rockbox/firmware/drivers/synaptics-mep.c

691 lines
17 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Mark Arigo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include "config.h"
#include "cpu.h"
#include "system.h"
#include "kernel.h"
#include "button-target.h"
#include "synaptics-mep.h"
/*#define LOGF_ENABLE*/
#include "logf.h"
/* Driver for the Synaptics Touchpad based on the "Synaptics Modular Embedded
Protocol: 3-Wire Interface Specification" documentation */
#if defined(MROBE_100)
#define INT_ENABLE GPIO_CLEAR_BITWISE(GPIOD_INT_LEV, 0x2);\
GPIO_SET_BITWISE(GPIOD_INT_EN, 0x2)
#define INT_DISABLE GPIO_CLEAR_BITWISE(GPIOD_INT_EN, 0x2);\
GPIO_SET_BITWISE(GPIOD_INT_CLR, 0x2)
#define ACK (GPIOD_INPUT_VAL & 0x1)
#define ACK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1)
#define ACK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x1)
#define CLK ((GPIOD_INPUT_VAL & 0x2) >> 1)
#define CLK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x2)
#define CLK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x2)
#define DATA ((GPIOD_INPUT_VAL & 0x4) >> 2)
#define DATA_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x4);\
GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x4)
#define DATA_LO GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x4);\
GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x4)
#define DATA_CL GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x4)
#elif defined(PHILIPS_HDD1630) || defined(PHILIPS_HDD6330) || \
defined(PBELL_VIBE500)
#define INT_ENABLE GPIO_CLEAR_BITWISE(GPIOA_INT_LEV, 0x20);\
GPIO_SET_BITWISE(GPIOA_INT_EN, 0x20)
#define INT_DISABLE GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x20);\
GPIO_SET_BITWISE(GPIOA_INT_CLR, 0x20)
#define ACK (GPIOD_INPUT_VAL & 0x80)
#define ACK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x80)
#define ACK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x80)
#define CLK ((GPIOA_INPUT_VAL & 0x20) >> 5)
#define CLK_HI GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x20)
#define CLK_LO GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_VAL, 0x20)
#define DATA ((GPIOA_INPUT_VAL & 0x10) >> 4)
#define DATA_HI GPIO_SET_BITWISE(GPIOA_OUTPUT_EN, 0x10);\
GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x10)
#define DATA_LO GPIO_SET_BITWISE(GPIOA_OUTPUT_EN, 0x10);\
GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_VAL, 0x10)
#define DATA_CL GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x10)
#elif defined(PHILIPS_SA9200)
#define INT_ENABLE GPIO_CLEAR_BITWISE(GPIOD_INT_LEV, 0x2);\
GPIO_SET_BITWISE(GPIOD_INT_EN, 0x2)
#define INT_DISABLE GPIO_CLEAR_BITWISE(GPIOD_INT_EN, 0x2);\
GPIO_SET_BITWISE(GPIOD_INT_CLR, 0x2)
#define ACK (GPIOD_INPUT_VAL & 0x8)
#define ACK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x8)
#define ACK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x8)
#define CLK ((GPIOD_INPUT_VAL & 0x2) >> 1)
#define CLK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x2)
#define CLK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x2)
#define DATA ((GPIOD_INPUT_VAL & 0x10) >> 4)
#define DATA_HI GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x10)
#define DATA_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x10);\
GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x10)
#define DATA_CL GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x10)
#endif
#define LO 0
#define HI 1
#define READ_RETRY 8
#define READ_ERROR -1
#define MEP_HELLO_HEADER 0x19
#define MEP_HELLO_ID 0x1
#define MEP_READ 0x1
#define MEP_WRITE 0x3
static unsigned short syn_status = 0;
static void syn_enable_int(bool enable)
{
if (enable)
{
INT_ENABLE;
}
else
{
INT_DISABLE;
}
}
static int syn_wait_clk_change(unsigned int val)
{
int i;
for (i = 0; i < 10000; i++)
{
if (CLK == val)
return 1;
}
return 0;
}
static void syn_set_ack(int val)
{
if (val == HI)
{
ACK_HI;
}
else
{
ACK_LO;
}
}
static void syn_set_data(int val)
{
if (val == HI)
{
DATA_HI;
}
else
{
DATA_LO;
}
}
static inline int syn_get_data(void)
{
DATA_CL;
#if defined(PBELL_VIBE500) /* for EABI (touchpad doesn't work without it) */
udelay(0);
#endif
return DATA;
}
static void syn_wait_guest_flush(void)
{
/* Flush receiving (flushee) state:
handshake until DATA goes high during P3 stage */
if (CLK == LO)
{
syn_set_ack(HI); /* P1 -> P2 */
syn_wait_clk_change(HI); /* P2 -> P3 */
}
while (syn_get_data() == LO)
{
syn_set_ack(HI); /* P3 -> P0 */
syn_wait_clk_change(LO); /* P0 -> P1 */
syn_set_ack(LO); /* P1 -> P2 */
syn_wait_clk_change(HI); /* P2 -> P3 */
}
/* Continue handshaking until back to P0 */
syn_set_ack(HI); /* P3 -> P0 */
}
static void syn_flush(void)
{
int i;
logf("syn_flush...");
/* Flusher holds DATA low for at least 36 handshake cycles */
syn_set_data(LO);
for (i = 0; i < 36; i++)
{
syn_wait_clk_change(LO); /* P0 -> P1 */
syn_set_ack(LO); /* P1 -> P2 */
syn_wait_clk_change(HI); /* P2 -> P3 */
syn_set_ack(HI); /* P3 -> P0 */
}
/* Raise DATA in P1 stage */
syn_wait_clk_change(LO); /* P0 -> P1 */
syn_set_data(HI);
/* After a flush, the flushing device enters a flush-receiving (flushee)
state */
syn_wait_guest_flush();
}
static int syn_send(char *data, int len)
{
int i, bit;
int parity = 0;
logf("syn_send...");
/* 1. Lower DATA line to issue a request-to-send to guest */
syn_set_data(LO);
/* 2. Wait for guest to lower CLK */
syn_wait_clk_change(LO);
/* 3. Lower ACK (with DATA still low) */
syn_set_ack(LO);
/* 4. Wait for guest to raise CLK */
syn_wait_clk_change(HI);
/* 5. Send data */
for (i = 0; i < len; i++)
{
logf(" sending byte: %d", data[i]);
bit = 0;
while (bit < 8)
{
/* 5a. Drive data low if bit is 0, or high if bit is 1 */
if (data[i] & (1 << bit))
{
syn_set_data(HI);
parity++;
}
else
{
syn_set_data(LO);
}
bit++;
/* 5b. Invert ACK to indicate that the data bit is ready */
syn_set_ack(HI);
/* 5c. Wait for guest to invert CLK */
syn_wait_clk_change(LO);
/* Repeat for next bit */
if (data[i] & (1 << bit))
{
syn_set_data(HI);
parity++;
}
else
{
syn_set_data(LO);
}
bit++;
syn_set_ack(LO);
syn_wait_clk_change(HI);
}
}
/* 7. Transmission termination sequence: */
/* 7a. Host may put parity bit on DATA. Hosts that do not generate
parity should set DATA high. Parity is 1 if there's an odd
number of '1' bits, or 0 if there's an even number of '1' bits. */
parity = parity % 2;
if (parity)
{
syn_set_data(HI);
}
else
{
syn_set_data(LO);
}
logf(" send parity = %d", parity);
/* 7b. Raise ACK to indicate that the optional parity bit is ready */
syn_set_ack(HI);
/* 7c. Guest lowers CLK */
syn_wait_clk_change(LO);
