/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Mark Arigo * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "config.h" #include "cpu.h" #include "system.h" #include "kernel.h" #include "button-target.h" #include "synaptics-mep.h" /*#define LOGF_ENABLE*/ #include "logf.h" /* Driver for the Synaptics Touchpad based on the "Synaptics Modular Embedded Protocol: 3-Wire Interface Specification" documentation */ #if defined(MROBE_100) #define INT_ENABLE GPIO_CLEAR_BITWISE(GPIOD_INT_LEV, 0x2);\ GPIO_SET_BITWISE(GPIOD_INT_EN, 0x2) #define INT_DISABLE GPIO_CLEAR_BITWISE(GPIOD_INT_EN, 0x2);\ GPIO_SET_BITWISE(GPIOD_INT_CLR, 0x2) #define ACK (GPIOD_INPUT_VAL & 0x1) #define ACK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1) #define ACK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x1) #define CLK ((GPIOD_INPUT_VAL & 0x2) >> 1) #define CLK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x2) #define CLK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x2) #define DATA ((GPIOD_INPUT_VAL & 0x4) >> 2) #define DATA_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x4);\ GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x4) #define DATA_LO GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x4);\ GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x4) #define DATA_CL GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x4) #elif defined(PHILIPS_HDD1630) || defined(PHILIPS_HDD6330) || \ defined(PBELL_VIBE500) #define INT_ENABLE GPIO_CLEAR_BITWISE(GPIOA_INT_LEV, 0x20);\ GPIO_SET_BITWISE(GPIOA_INT_EN, 0x20) #define INT_DISABLE GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x20);\ GPIO_SET_BITWISE(GPIOA_INT_CLR, 0x20) #define ACK (GPIOD_INPUT_VAL & 0x80) #define ACK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x80) #define ACK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x80) #define CLK ((GPIOA_INPUT_VAL & 0x20) >> 5) #define CLK_HI GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x20) #define CLK_LO GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_VAL, 0x20) #define DATA ((GPIOA_INPUT_VAL & 0x10) >> 4) #define DATA_HI GPIO_SET_BITWISE(GPIOA_OUTPUT_EN, 0x10);\ GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x10) #define DATA_LO GPIO_SET_BITWISE(GPIOA_OUTPUT_EN, 0x10);\ GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_VAL, 0x10) #define DATA_CL GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x10) #elif defined(PHILIPS_SA9200) #define INT_ENABLE GPIO_CLEAR_BITWISE(GPIOD_INT_LEV, 0x2);\ GPIO_SET_BITWISE(GPIOD_INT_EN, 0x2) #define INT_DISABLE GPIO_CLEAR_BITWISE(GPIOD_INT_EN, 0x2);\ GPIO_SET_BITWISE(GPIOD_INT_CLR, 0x2) #define ACK (GPIOD_INPUT_VAL & 0x8) #define ACK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x8) #define ACK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x8) #define CLK ((GPIOD_INPUT_VAL & 0x2) >> 1) #define CLK_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x2) #define CLK_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x2) #define DATA ((GPIOD_INPUT_VAL & 0x10) >> 4) #define DATA_HI GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x10) #define DATA_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x10);\ GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x10) #define DATA_CL GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x10) #endif #define LO 0 #define HI 1 #define READ_RETRY 8 #define READ_ERROR -1 #define MEP_HELLO_HEADER 0x19 #define MEP_HELLO_ID 0x1 #define MEP_READ 0x1 #define MEP_WRITE 0x3 static unsigned short syn_status = 0; static void syn_enable_int(bool enable) { if (enable) { INT_ENABLE; } else { INT_DISABLE; } } static int syn_wait_clk_change(unsigned int val) { int i; for (i = 0; i < 10000; i++) { if (CLK == val) return 1; } return 0; } static void syn_set_ack(int val) { if (val == HI) { ACK_HI; } else { ACK_LO; } } static void syn_set_data(int val) { if (val == HI) { DATA_HI; } else { DATA_LO; } } static inline int syn_get_data(void) { DATA_CL; #if defined(PBELL_VIBE500) /* for EABI (touchpad doesn't work without it) */ udelay(0); #endif return DATA; } static void syn_wait_guest_flush(void) { /* Flush receiving (flushee) state: handshake until DATA goes high during P3 stage */ if (CLK == LO) { syn_set_ack(HI); /* P1 -> P2 */ syn_wait_clk_change(HI); /* P2 -> P3 */ } while (syn_get_data() == LO) { syn_set_ack(HI); /* P3 -> P0 */ syn_wait_clk_change(LO); /* P0 -> P1 */ syn_set_ack(LO); /* P1 -> P2 */ syn_wait_clk_change(HI); /* P2 -> P3 */ } /* Continue handshaking until back to P0 */ syn_set_ack(HI); /* P3 -> P0 */ } static void syn_flush(void) { int i; logf("syn_flush..."); /* Flusher holds DATA low for at least 36 handshake cycles */ syn_set_data(LO); for (i = 0; i < 36; i++) { syn_wait_clk_change(LO); /* P0 -> P1 */ syn_set_ack(LO); /* P1 -> P2 */ syn_wait_clk_change(HI); /* P2 -> P3 */ syn_set_ack(HI); /* P3 -> P0 */ } /* Raise DATA in P1 stage */ syn_wait_clk_change(LO); /* P0 -> P1 */ syn_set_data(HI); /* After a flush, the flushing device enters a flush-receiving (flushee) state */ syn_wait_guest_flush(); } static int syn_send(char *data, int len) { int i, bit; int parity = 0; logf("syn_send..."); /* 1. Lower DATA line to issue a request-to-send to guest */ syn_set_data(LO); /* 2. Wait for guest to lower CLK */ syn_wait_clk_change(LO); /* 3. Lower ACK (with DATA still low) */ syn_set_ack(LO); /* 4. Wait for guest to raise CLK */ syn_wait_clk_change(HI); /* 5. Send data */ for (i = 0; i < len; i++) { logf(" sending byte: %d", data[i]); bit = 0; while (bit < 8) { /* 5a. Drive data low if bit is 0, or high if bit is 1 */ if (data[i] & (1 << bit)) { syn_set_data(HI); parity++; } else { syn_set_data(LO); } bit++; /* 5b. Invert ACK to indicate that the data bit is ready */ syn_set_ack(HI); /* 5c. Wait for guest to invert CLK */ syn_wait_clk_change(LO); /* Repeat for next bit */ if (data[i] & (1 << bit)) { syn_set_data(HI); parity++; } else { syn_set_data(LO); } bit++; syn_set_ack(LO); syn_wait_clk_change(HI); } } /* 7. Transmission termination sequence: */ /* 7a. Host may put parity bit on DATA. Hosts that do not generate parity should set DATA high. Parity is 1 if there's an odd number of '1' bits, or 0 if there's an even number of '1' bits. */ parity = parity % 2; if (parity) { syn_set_data(HI); } else { syn_set_data(LO); } logf(" send parity = %d", parity); /* 7b. Raise ACK to indicate that the optional parity bit is ready */ syn_set_ack(HI); /* 7c. Guest lowers CLK */ syn_wait_clk_change(LO); /* 7d. Pull DATA high (if parity bit was 0) */ syn_set_data(HI); /* 7e. Lower ACK to indicate that the stop bit is ready */ syn_set_ack(LO); /* 7f. Guest raises CLK */ syn_wait_clk_change(HI); /* 7g. If DATA is low, guest is flushing this transfer. Host should enter the flushee state. */ if (syn_get_data() == LO) { logf(" module flushing"); syn_wait_guest_flush(); return -1; } /* 7h. Host raises ACK and the link enters the idle state */ syn_set_ack(HI); return len; } static int syn_read_data(char *data, int data_len) { int i, len, bit, parity; char *data_ptr, tmp; logf("syn_read_data..."); /* 1. Guest drives CLK low */ if (CLK != LO) return 0; /* 1a. If the host is willing to receive a packet it lowers ACK */ syn_set_ack(LO); /* 2. Guest may issue a request-to-send by lowering DATA. If the guest decides not to transmit a packet, it may abort the transmission by not lowering DATA. */ /* 3. The guest raises CLK */ syn_wait_clk_change(HI); /* 4. If the guest is still driving DATA low, the transfer is commited to occur. Otherwise, the transfer is aborted. In either case, the host raises ACK. */ if (syn_get_data() == HI) { logf(" read abort"); syn_set_ack(HI); return READ_ERROR; } else { syn_set_ack(HI); } /* 5. Read the incoming data packet */ i = 0; len = 0; parity = 0; while (i <= len) { bit = 0; if (i < data_len) data_ptr = &data[i]; else data_ptr = &tmp; *data_ptr = 0; while (bit < 8) { /* 5b. Guset inverts CLK to indicate that data is ready */ syn_wait_clk_change(LO); /* 5d. Read the data bit from DATA */ if (syn_get_data() == HI) { *data_ptr |= (1 << bit); parity++; } bit++; /* 5e. Invert ACK to indicate that data has been read */ syn_set_ack(LO); /* Repeat for next bit */ syn_wait_clk_change(HI); if (syn_get_data() == HI) { *data_ptr |= (1 << bit); parity++; } bit++; syn_set_ack(HI); } /* First byte is the packet header */ if (i == 0) { /* Format control (bit 3) should be 1 */ if (*data_ptr & 0x8) { /* Packet length is bits 0:2 */ len = *data_ptr & 0x7; logf(" packet length = %d", len); } else { logf(" invalid format ctrl bit"); return READ_ERROR; } } i++; } /* 7. Transmission termination cycle */ /* 7a. The guest generates a parity