rockbox/firmware/target/coldfire/iaudio/m3/lcd-m3.c

569 lines
17 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "file.h"
#include "lcd.h"
#include "scroll_engine.h"
/* The LCD in the iAudio M3/M5/X5 remote control is a Tomato LSI 0350 */
#define LCD_SET_DUTY_RATIO 0x48
#define LCD_SELECT_ADC 0xa0
#define LCD_SELECT_SHL 0xc0
#define LCD_SET_COM0 0x44
#define LCD_OSC_ON 0xab
#define LCD_SELECT_DCDC 0x64
#define LCD_SELECT_RES 0x20
#define LCD_SET_VOLUME 0x81
#define LCD_SET_BIAS 0x50
#define LCD_CONTROL_POWER 0x28
#define LCD_DISPLAY_ON 0xae
#define LCD_SET_INITLINE 0x40
#define LCD_SET_COLUMN 0x10
#define LCD_SET_PAGE 0xb0
#define LCD_SET_GRAY 0x88
#define LCD_SET_PWM_FRC 0x90
#define LCD_SET_POWER_SAVE 0xa8
#define LCD_REVERSE 0xa6
#define CS_LO and_l(~0x00010000, &GPIO1_OUT)
#define CS_HI or_l( 0x00010000, &GPIO1_OUT)
#define CLK_LO and_l(~0x20000000, &GPIO_OUT)
#define CLK_HI or_l( 0x20000000, &GPIO_OUT)
#define DATA_LO and_l(~0x04000000, &GPIO_OUT)
#define DATA_HI or_l( 0x04000000, &GPIO_OUT)
#define RS_LO and_l(~0x00001000, &GPIO1_OUT)
#define RS_HI or_l( 0x00001000, &GPIO1_OUT)
/* cached settings values */
static bool cached_invert = false;
static bool cached_flip = false;
static int cached_contrast = DEFAULT_CONTRAST_SETTING;
bool initialized = false;
/* Standard low-level byte writer. Requires CLK high on entry */
static inline void _write_byte(unsigned data)
{
asm volatile (
"move.l (%[gpo0]), %%d0 \n" /* Get current state of data line */
"and.l %[dbit], %%d0 \n"
"beq.s 1f \n" /* and set it as previous-state bit */
"bset #8, %[data] \n"
"1: \n"
"move.l %[data], %%d0 \n" /* Compute the 'bit derivative', i.e. a value */
"lsr.l #1, %%d0 \n" /* with 1's where the data changes from the */
"eor.l %%d0, %[data] \n" /* previous state, and 0's where it doesn't */
"swap %[data] \n" /* Shift data to upper byte */
"lsl.l #8, %[data] \n"
"move.l %[cbit], %%d1 \n" /* Prepare mask for flipping CLK */
"or.l %[dbit], %%d1 \n" /* and DATA at once */
"lsl.l #1,%[data] \n" /* Shift out MSB */
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n" /* 1: Flip both CLK and DATA */
".word 0x51fa \n" /* (trapf.w - shadow next insn) */
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n" /* else flip CLK only */
"eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK again */
"lsl.l #1,%[data] \n" /* ..unrolled.. */
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n"
".word 0x51fa \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n"
".word 0x51fa \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n"
".word 0x51fa \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n"
".word 0x51fa \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n"
".word 0x51fa \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n"
".word 0x51fa \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %%d1, (%[gpo0]) \n"
".word 0x51fa \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
: /* outputs */
[data]"+d"(data)
: /* inputs */
[gpo0]"a"(&GPIO_OUT),
[cbit]"d"(0x20000000),
[dbit]"d"(0x04000000)
: /* clobbers */
"d0", "d1"
);
}
/* Fast low-level byte writer. Don't use with high CPU clock.
