH)
{
short* s0 = (short*) src[0];
long* d0 = dst[0];
long* d1 = dst[1];
int scale = WORD_SHIFT;
int i;
if (dsp->stereo_mode == STEREO_INTERLEAVED)
{
for (i = 0; i < count; i++)
{
*d0++ = *s0++ << scale;
*d1++ = *s0++ << scale;
}
}
else if (dsp->stereo_mode == STEREO_NONINTERLEAVED)
{
short* s1 = (short*) src[1];
for (i = 0; i < count; i++)
{
*d0++ = *s0++ << scale;
*d1++ = *s1++ << scale;
}
}
else
{
for (i = 0; i < count; i++)
{
*d0++ = *s0++ << scale;
}
}
}
else if (dsp->stereo_mode == STEREO_INTERLEAVED)
{
long* s0 = (long*) src[0];
long* d0 = dst[0];
long* d1 = dst[1];
int i;
for (i = 0; i < count; i++)
{
*d0++ = *s0++;
*d1++ = *s0++;
}
}
if (dsp->stereo_mode == STEREO_NONINTERLEAVED)
{
src[0] += count * dsp->sample_bytes;
src[1] += count * dsp->sample_bytes;
}
else if (dsp->stereo_mode == STEREO_INTERLEAVED)
{
src[0] += count * dsp->sample_bytes * 2;
}
else
{
src[0] += count * dsp->sample_bytes;
}
return count;
}
/* Linear resampling that introduces a one sample delay, because of our
* inability to look into the future at the end of a frame.
*/
static long downsample(long *dst, long *src, int count,
struct resample_data *r)
{
long phase = r->phase;
long delta = r->delta;
long last_sample = r->last_sample;
int pos = phase >> 16;
int i = 1;
/* Do we need last sample of previous frame for interpolation? */
if (pos > 0)
{
last_sample = src[pos - 1];
}
*dst++ = last_sample + FRACMUL((phase & 0xffff) << 15,
src[pos] - last_sample);
phase += delta;
while ((pos = phase >> 16) < count)
{
*dst++ = src[pos - 1] + FRACMUL((phase & 0xffff) << 15,
src[pos] - src[pos - 1]);
phase += delta;
i++;
}
/* Wrap phase accumulator back to start of next frame. */
r->phase = phase - (count << 16);
r->delta = delta;
r->last_sample = src[count - 1];
return i;
}
static long upsample(long *dst, long *src, int count, struct resample_data *r)
{
long phase = r->phase;
long delta = r->delta;
long last_sample = r->last_sample;
int i = 0;
int pos;
while ((pos = phase >> 16) == 0)
{
*dst++ = last_sample + FRACMUL((phase & 0xffff) << 15,
src[pos] - last_sample);
phase += delta;
i++;
}
while ((pos = phase >> 16) < count)
{
*dst++ = src[pos - 1] + FRACMUL((phase & 0xffff) << 15,
src[pos] - src[pos - 1]);
phase += delta;
i++;
}
/* Wrap phase accumulator back to start of next frame. */
r->phase = phase - (count << 16);
r->delta = delta;
r->last_sample = src[count - 1];
return i;
}
/* Resample count stereo samples. Updates the src array, if resampling is
* done, to refer to the resampled data. Returns number of stereo samples
* for further processing.
*/
static inline int resample(long* src[], int count)
{
long new_count;
if (dsp->frequency != NATIVE_FREQUENCY)
{
long* d0 = &resample_buf[0];
/* Only process the second channel if needed. */
long* d1 = (src[0] == src[1]) ? d0
: &resample_buf[RESAMPLE_BUF_SIZE / 2];
if (dsp->frequency < NATIVE_FREQUENCY)
{
new_count = upsample(d0, src[0], count,
&resample_data[current_codec][0]);
if (d0 != d1)
{
upsample(d1, src[1], count,
&resample_data[current_codec][1]);
}
}
else
{
new_count = downsample(d0, src[0], count,
&resample_data[current_codec][0]);
if (d0 != d1)
{
downsample(d1, src[1], count,
&resample_data[current_codec][1]);
}
}
src[0] = d0;
src[1] = d1;
}
else
{
new_count = count;
}
return new_count;
}
static inline long clip_sample(long sample, long min, long max)
{
if (sample > max)
{
sample = max;
}
else if (sample < min)
{
sample = min;
}
return sample;
}
/* The "dither" code to convert the 24-bit samples produced by libmad was
* taken from the coolplayer project - coolplayer.sourceforge.net
*/
static long dither_sample(long sample, long bias, long mask,
struct dither_data* dither)
{
long output;
long random;
long min;
long max;
/* Noise shape and bias */
sample += dither->error[0] - dither->error[1] + dither->error[2];
dither->error[2] = dither->error[1];
dither->error[1] = dither->error[0] / 2;
output = sample + bias;
/* Dither */
random = dither->random * 0x0019660dL + 0x3c6ef35fL;
sample += (random & mask) - (dither->random & mask);
dither->random = random;
/* Clip and quantize */
min = dsp->clip_min;
max = dsp->clip_max;
sample = clip_sample(sample, min, max);
output = clip_sample(output, min, max) & ~mask;
/* Error feedback */
dither->error[0] = sample - output;
return output;
}
/* Apply a constant gain to the samples (e.g., for ReplayGain). May update
* the src array if gain was applied.
