rockbox/apps/plugins/fft/fft.c

1219 lines
34 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 Delyan Kratunov
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "plugin.h"
#include "lib/helper.h"
#include "lib/xlcd.h"
#include "math.h"
#include "thread.h"
#ifndef HAVE_LCD_COLOR
#include "lib/grey.h"
#endif
PLUGIN_HEADER
#ifndef HAVE_LCD_COLOR
GREY_INFO_STRUCT
#endif
#if CONFIG_KEYPAD == ARCHOS_AV300_PAD
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_F3
# define FFT_WINDOW BUTTON_F1
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_OFF
#elif (CONFIG_KEYPAD == IRIVER_H100_PAD) || \
(CONFIG_KEYPAD == IRIVER_H300_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_REC
# define FFT_WINDOW BUTTON_SELECT
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_OFF
#elif (CONFIG_KEYPAD == IPOD_4G_PAD) || \
(CONFIG_KEYPAD == IPOD_3G_PAD) || \
(CONFIG_KEYPAD == IPOD_1G2G_PAD)
# define MINESWP_SCROLLWHEEL
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION (BUTTON_SELECT | BUTTON_LEFT)
# define FFT_WINDOW (BUTTON_SELECT | BUTTON_RIGHT)
# define FFT_SCALE BUTTON_MENU
# define FFT_QUIT (BUTTON_SELECT | BUTTON_MENU)
#elif (CONFIG_KEYPAD == IAUDIO_X5M5_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_SELECT
# define FFT_WINDOW BUTTON_PLAY
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == GIGABEAT_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_SCALE BUTTON_UP
# define FFT_ORIENTATION BUTTON_SELECT
# define FFT_WINDOW BUTTON_A
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == SANSA_E200_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_SELECT
# define FFT_WINDOW BUTTON_REC
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == SANSA_FUZE_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION (BUTTON_SELECT | BUTTON_LEFT)
# define FFT_WINDOW (BUTTON_SELECT | BUTTON_RIGHT)
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == SANSA_C200_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_UP
# define FFT_WINDOW BUTTON_REC
# define FFT_SCALE BUTTON_SELECT
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == SANSA_M200_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_UP
# define FFT_WINDOW BUTTON_DOWN
# define FFT_SCALE BUTTON_SELECT
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == SANSA_CLIP_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_UP
# define FFT_WINDOW BUTTON_HOME
# define FFT_SCALE BUTTON_SELECT
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == IRIVER_H10_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_FF
# define FFT_WINDOW BUTTON_SCROLL_UP
# define FFT_SCALE BUTTON_REW
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == GIGABEAT_S_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_MENU
# define FFT_WINDOW BUTTON_PREV
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_BACK
#elif (CONFIG_KEYPAD == MROBE100_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_PLAY
# define FFT_WINDOW BUTTON_SELECT
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_POWER
#elif CONFIG_KEYPAD == IAUDIO_M3_PAD
# define FFT_PREV_GRAPH BUTTON_RC_REW
# define FFT_NEXT_GRAPH BUTTON_RC_FF
# define FFT_ORIENTATION BUTTON_RC_MODE
# define FFT_WINDOW BUTTON_RC_PLAY
# define FFT_SCALE BUTTON_RC_VOL_UP
# define FFT_QUIT BUTTON_RC_REC
#elif (CONFIG_KEYPAD == COWON_D2_PAD)
# define FFT_QUIT BUTTON_POWER
# define FFT_PREV_GRAPH BUTTON_PLUS
# define FFT_NEXT_GRAPH BUTTON_MINUS
#elif CONFIG_KEYPAD == CREATIVEZVM_PAD
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_MENU
# define FFT_WINDOW BUTTON_SELECT
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_BACK
#elif CONFIG_KEYPAD == PHILIPS_HDD1630_PAD
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_SELECT
# define FFT_WINDOW BUTTON_MENU
# define FFT_SCALE BUTTON_UP
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == SAMSUNG_YH_PAD)
# define FFT_PREV_GRAPH BUTTON_LEFT
# define FFT_NEXT_GRAPH BUTTON_RIGHT
# define FFT_ORIENTATION BUTTON_UP
# define FFT_WINDOW BUTTON_DOWN
# define FFT_SCALE BUTTON_FFWD
# define FFT_QUIT BUTTON_PLAY
#elif (CONFIG_KEYPAD == MROBE500_PAD)
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == ONDAVX747_PAD)
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == ONDAVX777_PAD)
# define FFT_QUIT BUTTON_POWER
#elif (CONFIG_KEYPAD == PBELL_VIBE500_PAD)
# define FFT_PREV_GRAPH BUTTON_PREV
# define FFT_NEXT_GRAPH BUTTON_NEXT
# define FFT_ORIENTATION BUTTON_MENU
# define FFT_WINDOW BUTTON_OK
# define FFT_SCALE BUTTON_PLAY
# define FFT_QUIT BUTTON_REC
#else
#error No keymap defined!