/* 7d. Pull DATA high (if parity bit was 0) */
syn_set_data(HI);
/* 7e. Lower ACK to indicate that the stop bit is ready */
syn_set_ack(LO);
/* 7f. Guest raises CLK */
syn_wait_clk_change(HI);
/* 7g. If DATA is low, guest is flushing this transfer. Host should
enter the flushee state. */
if (syn_get_data() == LO)
{
logf(" module flushing");
syn_wait_guest_flush();
return -1;
}
/* 7h. Host raises ACK and the link enters the idle state */
syn_set_ack(HI);
return len;
}
static int syn_read_data(char *data, int data_len)
{
int i, len, bit, parity;
char *data_ptr, tmp;
logf("syn_read_data...");
/* 1. Guest drives CLK low */
if (CLK != LO)
return 0;
/* 1a. If the host is willing to receive a packet it lowers ACK */
syn_set_ack(LO);
/* 2. Guest may issue a request-to-send by lowering DATA. If the
guest decides not to transmit a packet, it may abort the
transmission by not lowering DATA. */
/* 3. The guest raises CLK */
syn_wait_clk_change(HI);
/* 4. If the guest is still driving DATA low, the transfer is commited
to occur. Otherwise, the transfer is aborted. In either case,
the host raises ACK. */
if (syn_get_data() == HI)
{
logf(" read abort");
syn_set_ack(HI);
return READ_ERROR;
}
else
{
syn_set_ack(HI);
}
/* 5. Read the incoming data packet */
i = 0;
len = 0;
parity = 0;
while (i <= len)
{
bit = 0;
if (i < data_len)
data_ptr = &data[i];
else
data_ptr = &tmp;
*data_ptr = 0;
while (bit < 8)
{
/* 5b. Guset inverts CLK to indicate that data is ready */
syn_wait_clk_change(LO);
/* 5d. Read the data bit from DATA */
if (syn_get_data() == HI)
{
*data_ptr |= (1 << bit);
parity++;
}
bit++;
/* 5e. Invert ACK to indicate that data has been read */
syn_set_ack(LO);
/* Repeat for next bit */
syn_wait_clk_change(HI);
if (syn_get_data() == HI)
{
*data_ptr |= (1 << bit);
parity++;
}
bit++;
syn_set_ack(HI);
}
/* First byte is the packet header */
if (i == 0)
{
/* Format control (bit 3) should be 1 */
if (*data_ptr & 0x8)
{
/* Packet length is bits 0:2 */
len = *data_ptr & 0x7;
logf(" packet length = %d", len);
}
else
{
logf(" invalid format ctrl bit");
return READ_ERROR;
}
}
i++;
}
/* 7. Transmission termination cycle */
/* 7a. The guest generates a parity bit on DATA */
/* 7b. The host waits for guest to lower CLK */
syn_wait_clk_change(LO);
/* 7c. The host verifies the parity bit is correct */
parity = parity % 2;
logf(" parity check: %d / %d", syn_get_data(), parity);
/* TODO: parity error handling */
/* 7d. The host lowers ACK */
syn_set_ack(LO);
/* 7e. The host waits for the guest to raise CLK indicating
that the stop bit is ready */
syn_wait_clk_change(HI);
/* 7f. The host reads DATA and verifies that it is 1 */
if (syn_get_data() == LO)
{
logf(" framing error");
syn_set_ack(HI);
return READ_ERROR;
}
syn_set_ack(HI);
return len;
}
static int syn_read(char *data, int len)
{
int i;
int ret = READ_ERROR;
for (i = 0; i < READ_RETRY; i++)
{
if (syn_wait_clk_change(LO))
{
/* module is sending data */
ret = syn_read_data(data, len);
if (ret != READ_ERROR)
return ret;
syn_flush();
}
else
{
/* module is idle */
return 0;
}
}
return ret;
}
static int syn_reset(void)
{
int val, id;
char data[2];
logf("syn_reset...");
/* reset module 0 */
data[0] = (0 << 4) | (1 << 3) | 0;
syn_send(data, 1);
val = syn_read(data, 2);