* Note that this must be called before the resampler.
*/
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
static const long crossfeed_coefs[6] ICONST_ATTR = {
LOW, LOW_COMP, HIGH_NEG, HIGH_COMP, ATT, ATT_COMP
};
static void apply_crossfeed(long* src[], int count)
{
asm volatile (
"lea.l crossfeed_data, %%a1 \n"
"lea.l (16, %%a1), %%a0 \n"
"movem.l (%%a1), %%d0-%%d3 \n"
"move.l (120, %%a1), %%d4 \n"
/* fetch left, right, LOW and LOW_COMP for first iteration */
"move.l (%[src0]), %%d5 \n"
"move.l (%[src1]), %%d6 \n"
"move.l (%[coef])+, %%a1 \n"
"move.l (%[coef])+, %%a2 \n"
/* Register usage in loop:
* a0 = &delay[0][0], a1 & a2 = coefs
* d0 = low_left, d1 = low_right,
* d2 = high_left, d3 = high_right,
* d4 = delay line index,
* d5 = src[0][i], d6 = src[1][i].
* The rest are described in asm constraint list.
*/
".cfloop:"
/* LOW*low_left + LOW_COMP*left */
"mac.l %%a1, %%d0, %%acc0 \n"
"mac.l %%a2, %%d5, %%acc0 \n"
/* LOW*low_right + LOW_COMP*right */
"mac.l %%a1, %%d1, (%[coef])+, %%a1, %%acc1 \n" /* a1 = HIGH_NEG */
"mac.l %%a2, %%d6, (%[coef])+, %%a2, %%acc1 \n" /* a2 = HIGH_COMP */
"movclr.l %%acc0, %%d0 \n" /* get low_left */
"movclr.l %%acc1, %%d1 \n" /* get low_right */
/* HIGH_NEG*high_left + HIGH_COMP*left */
"mac.l %%a1, %%d2, %%acc0 \n"
"mac.l %%a2, %%d5, %%acc0 \n"
/* HIGH_NEG*hifh_right + HIGH_COMP+*right */
"mac.l %%a1, %%d3, (%[coef])+, %%a1, %%acc1 \n" /* a1 = ATT */
"mac.l %%a2, %%d6, (%[coef])+, %%a2, %%acc1 \n" /* a2 = ATT_COMP */
"lea.l (-6*4, %[coef]), %[coef] \n" /* coef = &coefs[0] */
"move.l (%%a0, %%d4*4), %%a3 \n" /* a3=delay[0][idx] */
"move.l (52, %%a0, %%d4*4), %%d5 \n" /* d5=delay[1][idx] */
"movclr.l %%acc0, %%d2 \n" /* get high_left */
"movclr.l %%acc1, %%d3 \n" /* get high_right */
/* ATT*delay_r + ATT_COMP*high_left */
"mac.l %%a1, %%d5, (4, %[src0]), %%d5, %%acc0\n" /* d5 = src[0][i+1] */
"mac.l %%a2, %%d2, (4, %[src1]), %%d6, %%acc0\n" /* d6 = src[1][i+1] */
/* ATT*delay_l + ATT_COMP*high_right */
"mac.l %%a1, %%a3, (%[coef])+, %%a1, %%acc1 \n" /* a1 = LOW */
"mac.l %%a2, %%d3, (%[coef])+, %%a2, %%acc1 \n" /* a2 = LOW_COMP */
/* save crossfed samples to output */
"movclr.l %%acc0, %%a3 \n"
"move.l %%a3, (%[src0])+ \n" /* src[0][i++] = out_l */
"movclr.l %%acc1, %%a3 \n"
"move.l %%a3, (%[src1])+ \n" /* src[1][i++] = out_r */
"move.l %%d0, (%%a0, %%d4*4) \n" /* delay[0][index] = low_left */
"move.l %%d1, (52, %%a0, %%d4*4)\n" /* delay[1][index] = low_right */
"addq.l #1, %%d4 \n" /* index++ */
"cmp.l #13, %%d4 \n" /* if (index >= 13) { */
"jlt .nowrap \n"
"clr.l %%d4 \n" /* index = 0 */
".nowrap: \n" /* } */
"subq.l #1, %[count] \n"
"jne .cfloop \n"
/* save data back to struct */
"lea.l crossfeed_data, %%a1 \n"
"movem.l %%d0-%%d3, (%%a1) \n"
"move.l %%d4, (120, %%a1) \n"
/* NOTE: We _just_ have enough registers for our use here, clobber just
one more and GCC will fail. */
:
: [count] "d" (count),
[src0] "a" (src[0]), [src1] "a" (src[1]), [coef] "a" (crossfeed_coefs)
: "d0", "d1", "d2", "d3", "d4", "d5", "d6",
"a0", "a1", "a2", "a3"
);
}
#else
static void apply_crossfeed(long* src[], int count)
{
long a; /* accumulator */
long low_left = crossfeed_data.lowpass[0];