#endif
#ifdef HAVE_TOUCHSCREEN
#ifndef FFT_PREV_GRAPH
# define FFT_PREV_GRAPH BUTTON_MIDLEFT
#endif
#ifndef FFT_NEXT_GRAPH
# define FFT_NEXT_GRAPH BUTTON_MIDRIGHT
#endif
#ifndef FFT_ORIENTATION
# define FFT_ORIENTATION BUTTON_CENTER
#endif
#ifndef FFT_WINDOW
# define FFT_WINDOW BUTTON_TOPLEFT
#endif
#ifndef FFT_SCALE
# define FFT_SCALE BUTTON_TOPRIGHT
#endif
#ifndef FFT_QUIT
# define FFT_QUIT BUTTON_BOTTOMLEFT
#endif
#endif
#ifdef HAVE_LCD_COLOR
#include "pluginbitmaps/fft_colors.h"
#endif
#include "kiss_fftr.h"
#include "_kiss_fft_guts.h" /* sizeof(struct kiss_fft_state) */
#include "const.h"
#if (LCD_WIDTH < LCD_HEIGHT)
#define LCD_SIZE LCD_HEIGHT
#else
#define LCD_SIZE LCD_WIDTH
#endif
#if (LCD_SIZE < 512)
#define FFT_SIZE 2048 /* 512*4 */
#elif (LCD_SIZE < 1024)
#define FFT_SIZE 4096 /* 1024*4 */
#else
#define FFT_SIZE 8192 /* 2048*4 */
#endif
#define ARRAYSIZE_IN (FFT_SIZE)
#define ARRAYSIZE_OUT (FFT_SIZE/2)
#define ARRAYSIZE_PLOT (FFT_SIZE/4)
#define BUFSIZE_FFT (sizeof(struct kiss_fft_state)+sizeof(kiss_fft_cpx)*(FFT_SIZE-1))
#define BUFSIZE_FFTR (BUFSIZE_FFT+sizeof(struct kiss_fftr_state)+sizeof(kiss_fft_cpx)*(FFT_SIZE*3/2))
#define BUFSIZE BUFSIZE_FFTR
#define FFT_ALLOC kiss_fftr_alloc
#define FFT_FFT kiss_fftr
#define FFT_CFG kiss_fftr_cfg
#define __COEFF(type,size) type##_##size
#define _COEFF(x, y) __COEFF(x,y) /* force the preprocessor to evaluate FFT_SIZE) */
#define HANN_COEFF _COEFF(hann, FFT_SIZE)
#define HAMMING_COEFF _COEFF(hamming, FFT_SIZE)
/****************************** Globals ****************************/
static kiss_fft_scalar input[ARRAYSIZE_IN];
static kiss_fft_cpx output[ARRAYSIZE_OUT];
static int32_t plot[ARRAYSIZE_PLOT];
static char buffer[BUFSIZE];
#if LCD_DEPTH > 1 /* greyscale or color, enable spectrogram */
#define MODES_COUNT 3
#else
#define MODES_COUNT 2
#endif
const unsigned char* modes_text[] = { "Lines", "Bars", "Spectrogram" };
const unsigned char* scales_text[] = { "Linear scale", "Logarithmic scale" };
const unsigned char* window_text[] = { "Hamming window", "Hann window" };
struct mutex input_mutex;
bool input_thread_run = true;
bool input_thread_has_data = false;
struct {
int32_t mode;
bool logarithmic;
bool orientation_vertical;
int window_func;
struct {
int column;
int row;
} spectrogram;
struct {
bool orientation;
bool mode;
bool scale;
} changed;
} graph_settings;
#define COLORS BMPWIDTH_fft_colors
/************************* End of globals *************************/
/************************* Math functions *************************/
#define QLOG_MAX 286286
#define QLIN_MAX 1534588906
#define QLN_10 float_q16(2.302585093)
#define LIN_MAX (QLIN_MAX >> 16)
/* Returns logarithmically scaled values in S15.16 format */
inline int32_t get_log_value(int32_t value)
{
return Q16_DIV(fp16_log(value), QLN_10);
}
/* Apply window function to input
* 0 - Hamming window
* 1 - Hann window */
#define WINDOW_COUNT 2
void apply_window_func(char mode)
{
switch(mode)
{
case 0: /* Hamming window */
{
size_t i;
for (i = 0; i < ARRAYSIZE_IN; ++i)
{
input[i] = Q15_MUL(input[i] << 15, HAMMING_COEFF[i]) >> 15;
