/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 by Linus Nielsen Feltzing * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "file.h" #include "lcd.h" #include "scroll_engine.h" /* The LCD in the iAudio M3/M5/X5 remote control is a Tomato LSI 0350 */ #define LCD_SET_DUTY_RATIO 0x48 #define LCD_SELECT_ADC 0xa0 #define LCD_SELECT_SHL 0xc0 #define LCD_SET_COM0 0x44 #define LCD_OSC_ON 0xab #define LCD_SELECT_DCDC 0x64 #define LCD_SELECT_RES 0x20 #define LCD_SET_VOLUME 0x81 #define LCD_SET_BIAS 0x50 #define LCD_CONTROL_POWER 0x28 #define LCD_DISPLAY_ON 0xae #define LCD_SET_INITLINE 0x40 #define LCD_SET_COLUMN 0x10 #define LCD_SET_PAGE 0xb0 #define LCD_SET_GRAY 0x88 #define LCD_SET_PWM_FRC 0x90 #define LCD_SET_POWER_SAVE 0xa8 #define LCD_REVERSE 0xa6 #define CS_LO and_l(~0x00010000, &GPIO1_OUT) #define CS_HI or_l( 0x00010000, &GPIO1_OUT) #define CLK_LO and_l(~0x20000000, &GPIO_OUT) #define CLK_HI or_l( 0x20000000, &GPIO_OUT) #define DATA_LO and_l(~0x04000000, &GPIO_OUT) #define DATA_HI or_l( 0x04000000, &GPIO_OUT) #define RS_LO and_l(~0x00001000, &GPIO1_OUT) #define RS_HI or_l( 0x00001000, &GPIO1_OUT) /* cached settings values */ static bool cached_invert = false; static bool cached_flip = false; static int cached_contrast = DEFAULT_CONTRAST_SETTING; bool initialized = false; /* Standard low-level byte writer. Requires CLK high on entry */ static inline void _write_byte(unsigned data) { asm volatile ( "move.l (%[gpo0]), %%d0 \n" /* Get current state of data line */ "and.l %[dbit], %%d0 \n" "beq.s 1f \n" /* and set it as previous-state bit */ "bset #8, %[data] \n" "1: \n" "move.l %[data], %%d0 \n" /* Compute the 'bit derivative', i.e. a value */ "lsr.l #1, %%d0 \n" /* with 1's where the data changes from the */ "eor.l %%d0, %[data] \n" /* previous state, and 0's where it doesn't */ "swap %[data] \n" /* Shift data to upper byte */ "lsl.l #8, %[data] \n" "move.l %[cbit], %%d1 \n" /* Prepare mask for flipping CLK */ "or.l %[dbit], %%d1 \n" /* and DATA at once */ "lsl.l #1,%[data] \n" /* Shift out MSB */ "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" /* 1: Flip both CLK and DATA */ ".word 0x51fa \n" /* (trapf.w - shadow next insn) */ "1: \n" "eor.l %[cbit], (%[gpo0]) \n" /* else flip CLK only */ "eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK again */ "lsl.l #1,%[data] \n" /* ..unrolled.. */ "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" ".word 0x51fa \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" ".word 0x51fa \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" ".word 0x51fa \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" ".word 0x51fa \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" ".word 0x51fa \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" ".word 0x51fa \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %%d1, (%[gpo0]) \n" ".word 0x51fa \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" : /* outputs */ [data]"+d"(data) : /* inputs */ [gpo0]"a"(&GPIO_OUT), [cbit]"d"(0x20000000), [dbit]"d"(0x04000000) : /* clobbers */ "d0", "d1" ); } /* Fast low-level byte writer. Don't use with high CPU clock. * Requires CLK high on entry */ static inline void _write_fast(unsigned data) { asm volatile ( "move.w %%sr,%%d3 \n" /* Get current interrupt level */ "move.w #0x2700,%%sr \n" /* Disable interrupts */ "move.l (%[gpo0]), %%d0 \n" /* Get current state of data port */ "move.l %%d0, %%d1 \n" "and.l %[dbit], %%d1 \n" /* Check current state of data line */ "beq.s 1f \n" /* and set it as previous-state bit */ "bset #8, %[data] \n" "1: \n" "move.l %[data], %%d1 \n" /* Compute the 'bit derivative', i.e. a value */ "lsr.l #1, %%d1 \n" /* with 1's where the data changes from the */ "eor.l %%d1, %[data] \n" /* previous state, and 0's where it doesn't */ "swap %[data] \n" /* Shift data to upper