* Requires CLK high on entry */
static inline void _write_fast(unsigned data)
{
asm volatile (
"move.w %%sr,%%d3 \n" /* Get current interrupt level */
"move.w #0x2700,%%sr \n" /* Disable interrupts */
"move.l (%[gpo0]), %%d0 \n" /* Get current state of data port */
"move.l %%d0, %%d1 \n"
"and.l %[dbit], %%d1 \n" /* Check current state of data line */
"beq.s 1f \n" /* and set it as previous-state bit */
"bset #8, %[data] \n"
"1: \n"
"move.l %[data], %%d1 \n" /* Compute the 'bit derivative', i.e. a value */
"lsr.l #1, %%d1 \n" /* with 1's where the data changes from the */
"eor.l %%d1, %[data] \n" /* previous state, and 0's where it doesn't */
"swap %[data] \n" /* Shift data to upper byte */
"lsl.l #8, %[data] \n"
"move.l %%d0, %%d1 \n" /* precalculate opposite state of clock line */
"eor.l %[cbit], %%d1 \n"
"lsl.l #1,%[data] \n" /* Shift out MSB */
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n" /* 1: Flip data bit */
"eor.l %[dbit], %%d1 \n" /* for both clock states */
"1: \n"
"move.l %%d1, (%[gpo0]) \n" /* Output new state and set CLK */
"move.l %%d0, (%[gpo0]) \n" /* reset CLK */
"lsl.l #1,%[data] \n" /* ..unrolled.. */
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"eor.l %[dbit], %%d1 \n"
"1: \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"eor.l %[dbit], %%d1 \n"
"1: \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"eor.l %[dbit], %%d1 \n"
"1: \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"eor.l %[dbit], %%d1 \n"
"1: \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"eor.l %[dbit], %%d1 \n"
"1: \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"eor.l %[dbit], %%d1 \n"
"1: \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"eor.l %[dbit], %%d1 \n"
"1: \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo0]) \n"
"move.w %%d3, %%sr \n" /* Restore interrupt level */
: /* outputs */
[data]"+d"(data)
: /* inputs */
[gpo0]"a"(&GPIO_OUT),
[cbit]"d"(0x20000000),
[dbit]"d"(0x04000000)
: /* clobbers */
"d0", "d1", "d2", "d3"
);
}
void lcd_write_command(int cmd)
{
RS_LO;
CS_LO;
_write_byte(cmd);
CS_HI;
}
void lcd_write_command_e(int cmd, int data)
{
RS_LO;
CS_LO;
_write_byte(cmd);
_write_byte(data);
CS_HI;
}
void lcd_write_data(const fb_data *p_words, int count)
{
const unsigned char *p_bytes = (const unsigned char *)p_words;
const unsigned char *p_end = (const unsigned char *)(p_words + count);
RS_HI;
CS_LO;
if (cpu_frequency < 50000000)
{
while (p_bytes < p_end)
_write_fast(*p_bytes++);
}
else
{
while (p_bytes < p_end)
_write_byte(*p_bytes++);
}
CS_HI;
}
static void lcd_mono_data(const unsigned char *p_words, int count)
{
unsigned data;
const unsigned char *p_bytes = p_words;
const unsigned char *p_end = p_words + count;
RS_HI;
CS_LO;
if (cpu_frequency < 50000000)
{
while (p_bytes < p_end)
{
data = *p_bytes++;
_write_fast(data);
_write_fast(data);
}
}
else
{
while (p_bytes < p_end)
{
data = *p_bytes++;
_write_byte(data);
_write_byte(data);
}
}
CS_HI;
}
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val)
{
if (val < 0)
val = 0;
else if (val > 63)
val = 63;
cached_contrast = val;
if (initialized)
lcd_write_command_e(LCD_SET_VOLUME, val);
}
bool remote_detect(void)
{
return (GPIO_READ & 0x40000000) == 0;
}
void lcd_on(void)
{
CS_HI;
CLK_HI;
sleep(HZ/100);
lcd_write_command(LCD_SET_DUTY_RATIO);
lcd_write_command(0x70); /* 1/128 */
lcd_write_command(LCD_OSC_ON);
lcd_write_command(LCD_SELECT_DCDC | 2); /* DC/DC 5xboost */
lcd_write_command(LCD_SELECT_RES | 7); /* Regulator resistor: 7.2 */
lcd_write_command(LCD_SET_BIAS | 6); /* 1/11 */
lcd_write_command(LCD_CONTROL_POWER | 7); /* All circuits ON */
sleep(3*HZ/100);
lcd_write_command_e(LCD_SET_GRAY | 0, 0x00);
lcd_write_command_e(LCD_SET_GRAY | 1, 0x00);
lcd_write_command_e(LCD_SET_GRAY | 2, 0x0c);
lcd_write_command_e(LCD_SET_GRAY | 3, 0x00);
lcd_write_command_e(LCD_SET_GRAY | 4, 0xcc);
lcd_write_command_e(LCD_SET_GRAY | 5, 0x00);