long low_right = crossfeed_data.lowpass[1];
long high_left = crossfeed_data.highpass[0];
long high_right = crossfeed_data.highpass[1];
unsigned int index = crossfeed_data.index;
long left, right;
long * delay_l = crossfeed_data.delay[0];
long * delay_r = crossfeed_data.delay[1];
int i;
for (i = 0; i < count; i++)
{
/* use a low-pass filter on the signal */
left = src[0][i];
right = src[1][i];
ACC_INIT(a, LOW, low_left); ACC(a, LOW_COMP, left);
low_left = GET_ACC(a);
ACC_INIT(a, LOW, low_right); ACC(a, LOW_COMP, right);
low_right = GET_ACC(a);
/* use a high-pass filter on the signal */
ACC_INIT(a, HIGH_NEG, high_left); ACC(a, HIGH_COMP, left);
high_left = GET_ACC(a);
ACC_INIT(a, HIGH_NEG, high_right); ACC(a, HIGH_COMP, right);
high_right = GET_ACC(a);
/* New data is the high-passed signal + delayed and attenuated
* low-passed signal from the other channel */
ACC_INIT(a, ATT, delay_r[index]); ACC(a, ATT_COMP, high_left);
src[0][i] = GET_ACC(a);
ACC_INIT(a, ATT, delay_l[index]); ACC(a, ATT_COMP, high_right);
src[1][i] = GET_ACC(a);
/* Store the low-passed signal in the ringbuffer */
delay_l[index] = low_left;
delay_r[index] = low_right;
index = (index + 1) % 13;
}
crossfeed_data.index = index;
crossfeed_data.lowpass[0] = low_left;
crossfeed_data.lowpass[1] = low_right;
crossfeed_data.highpass[0] = high_left;
crossfeed_data.highpass[1] = high_right;
}
#endif
/* Apply a constant gain to the samples (e.g., for ReplayGain). May update
* the src array if gain was applied.
* Note that this must be called before the resampler.
*/
static void apply_gain(long* src[], int count)
{
if (dsp->replaygain)
{
long* s0 = src[0];
long* s1 = src[1];
long* d0 = &sample_buf[0];
long* d1 = (s0 == s1) ? d0 : &sample_buf[SAMPLE_BUF_SIZE / 2];
long gain = dsp->replaygain;
long s;
long i;
src[0] = d0;
src[1] = d1;
s = *s0++;
for (i = 0; i < count; i++)
{
*d0++ = FRACMUL_8_LOOP(s, gain, s0);
}
if (src [0] != src [1])
{
s = *s1++;
for (i = 0; i < count; i++)
{
*d1++ = FRACMUL_8_LOOP(s, gain, s1);
}
}
}
}
static void write_samples(short* dst, long* src[], int count)
{
long* s0 = src[0];
long* s1 = src[1];
int scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
if (dsp->dither_enabled)
{
long bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
long mask = (1L << scale) - 1;
while (count-- > 0)
{
*dst++ = (short) (dither_sample(*s0++, bias, mask, &dither_data[0])
>> scale);
*dst++ = (short) (dither_sample(*s1++, bias, mask, &dither_data[1])
>> scale);
}
}
else
{
long min = dsp->clip_min;
long max = dsp->clip_max;
while (count-- > 0)
{
*dst++ = (short) (clip_sample(*s0++, min, max) >> scale);
*dst++ = (short) (clip_sample(*s1++, min, max) >> scale);
}
}
}
/* Process and convert src audio to dst based on the DSP configuration,
* reading size bytes of audio data. dst is assumed to be large enough; use
* dst_get_dest_size() to get the required size. src is an array of
* pointers; for mono and interleaved stereo, it contains one pointer to the
* start of the audio data; for non-interleaved stereo, it contains two
* pointers, one for each audio channel. Returns number of bytes written to
* dest.