byte */ "lsl.l #8, %[data] \n" "move.l %%d0, %%d1 \n" /* precalculate opposite state of clock line */ "eor.l %[cbit], %%d1 \n" "lsl.l #1,%[data] \n" /* Shift out MSB */ "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" /* 1: Flip data bit */ "eor.l %[dbit], %%d1 \n" /* for both clock states */ "1: \n" "move.l %%d1, (%[gpo0]) \n" /* Output new state and set CLK */ "move.l %%d0, (%[gpo0]) \n" /* reset CLK */ "lsl.l #1,%[data] \n" /* ..unrolled.. */ "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "eor.l %[dbit], %%d1 \n" "1: \n" "move.l %%d1, (%[gpo0]) \n" "move.l %%d0, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "eor.l %[dbit], %%d1 \n" "1: \n" "move.l %%d1, (%[gpo0]) \n" "move.l %%d0, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "eor.l %[dbit], %%d1 \n" "1: \n" "move.l %%d1, (%[gpo0]) \n" "move.l %%d0, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "eor.l %[dbit], %%d1 \n" "1: \n" "move.l %%d1, (%[gpo0]) \n" "move.l %%d0, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "eor.l %[dbit], %%d1 \n" "1: \n" "move.l %%d1, (%[gpo0]) \n" "move.l %%d0, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "eor.l %[dbit], %%d1 \n" "1: \n" "move.l %%d1, (%[gpo0]) \n" "move.l %%d0, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "eor.l %[dbit], %%d1 \n" "1: \n" "move.l %%d1, (%[gpo0]) \n" "move.l %%d0, (%[gpo0]) \n" "move.w %%d3, %%sr \n" /* Restore interrupt level */ : /* outputs */ [data]"+d"(data) : /* inputs */ [gpo0]"a"(&GPIO_OUT), [cbit]"d"(0x20000000), [dbit]"d"(0x04000000) : /* clobbers */ "d0", "d1", "d2", "d3" ); } void lcd_write_command(int cmd) { RS_LO; CS_LO; _write_byte(cmd); CS_HI; } void lcd_write_command_e(int cmd, int data) { RS_LO; CS_LO; _write_byte(cmd); _write_byte(data); CS_HI; } void lcd_write_data(const fb_data *p_words, int count) { const unsigned char *p_bytes = (const unsigned char *)p_words; const unsigned char *p_end = (const unsigned char *)(p_words + count); RS_HI; CS_LO; if (cpu_frequency < 50000000) { while (p_bytes < p_end) _write_fast(*p_bytes++); } else { while (p_bytes < p_end) _write_byte(*p_bytes++); } CS_HI; } static void lcd_mono_data(const unsigned char *p_words, int count) { unsigned data; const unsigned char *p_bytes = p_words; const unsigned char *p_end = p_words + count; RS_HI; CS_LO; if (cpu_frequency < 50000000) { while (p_bytes < p_end) { data = *p_bytes++; _write_fast(data); _write_fast(data); } } else { while (p_bytes < p_end) { data = *p_bytes++; _write_byte(data); _write_byte(data); } } CS_HI; } int lcd_default_contrast(void) { return DEFAULT_CONTRAST_SETTING; } void lcd_set_contrast(int val) { if (val < 0) val = 0; else if (val > 63) val = 63; cached_contrast = val; if (initialized) lcd_write_command_e(LCD_SET_VOLUME, val); } bool remote_detect(void) { return (GPIO_READ & 0x40000000) == 0; } void lcd_on(void) { CS_HI; CLK_HI; sleep(HZ/100); lcd_write_command(LCD_SET_DUTY_RATIO); lcd_write_command(0x70); /* 1/128 */ lcd_write_command(LCD_OSC_ON); lcd_write_command(LCD_SELECT_DCDC | 2); /* DC/DC 5xboost */ lcd_write_command(LCD_SELECT_RES | 7); /* Regulator resistor: 7.2 */ lcd_write_command(LCD_SET_BIAS | 6); /* 1/11 */ lcd_write_command(LCD_CONTROL_POWER | 7); /* All circuits ON */ sleep(3*HZ/100); lcd_write_command_e(LCD_SET_GRAY | 0, 0x00); lcd_write_command_e(LCD_SET_GRAY | 1, 0x00); lcd_write_command_e(LCD_SET_GRAY | 2, 0x0c); lcd_write_command_e(LCD_SET_GRAY | 3, 0x00); lcd_write_command_e(LCD_SET_GRAY | 4, 0xcc); lcd_write_command_e(LCD_SET_GRAY | 5, 0x00); lcd_write_command_e(LCD_SET_GRAY | 6, 0xcc); lcd_write_command_e(LCD_SET_GRAY | 7, 0x0c); lcd_write_command(LCD_SET_PWM_FRC | 6); /* 3FRC + 12PWM */ lcd_write_command(LCD_DISPLAY_ON | 1); /* display on */ initialized = true; lcd_set_flip(cached_flip); lcd_set_contrast(cached_contrast); lcd_set_invert_display(cached_invert); } void lcd_off(void) { initialized = false; CS_HI; RS_HI; } void lcd_poweroff(void) { /* Set power save -> Power OFF (VDD - VSS) .. that's it */ if (initialized) lcd_write_command(LCD_SET_POWER_SAVE | 1); } #ifndef BOOTLOADER /* Monitor remote hotswap */ static void lcd_tick(void) { static bool last_status = false; static int countdown = 0; bool current_status; current_status = remote_detect(); /* Only report when the status has changed */ if (current_status != last_status) { last_status = current_status; countdown = current_status ? 