bit on DATA */ /* 7b. The host waits for guest to lower CLK */ syn_wait_clk_change(LO); /* 7c. The host verifies the parity bit is correct */ parity = parity % 2; logf(" parity check: %d / %d", syn_get_data(), parity); /* TODO: parity error handling */ /* 7d. The host lowers ACK */ syn_set_ack(LO); /* 7e. The host waits for the guest to raise CLK indicating that the stop bit is ready */ syn_wait_clk_change(HI); /* 7f. The host reads DATA and verifies that it is 1 */ if (syn_get_data() == LO) { logf(" framing error"); syn_set_ack(HI); return READ_ERROR; } syn_set_ack(HI); return len; } static int syn_read(char *data, int len) { int i; int ret = READ_ERROR; for (i = 0; i < READ_RETRY; i++) { if (syn_wait_clk_change(LO)) { /* module is sending data */ ret = syn_read_data(data, len); if (ret != READ_ERROR) return ret; syn_flush(); } else { /* module is idle */ return 0; } } return ret; } static int syn_reset(void) { int val, id; char data[2]; logf("syn_reset..."); /* reset module 0 */ data[0] = (0 << 4) | (1 << 3) | 0; syn_send(data, 1); val = syn_read(data, 2); if (val == 1) { val = data[0] & 0xff; /* packet header */ id = (data[1] >> 4) & 0xf; /* packet id */ if ((val == MEP_HELLO_HEADER) && (id == MEP_HELLO_ID)) { logf(" module 0 reset"); return 1; } } logf(" reset failed"); return 0; } int touchpad_init(void) { syn_flush(); syn_status = syn_reset(); if (syn_status) { /* reset interrupts */ syn_enable_int(false); syn_enable_int(true); CPU_INT_EN |= HI_MASK; CPU_HI_INT_EN |= GPIO0_MASK; } return syn_status; } int touchpad_read_device(char *data, int len) { char tmp[4]; int id; int val = 0; if (syn_status) { /* disable interrupt while we read the touchpad */ syn_enable_int(false); val = syn_read(data, len); if (val > 0) { val = data[0] & 0xff; /* packet header */ id = (data[1] >> 4) & 0xf; /* packet id */ logf("syn_read:"); logf(" data[0] = 0x%08x", data[0]); logf(" data[1] = 0x%08x", data[1]); logf(" data[2] = 0x%08x", data[2]); logf(" data[3] = 0x%08x", data[3]); if ((val == MEP_BUTTON_HEADER) && (id == MEP_BUTTON_ID)) { /* an absolute packet should follow which we ignore */ syn_read(tmp, 4); } else if (val == MEP_ABSOLUTE_HEADER) { logf(" pos %d", val); logf(" z %d", data[3]); logf(" finger %d", data[1] & 0x1); logf(" gesture %d", data[1] & 0x2); logf(" RelPosVld %d", data[1] & 0x4); if (!(data[1] & 0x1)) { /* finger is NOT on touch strip */ val = 0; } } else { val = 0; } } /* re-enable interrupts */ syn_enable_int(true); } return val; } int touchpad_set_parameter(char par_nr, unsigned int param) { char data[4]; int val=0; if (syn_status) { syn_enable_int(false); data[0]=0x03; /* header - addr:0,global:0,control:0,len:3 */ data[1]=0x40+par_nr; /* parameter number */ data[2]=(param >> 8) & 0xff; /* param_hi */ data[3]=param & 0xff; /* param_lo */ syn_send(data,4); val=syn_read(data,1); /* get the simple ACK = 0x18 */ syn_enable_int(true); } return val; } int touchpad_set_buttonlights(unsigned int led_mask, char brightness) { char data[6]; int val = 0; if (syn_status) { syn_enable_int(false); /* turn on all touchpad leds */ data[0] = 0x05; data[1] = 0x31; data[2] = (brightness & 0xf) << 4; data[3] = 0x00; data[4] = (led_mask >> 8) & 0xff; data[5] = led_mask & 0xff; syn_send(data, 6); /* device responds with a single-byte ACK packet */ val = syn_read(data, 2); syn_enable_int(true); } return val; } #ifdef ROCKBOX_HAS_LOGF void syn_info(void) { int i, val; int data[8]; logf("syn_info..."); /* module base info */ logf("module base info:"); data[0] = MEP_READ; data[1] = 0x80; syn_send(data, 2); val = syn_read(data, 8); if (val > 0) { for (i = 0; i < 8; i++) logf(" data[%d] = 0x%02x", i, data[i]); } /* module product info */ logf("module product info:"); data[0] = MEP_READ; data[1] = 0x81; syn_send(data, 2); val = syn_read(data, 8); if (val > 0) { for (i = 0; i < 8; i++) logf(" data[%d] = 0x%02x", i, data[i]); } /* module serialization */ logf("module serialization:"); data[0] = MEP_READ; data[1] = 0x82; syn_send(data, 2); val = syn_read(data, 8); if (val > 0) { for (i = 0; i < 8; i++) logf(" data[%d] = 0x%02x", i, data[i]); } /* 1-D sensor info */ logf("1-d sensor info:"); data[0] = MEP_READ; data[1] = 0x80 + 0x20; syn_send(data, 2); val = syn_read(data, 8); if (val > 0) { for (i = 0; i < 8; i++) logf(" data[%d] = 0x%02x", i, data[i]); } } #endif