}
break;
}
case 1: /* Hann window */
{
size_t i;
for (i = 0; i < ARRAYSIZE_IN; ++i)
{
input[i] = Q15_MUL(input[i] << 15, HANN_COEFF[i]) >> 15;
}
break;
}
}
}
/* Calculates the magnitudes from complex numbers and returns the maximum */
int32_t calc_magnitudes(bool logarithmic)
{
int64_t tmp;
size_t i;
int32_t max = -2147483647;
/* Calculate the magnitude, discarding the phase.
* The sum of the squares can easily overflow the 15-bit (s15.16)
* requirement for fsqrt, so we scale the data down */
for (i = 0; i < ARRAYSIZE_PLOT; ++i)
{
tmp = output[i].r * output[i].r + output[i].i * output[i].i;
tmp <<= 16;
tmp = fsqrt64(tmp, 16);
if (logarithmic)
tmp = get_log_value(tmp & 0x7FFFFFFF);
plot[i] = tmp;
if (plot[i] > max)
max = plot[i];
}
return max;
}
/************************ End of math functions ***********************/
/********************* Plotting functions (modes) *********************/
void draw_lines_vertical(void);
void draw_lines_horizontal(void);
void draw_bars_vertical(void);
void draw_bars_horizontal(void);
void draw_spectrogram_vertical(void);
void draw_spectrogram_horizontal(void);
void draw(const unsigned char* message)
{
static uint32_t show_message = 0;
static unsigned char* last_message = 0;
static char last_mode = 0;
static bool last_orientation = true, last_scale = true;
if (message != 0)
{
last_message = (unsigned char*) message;
show_message = 5;
}
if(last_mode != graph_settings.mode)
{
last_mode = graph_settings.mode;
graph_settings.changed.mode = true;
}
if(last_scale != graph_settings.logarithmic)
{
last_scale = graph_settings.logarithmic;
graph_settings.changed.scale = true;
}
if(last_orientation != graph_settings.orientation_vertical)
{
last_orientation = graph_settings.orientation_vertical;
graph_settings.changed.orientation = true;
}
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(LCD_DEFAULT_FG);
rb->lcd_set_background(LCD_DEFAULT_BG);
#else
grey_set_foreground(GREY_BLACK);
grey_set_background(GREY_WHITE);
#endif
switch (graph_settings.mode)
{
default:
case 0: {
#ifdef HAVE_LCD_COLOR
rb->lcd_clear_display();
#else
grey_clear_display();
#endif
if (graph_settings.orientation_vertical)
draw_lines_vertical();
else
draw_lines_horizontal();
break;
}
case 1: {
#ifdef HAVE_LCD_COLOR
rb->lcd_clear_display();
#else
grey_clear_display();
#endif
if(graph_settings.orientation_vertical)
draw_bars_vertical();
else
draw_bars_horizontal();
break;
}
case 2: {
if(graph_settings.orientation_vertical)
draw_spectrogram_vertical();
else
draw_spectrogram_horizontal();
break;
}
}
if (show_message > 0)
{
/* We have a message to show */
int x, y;
#ifdef HAVE_LCD_COLOR
rb->lcd_getstringsize(last_message, &x, &y);
#else
grey_getstringsize(last_message, &x, &y);
#endif
/* x and y give the size of the box for the popup */
x += 6; /* 3 px of horizontal padding and */
y += 4; /* 2 px of vertical padding */
/* In vertical spectrogram mode, leave space for the popup
* before actually drawing it (if space is needed) */
if(graph_settings.mode == 2 &&
graph_settings.orientation_vertical &&