if (val == 1)
{
val = data[0] & 0xff; /* packet header */
id = (data[1] >> 4) & 0xf; /* packet id */
if ((val == MEP_HELLO_HEADER) && (id == MEP_HELLO_ID))
{
logf(" module 0 reset");
return 1;
}
}
logf(" reset failed");
return 0;
}
int touchpad_init(void)
{
syn_flush();
syn_status = syn_reset();
if (syn_status)
{
/* reset interrupts */
syn_enable_int(false);
syn_enable_int(true);
CPU_INT_EN |= HI_MASK;
CPU_HI_INT_EN |= GPIO0_MASK;
}
return syn_status;
}
int touchpad_read_device(char *data, int len)
{
char tmp[4];
int id;
int val = 0;
if (syn_status)
{
/* disable interrupt while we read the touchpad */
syn_enable_int(false);
val = syn_read(data, len);
if (val > 0)
{
val = data[0] & 0xff; /* packet header */
id = (data[1] >> 4) & 0xf; /* packet id */
logf("syn_read:");
logf(" data[0] = 0x%08x", data[0]);
logf(" data[1] = 0x%08x", data[1]);
logf(" data[2] = 0x%08x", data[2]);
logf(" data[3] = 0x%08x", data[3]);
if ((val == MEP_BUTTON_HEADER) && (id == MEP_BUTTON_ID))
{
/* an absolute packet should follow which we ignore */
syn_read(tmp, 4);
}
else if (val == MEP_ABSOLUTE_HEADER)
{
logf(" pos %d", val);
logf(" z %d", data[3]);
logf(" finger %d", data[1] & 0x1);
logf(" gesture %d", data[1] & 0x2);
logf(" RelPosVld %d", data[1] & 0x4);
if (!(data[1] & 0x1))
{
/* finger is NOT on touch strip */
val = 0;
}
}
else
{
val = 0;
}
}
/* re-enable interrupts */
syn_enable_int(true);
}
return val;
}
int touchpad_set_parameter(char par_nr, unsigned int param)
{
char data[4];
int val=0;
if (syn_status)
{
syn_enable_int(false);
data[0]=0x03; /* header - addr:0,global:0,control:0,len:3 */
data[1]=0x40+par_nr; /* parameter number */
data[2]=(param >> 8) & 0xff; /* param_hi */
data[3]=param & 0xff; /* param_lo */
syn_send(data,4);
val=syn_read(data,1); /* get the simple ACK = 0x18 */
syn_enable_int(true);
}
return val;
}
int touchpad_set_buttonlights(unsigned int led_mask, char brightness)
{
char data[6];
int val = 0;
if (syn_status)
{
syn_enable_int(false);
/* turn on all touchpad leds */
data[0] = 0x05;
data[1] = 0x31;
data[2] = (brightness & 0xf) << 4;
data[3] = 0x00;
data[4] = (led_mask >> 8) & 0xff;
data[5] = led_mask & 0xff;
syn_send(data, 6);
/* device responds with a single-byte ACK packet */
val = syn_read(data, 2);
syn_enable_int(true);
}
return val;
}
#ifdef ROCKBOX_HAS_LOGF
void syn_info(void)
{
int i, val;
int data[8];
logf("syn_info...");
/* module base info */
logf("module base info:");
data[0] = MEP_READ;
data[1] = 0x80;
syn_send(data, 2);
val = syn_read(data, 8);
if (val > 0)
{
for (i = 0; i < 8; i++)
logf(" data[%d] = 0x%02x", i, data[i]);
}
/* module product info */
logf("module product info:");
data[0] = MEP_READ;
data[1] = 0x81;
syn_send(data, 2);
val = syn_read(data, 8);
if (val > 0)
{
for (i = 0; i < 8; i++)
logf(" data[%d] = 0x%02x", i, data[i]);
}
/* module serialization */
logf("module serialization:");
data[0] = MEP_READ;
data[1] = 0x82;
syn_send(data, 2);
val = syn_read(data, 8);
if (val > 0)
{
for (i = 0; i < 8; i++)
logf(" data[%d] = 0x%02x", i, data[i]);
}
/* 1-D sensor info */
logf("1-d sensor info:");
data[0] = MEP_READ;
data[1] = 0x80 + 0x20;
syn_send(data, 2);
val = syn_read(data, 8);
if (val > 0)
{
for (i = 0; i < 8; i++)
logf(" data[%d] = 0x%02x", i, data[i]);
}
}
#endif