*/
long dsp_process(char* dst, char* src[], long size)
{
long* tmp[2];
long written = 0;
long factor;
int samples;
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
/* set emac unit for dsp processing, and save old macsr, we're running in
codec thread context at this point, so can't clobber it */
unsigned long old_macsr = coldfire_get_macsr();
coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_ROUND | EMAC_SATURATE);
#endif
dsp = &dsp_conf[current_codec];
factor = (dsp->stereo_mode != STEREO_MONO) ? 2 : 1;
size /= dsp->sample_bytes * factor;
dsp_set_replaygain(false);
while (size > 0)
{
samples = convert_to_internal(src, size, tmp);
size -= samples;
apply_gain(tmp, samples);
samples = resample(tmp, samples);
if (dsp->crossfeed_enabled && dsp->stereo_mode != STEREO_MONO)
apply_crossfeed(tmp, samples);
write_samples((short*) dst, tmp, samples);
written += samples;
dst += samples * sizeof(short) * 2;
yield();
}
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
/* set old macsr again */
coldfire_set_macsr(old_macsr);
#endif
return written * sizeof(short) * 2;
}
/* Given size bytes of input data, calculate the maximum number of bytes of
* output data that would be generated (the calculation is not entirely
* exact and rounds upwards to be on the safe side; during resampling,
* the number of samples generated depends on the current state of the
* resampler).
*/
/* dsp_input_size MUST be called afterwards */
long dsp_output_size(long size)
{
dsp = &dsp_conf[current_codec];
if (dsp->sample_depth > NATIVE_DEPTH)
{
size /= 2;
}
if (dsp->frequency != NATIVE_FREQUENCY)
{
size = (long) ((((unsigned long) size * NATIVE_FREQUENCY)
+ (dsp->frequency - 1)) / dsp->frequency);
}
/* round to the next multiple of 2 (these are shorts) */
size = (size + 1) & ~1;
if (dsp->stereo_mode == STEREO_MONO)
{
size *= 2;
}
/* now we have the size in bytes for two resampled channels,
* and the size in (short) must not exceed RESAMPLE_BUF_SIZE to
* avoid resample buffer overflow. One must call dsp_input_size()
* to get the correct input buffer size. */
if (size > RESAMPLE_BUF_SIZE*2)
size = RESAMPLE_BUF_SIZE*2;
return size;
}
/* Given size bytes of output buffer, calculate number of bytes of input
* data that would be consumed in order to fill the output buffer.