graph_settings.spectrogram.column > LCD_WIDTH-x-2)
{
#ifdef HAVE_LCD_COLOR
xlcd_scroll_left(graph_settings.spectrogram.column -
(LCD_WIDTH - x - 1));
#else
grey_scroll_left(graph_settings.spectrogram.column -
(LCD_WIDTH - x - 1));
#endif
graph_settings.spectrogram.column = LCD_WIDTH - x - 2;
}
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(LCD_DARKGRAY);
rb->lcd_fillrect(LCD_WIDTH-1-x, 0, LCD_WIDTH-1, y);
rb->lcd_set_foreground(LCD_DEFAULT_FG);
rb->lcd_set_background(LCD_DARKGRAY);
rb->lcd_putsxy(LCD_WIDTH-1-x+3, 2, last_message);
rb->lcd_set_background(LCD_DEFAULT_BG);
#else
grey_set_foreground(GREY_LIGHTGRAY);
grey_fillrect(LCD_WIDTH-1-x, 0, LCD_WIDTH-1, y);
grey_set_foreground(GREY_BLACK);
grey_set_background(GREY_LIGHTGRAY);
grey_putsxy(LCD_WIDTH-1-x+3, 2, last_message);
grey_set_background(GREY_WHITE);
#endif
show_message--;
}
else if(last_message != 0)
{
if(graph_settings.mode != 2)
{
/* These modes clear the screen themselves */
last_message = 0;
}
else /* Spectrogram mode - need to erase the popup */
{
int x, y;
#ifdef HAVE_LCD_COLOR
rb->lcd_getstringsize(last_message, &x, &y);
#else
grey_getstringsize(last_message, &x, &y);
#endif
/* Recalculate the size */
x += 6; /* 3 px of horizontal padding and */
y += 4; /* 2 px of vertical padding */
if(!graph_settings.orientation_vertical)
{
/* In horizontal spectrogram mode, just scroll up by Y lines */
#ifdef HAVE_LCD_COLOR
xlcd_scroll_up(y);
#else
grey_scroll_up(y);
#endif
graph_settings.spectrogram.row -= y;
if(graph_settings.spectrogram.row < 0)
graph_settings.spectrogram.row = 0;
}
else
{
/* In vertical spectrogram mode, erase the popup */
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(LCD_DEFAULT_BG);
rb->lcd_fillrect(LCD_WIDTH-2-x, 0, LCD_WIDTH-1, y);
rb->lcd_set_foreground(LCD_DEFAULT_FG);
#else
grey_set_foreground(GREY_WHITE);
grey_fillrect(LCD_WIDTH-2-x, 0, LCD_WIDTH-1, y);
grey_set_foreground(GREY_BLACK);
#endif
}
last_message = 0;
}
}
#ifdef HAVE_LCD_COLOR
rb->lcd_update();
#else
grey_update();
#endif
graph_settings.changed.mode = false;
graph_settings.changed.orientation = false;
graph_settings.changed.scale = false;
}
void draw_lines_vertical(void)
{
static int32_t max = 0, vfactor = 0, vfactor_count = 0;
static const int32_t hfactor =
Q16_DIV(LCD_WIDTH << 16, (ARRAYSIZE_PLOT) << 16),
bins_per_pixel = (ARRAYSIZE_PLOT) / LCD_WIDTH;
static bool old_scale = true;
if (old_scale != graph_settings.logarithmic)
old_scale = graph_settings.logarithmic, max = 0; /* reset the graph on scaling mode change */
int32_t new_max = calc_magnitudes(graph_settings.logarithmic);
if (new_max > max)
{
max = new_max;
vfactor = Q16_DIV(LCD_HEIGHT << 16, max); /* s15.16 */
vfactor_count = Q16_DIV(vfactor, bins_per_pixel << 16); /* s15.16 */
}
if (new_max == 0 || max == 0) /* nothing to draw */
return;
/* take the average of neighboring bins
* if we have to scale the graph horizontally */
int64_t bins_avg = 0;
bool draw = true;
int32_t i;
for (i = 0; i < ARRAYSIZE_PLOT; ++i)
{
int32_t x = 0, y = 0;
x = Q16_MUL(hfactor, i << 16) >> 16;
//x = (x + (1 << 15)) >> 16;