lcd_write_command_e(LCD_SET_GRAY | 6, 0xcc);
lcd_write_command_e(LCD_SET_GRAY | 7, 0x0c);
lcd_write_command(LCD_SET_PWM_FRC | 6); /* 3FRC + 12PWM */
lcd_write_command(LCD_DISPLAY_ON | 1); /* display on */
initialized = true;
lcd_set_flip(cached_flip);
lcd_set_contrast(cached_contrast);
lcd_set_invert_display(cached_invert);
}
void lcd_off(void)
{
initialized = false;
CS_HI;
RS_HI;
}
void lcd_poweroff(void)
{
/* Set power save -> Power OFF (VDD - VSS) .. that's it */
if (initialized)
lcd_write_command(LCD_SET_POWER_SAVE | 1);
}
#ifndef BOOTLOADER
/* Monitor remote hotswap */
static void lcd_tick(void)
{
static bool last_status = false;
static int countdown = 0;
bool current_status;
current_status = remote_detect();
/* Only report when the status has changed */
if (current_status != last_status)
{
last_status = current_status;
countdown = current_status ? 20*HZ : 1;
}
else
{
/* Count down until it gets negative */
if (countdown >= 0)
countdown--;
if (current_status)
{
if (!(countdown % 48))
{
queue_broadcast(SYS_REMOTE_PLUGGED, 0);
}
}
else
{
if (countdown == 0)
{
queue_broadcast(SYS_REMOTE_UNPLUGGED, 0);
}
}
}
}
#endif
void lcd_init_device(void)
{
or_l(0x24000000, &GPIO_OUT);
or_l(0x24000000, &GPIO_ENABLE);
or_l(0x24000000, &GPIO_FUNCTION);
or_l(0x00011000, &GPIO1_OUT);
or_l(0x00011000, &GPIO1_ENABLE);
or_l(0x00011000, &GPIO1_FUNCTION);
and_l(~0x40000000, &GPIO_OUT);
and_l(~0x40000000, &GPIO_ENABLE);
or_l(0x40000000, &GPIO_FUNCTION);
lcd_clear_display();
if (remote_detect())
lcd_on();
#ifndef BOOTLOADER
tick_add_task(lcd_tick);
#endif
}
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit_mono(const unsigned char *data, int x, int by, int width,
int bheight, int stride)
{
if (initialized)
{
/* COM48-COM63 are not connected, so we need to skip those */
while (bheight--)
{
lcd_write_command(LCD_SET_PAGE | ((by > 5 ? by + 2 : by) & 0xf));
lcd_write_command_e(LCD_SET_COLUMN | ((x >> 4) & 0xf), x & 0xf);
lcd_mono_data(data, width);
data += stride;
by++;
}
}
}
/* TODO: implement grey blit function */
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit_grey_phase(unsigned char *values, unsigned char *phases,
int x, int by, int width, int bheight, int stride)
{
(void)values;
(void)phases;
(void)x;
(void)by;
(void)width;
(void)bheight;
(void)stride;
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
int y;
if (initialized)
{
for(y = 0;y < LCD_FBHEIGHT;y++) {
/* Copy display bitmap to hardware.
The COM48-COM63 lines are not connected so we have to skip
them. Further, the column address doesn't wrap, so we
have to update one page at a time. */
lcd_write_command(LCD_SET_PAGE | (y>5?y+2:y));
lcd_write_command_e(LCD_SET_COLUMN | 0, 0);
lcd_write_data(lcd_framebuffer[y], LCD_WIDTH);
}
}
}
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
if (initialized)
{
int ymax;
/* The Y coordinates have to work on even 8 pixel rows */
ymax = (y + height-1) >> 3;
y >>= 3;
if(x + width > LCD_WIDTH)
width = LCD_WIDTH - x;
if (width <= 0)
return; /* nothing left to do, 0 is harmful to lcd_write_data() */
if(ymax >= LCD_FBHEIGHT)
ymax = LCD_FBHEIGHT-1;
/* Copy specified rectangle bitmap to hardware
COM48-COM63 are not connected, so we need to skip those */
for (; y <= ymax; y++)
{
lcd_write_command(LCD_SET_PAGE | ((y > 5?y + 2:y) & 0xf));
lcd_write_command_e(LCD_SET_COLUMN | ((x >> 4) & 0xf), x & 0xf);
lcd_write_data(&lcd_framebuffer[y][x], width);
}
}
}
void lcd_set_invert_display(bool yesno)
{
cached_invert = yesno;
if(initialized)
lcd_write_command(LCD_REVERSE | yesno);
}
void lcd_set_flip(bool yesno)
{
cached_flip = yesno;
if(initialized) {
if(yesno) {
lcd_write_command(LCD_SELECT_ADC | 0);
lcd_write_command(LCD_SELECT_SHL | 0);
lcd_write_command_e(LCD_SET_COM0, 16);
} else {
lcd_write_command(LCD_SELECT_ADC | 1);
lcd_write_command(LCD_SELECT_SHL | 8);
lcd_write_command_e(LCD_SET_COM0, 0);
}
}
}