*/
long dsp_input_size(long size)
{
dsp = &dsp_conf[current_codec];
/* convert to number of output stereo samples. */
size /= 2;
/* Mono means we need half input samples to fill the output buffer */
if (dsp->stereo_mode == STEREO_MONO)
size /= 2;
/* size is now the number of resampled input samples. Convert to
original input samples. */
if (dsp->frequency != NATIVE_FREQUENCY)
{
/* Use the real resampling delta =
* (unsigned long) dsp->frequency * 65536 / NATIVE_FREQUENCY, and
* round towards zero to avoid buffer overflows. */
size = ((unsigned long)size *
resample_data[current_codec][0].delta) >> 16;
}
/* Convert back to bytes. */
if (dsp->sample_depth > NATIVE_DEPTH)
size *= 4;
else
size *= 2;
return size;
}
int dsp_stereo_mode(void)
{
dsp = &dsp_conf[current_codec];
return dsp->stereo_mode;
}
bool dsp_configure(int setting, void *value)
{
dsp = &dsp_conf[current_codec];
switch (setting)
{
case DSP_SET_FREQUENCY:
memset(&resample_data[current_codec][0], 0,
sizeof(struct resample_data) * 2);
/* Fall through!!! */
case DSP_SWITCH_FREQUENCY:
dsp->frequency = ((int) value == 0) ? NATIVE_FREQUENCY : (int) value;
resample_data[current_codec][0].delta =
resample_data[current_codec][1].delta =
(unsigned long) dsp->frequency * 65536 / NATIVE_FREQUENCY;
break;
case DSP_SET_CLIP_MIN:
dsp->clip_min = (long) value;
break;
case DSP_SET_CLIP_MAX:
dsp->clip_max = (long) value;
break;
case DSP_SET_SAMPLE_DEPTH:
dsp->sample_depth = (long) value;
if (dsp->sample_depth <= NATIVE_DEPTH)
{
dsp->frac_bits = WORD_FRACBITS;
dsp->sample_bytes = sizeof(short);
dsp->clip_max = ((1 << WORD_FRACBITS) - 1);
dsp->clip_min = -((1 << WORD_FRACBITS));
}
else
{
dsp->frac_bits = (long) value;
dsp->sample_bytes = sizeof(long);
dsp->clip_max = (1 << (long)value) - 1;
dsp->clip_min = -(1 << (long)value);
}
break;
case DSP_SET_STEREO_MODE:
dsp->stereo_mode = (long) value;
break;
case DSP_RESET:
dsp->dither_enabled = false;
dsp->stereo_mode = STEREO_NONINTERLEAVED;
dsp->clip_max = ((1 << WORD_FRACBITS) - 1);
dsp->clip_min = -((1 << WORD_FRACBITS));
dsp->track_gain = 0;
dsp->album_gain = 0;
dsp->track_peak = 0;
dsp->album_peak = 0;
dsp->frequency = NATIVE_FREQUENCY;
dsp->sample_depth = NATIVE_DEPTH;
dsp->frac_bits = WORD_FRACBITS;
dsp->new_gain = true;
break;
case DSP_DITHER:
memset(dither_data, 0, sizeof(dither_data));
dsp->dither_enabled = (bool) value;
break;
case DSP_SET_TRACK_GAIN:
dsp->track_gain = (long) value;
dsp->new_gain = true;
break;
case DSP_SET_ALBUM_GAIN:
dsp->album_gain = (long) value;
dsp->new_gain = true;
break;
case DSP_SET_TRACK_PEAK:
dsp->track_peak = (long) value;
dsp->new_gain = true;
break;
case DSP_SET_ALBUM_PEAK:
dsp->album_peak = (long) value;
dsp->new_gain = true;
break;
default:
return 0;
}
return 1;
}
void dsp_set_crossfeed(bool enable)
{
if (enable)
memset(&crossfeed_data, 0, sizeof(crossfeed_data));
dsp->crossfeed_enabled = enable;
}
void dsp_set_replaygain(bool always)
{
dsp = &dsp_conf[current_codec];
if (always || dsp->new_gain)
{
long gain = 0;
dsp->new_gain = false;
if (global_settings.replaygain || global_settings.replaygain_noclip)
{
bool track_mode
= ((global_settings.replaygain_type == REPLAYGAIN_TRACK)
|| ((global_settings.replaygain_type == REPLAYGAIN_SHUFFLE)
&& global_settings.playlist_shuffle));
long peak = (track_mode || !dsp->album_peak)
? dsp->track_peak : dsp->album_peak;
if (global_settings.replaygain)
{
gain = (track_mode || !dsp->album_gain)
? dsp->track_gain : dsp->album_gain;
if (global_settings.replaygain_preamp)
{
long preamp = get_replaygain_int(
global_settings.replaygain_preamp * 10);
gain = (long) (((int64_t) gain * preamp) >> 24);
}
}
if (gain == 0)
{
/* So that noclip can work even with no gain information. */
gain = DEFAULT_REPLAYGAIN;
}
if (global_settings.replaygain_noclip && (peak != 0)
&& ((((int64_t) gain * peak) >> 24) >= DEFAULT_REPLAYGAIN))
{
gain = (((int64_t) DEFAULT_REPLAYGAIN << 24) / peak);
}
if (gain == DEFAULT_REPLAYGAIN)
{
/* Nothing to do, disable processing. */
gain = 0;
}
}
/* Store in S8.23 format to simplify calculations. */
dsp->replaygain = gain >> 1;
}
}