if (hfactor < 65536) /* hfactor < 0, graph compression */
{
draw = false;
bins_avg += plot[i];
/* fix the division by zero warning:
* bins_per_pixel is zero when the graph is expanding;
* execution won't even reach this point - this is a dummy constant
*/
const int32_t div = bins_per_pixel > 0 ? bins_per_pixel : 1;
if ((i + 1) % div == 0)
{
y = Q16_MUL(vfactor_count, bins_avg) >> 16;
bins_avg = 0;
draw = true;
}
}
else
{
y = Q16_MUL(vfactor, plot[i]) >> 16;
draw = true;
}
if (draw)
{
#ifdef HAVE_LCD_COLOR
rb->lcd_vline(x, LCD_HEIGHT-1, LCD_HEIGHT-y-1);
#else
grey_vline(x, LCD_HEIGHT-1, LCD_HEIGHT-y-1);
#endif
}
}
}
void draw_lines_horizontal(void)
{
static int max = 0;
static const int32_t vfactor =
Q16_DIV(LCD_HEIGHT << 16, (ARRAYSIZE_PLOT) << 16),
bins_per_pixel = (ARRAYSIZE_PLOT) / LCD_HEIGHT;
if (graph_settings.changed.scale)
max = 0; /* reset the graph on scaling mode change */
int32_t new_max = calc_magnitudes(graph_settings.logarithmic);
if (new_max > max)
max = new_max;
if (new_max == 0 || max == 0) /* nothing to draw */
return;
int32_t hfactor;
hfactor = Q16_DIV((LCD_WIDTH - 1) << 16, max); /* s15.16 */
/* take the average of neighboring bins
* if we have to scale the graph horizontally */
int64_t bins_avg = 0;
bool draw = true;
int32_t i;
for (i = 0; i < ARRAYSIZE_PLOT; ++i)
{
int32_t x = 0, y = 0;
y = Q16_MUL(vfactor, i << 16) + (1 << 15);
y >>= 16;
if (vfactor < 65536) /* vfactor < 0, graph compression */
{
draw = false;
bins_avg += plot[i];
/* fix the division by zero warning:
* bins_per_pixel is zero when the graph is expanding;
* execution won't even reach this point - this is a dummy constant
*/
const int32_t div = bins_per_pixel > 0 ? bins_per_pixel : 1;
if ((i + 1) % div == 0)
{
bins_avg = Q16_DIV(bins_avg, div << 16);
x = Q16_MUL(hfactor, bins_avg) >> 16;
bins_avg = 0;
draw = true;
}
}
else
{
y = Q16_MUL(hfactor, plot[i]) >> 16;
draw = true;
}
if (draw)
{
#ifdef HAVE_LCD_COLOR
rb->lcd_hline(0, x, y);
#else
grey_hline(0, x, y);
#endif
}
}
}
void draw_bars_vertical(void)
{
static const unsigned int bars = 20, border = 2, items = ARRAYSIZE_PLOT
/ bars, width = (LCD_WIDTH - ((bars - 1) * border)) / bars;
calc_magnitudes(graph_settings.logarithmic);
uint64_t bars_values[bars], bars_max = 0, avg = 0;
unsigned int i, bars_idx = 0;
for (i = 0; i < ARRAYSIZE_PLOT; ++i)
{
avg += plot[i];
if ((i + 1) % items == 0)
{
/* Calculate the average value and keep the fractional part
* for some added precision */
avg = Q16_DIV(avg, items << 16);
bars_values[bars_idx] = avg;
if (bars_values[bars_idx] > bars_max)
bars_max = bars_values[bars_idx];
bars_idx++;
avg = 0;
}
}
if(bars_max == 0) /* nothing to draw */
return;
/* Give the graph some headroom */
bars_max = Q16_MUL(bars_max, float_q16(1.1));
uint64_t vfactor = Q16_DIV(LCD_HEIGHT << 16, bars_max);
for (i = 0; i < bars; ++i)
{
int x = (i) * (border + width);
int y;
y = Q16_MUL(vfactor, bars_values[i]) + (1 << 15);
y >>= 16;
#ifdef HAVE_LCD_COLOR
rb->lcd_fillrect(x, LCD_HEIGHT - y - 1, width, y);
#else
grey_fillrect(x, LCD_HEIGHT - y - 1, width, y);
#endif
}
}