20*HZ : 1; } else { /* Count down until it gets negative */ if (countdown >= 0) countdown--; if (current_status) { if (!(countdown % 48)) { queue_broadcast(SYS_REMOTE_PLUGGED, 0); } } else { if (countdown == 0) { queue_broadcast(SYS_REMOTE_UNPLUGGED, 0); } } } } #endif void lcd_init_device(void) { or_l(0x24000000, &GPIO_OUT); or_l(0x24000000, &GPIO_ENABLE); or_l(0x24000000, &GPIO_FUNCTION); or_l(0x00011000, &GPIO1_OUT); or_l(0x00011000, &GPIO1_ENABLE); or_l(0x00011000, &GPIO1_FUNCTION); and_l(~0x40000000, &GPIO_OUT); and_l(~0x40000000, &GPIO_ENABLE); or_l(0x40000000, &GPIO_FUNCTION); lcd_clear_display(); if (remote_detect()) lcd_on(); #ifndef BOOTLOADER tick_add_task(lcd_tick); #endif } /* Performance function that works with an external buffer note that by and bheight are in 8-pixel units! */ void lcd_blit_mono(const unsigned char *data, int x, int by, int width, int bheight, int stride) { if (initialized) { /* COM48-COM63 are not connected, so we need to skip those */ while (bheight--) { lcd_write_command(LCD_SET_PAGE | ((by > 5 ? by + 2 : by) & 0xf)); lcd_write_command_e(LCD_SET_COLUMN | ((x >> 4) & 0xf), x & 0xf); lcd_mono_data(data, width); data += stride; by++; } } } /* TODO: implement grey blit function */ /* Performance function that works with an external buffer note that by and bheight are in 8-pixel units! */ void lcd_blit_grey_phase(unsigned char *values, unsigned char *phases, int x, int by, int width, int bheight, int stride) { (void)values; (void)phases; (void)x; (void)by; (void)width; (void)bheight; (void)stride; } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) ICODE_ATTR; void lcd_update(void) { int y; if (initialized) { for(y = 0;y < LCD_FBHEIGHT;y++) { /* Copy display bitmap to hardware. The COM48-COM63 lines are not connected so we have to skip them. Further, the column address doesn't wrap, so we have to update one page at a time. */ lcd_write_command(LCD_SET_PAGE | (y>5?y+2:y)); lcd_write_command_e(LCD_SET_COLUMN | 0, 0); lcd_write_data(lcd_framebuffer[y], LCD_WIDTH); } } } /* Update a fraction of the display. */ void lcd_update_rect(int, int, int, int) ICODE_ATTR; void lcd_update_rect(int x, int y, int width, int height) { if (initialized) { int ymax; /* The Y coordinates have to work on even 8 pixel rows */ ymax = (y + height-1) >> 3; y >>= 3; if(x + width > LCD_WIDTH) width = LCD_WIDTH - x; if (width <= 0) return; /* nothing left to do, 0 is harmful to lcd_write_data() */ if(ymax >= LCD_FBHEIGHT) ymax = LCD_FBHEIGHT-1; /* Copy specified rectangle bitmap to hardware COM48-COM63 are not connected, so we need to skip those */ for (; y <= ymax; y++) { lcd_write_command(LCD_SET_PAGE | ((y > 5?y + 2:y) & 0xf)); lcd_write_command_e(LCD_SET_COLUMN | ((x >> 4) & 0xf), x & 0xf); lcd_write_data(&lcd_framebuffer[y][x], width); } } } void lcd_set_invert_display(bool yesno) { cached_invert = yesno; if(initialized) lcd_write_command(LCD_REVERSE | yesno); } void lcd_set_flip(bool yesno) { cached_flip = yesno; if(initialized) { if(yesno) { lcd_write_command(LCD_SELECT_ADC | 0); lcd_write_command(LCD_SELECT_SHL | 0); lcd_write_command_e(LCD_SET_COM0, 16); } else { lcd_write_command(LCD_SELECT_ADC | 1); lcd_write_command(LCD_SELECT_SHL | 8); lcd_write_command_e(LCD_SET_COM0, 0); } } }