void draw_bars_horizontal(void)
{
static const unsigned int bars = 14, border = 3, items = ARRAYSIZE_PLOT
/ bars, height = (LCD_HEIGHT - ((bars - 1) * border)) / bars;
calc_magnitudes(graph_settings.logarithmic);
int64_t bars_values[bars], bars_max = 0, avg = 0;
unsigned int i, bars_idx = 0;
for (i = 0; i < ARRAYSIZE_PLOT; ++i)
{
avg += plot[i];
if ((i + 1) % items == 0)
{
/* Calculate the average value and keep the fractional part
* for some added precision */
avg = Q16_DIV(avg, items << 16); /* s15.16 */
bars_values[bars_idx] = avg;
if (bars_values[bars_idx] > bars_max)
bars_max = bars_values[bars_idx];
bars_idx++;
avg = 0;
}
}
if(bars_max == 0) /* nothing to draw */
return;
/* Give the graph some headroom */
bars_max = Q16_MUL(bars_max, float_q16(1.1));
int64_t hfactor = Q16_DIV(LCD_WIDTH << 16, bars_max);
for (i = 0; i < bars; ++i)
{
int y = (i) * (border + height);
int x;
x = Q16_MUL(hfactor, bars_values[i]) + (1 << 15);
x >>= 16;
#ifdef HAVE_LCD_COLOR
rb->lcd_fillrect(0, y, x, height);
#else
grey_fillrect(0, y, x, height);
#endif
}
}
void draw_spectrogram_vertical(void)
{
const int32_t scale_factor = ARRAYSIZE_PLOT / LCD_HEIGHT
#ifdef HAVE_LCD_COLOR
,colors_per_val_log = Q16_DIV((COLORS-1) << 16, QLOG_MAX),
colors_per_val_lin = Q16_DIV((COLORS-1) << 16, QLIN_MAX)
#else
,grey_vals_per_val_log = Q16_DIV(255 << 16, QLOG_MAX),
grey_vals_per_val_lin = Q16_DIV(255 << 16, QLIN_MAX)
#endif
;
const int32_t remaining_div =
(ARRAYSIZE_PLOT-scale_factor*LCD_HEIGHT) > 0 ?
( Q16_DIV((scale_factor*LCD_HEIGHT) << 16,
(ARRAYSIZE_PLOT-scale_factor*LCD_HEIGHT) << 16)
+ (1<<15) ) >> 16 : 0;
calc_magnitudes(graph_settings.logarithmic);
if(graph_settings.changed.mode || graph_settings.changed.orientation)
{
graph_settings.spectrogram.column = 0;
#ifdef HAVE_LCD_COLOR
rb->lcd_clear_display();
#else
grey_clear_display();
#endif
}
int i, y = LCD_HEIGHT-1, count = 0, rem_count = 0;
uint64_t avg = 0;
bool added_extra_value = false;
for(i = 0; i < ARRAYSIZE_PLOT; ++i)
{
if(plot[i] > 0)
avg += plot[i];
++count;
++rem_count;
/* Kinda hacky - due to the rounding in scale_factor, we try to
* uniformly interweave the extra values in our calculations */
if(remaining_div > 0 && rem_count >= remaining_div &&
i < (ARRAYSIZE_PLOT-1))
{
++i;
if(plot[i] > 0)
avg += plot[i];
rem_count = 0;
added_extra_value = true;
}
if(count >= scale_factor)
{
if(added_extra_value)
{ ++count; added_extra_value = false; }
int32_t color;
avg = Q16_DIV(avg, count << 16);
#ifdef HAVE_LCD_COLOR
if(graph_settings.logarithmic)
color = Q16_MUL(avg, colors_per_val_log) >> 16;
else
color = Q16_MUL(avg, colors_per_val_lin) >> 16;
if(color >= COLORS) /* TODO These happen because we don't normalize the values to be above 1 and log() returns negative numbers. I think. */
color = COLORS-1;
else if (color < 0)
color = 0;
#else
if(graph_settings.logarithmic)
color = Q16_MUL(avg, grey_vals_per_val_log) >> 16;
else
color = Q16_MUL(avg, grey_vals_per_val_lin) >> 16;
if(color > 255)
color = 255;
else if (color < 0)
color = 0;
#endif
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(fft_colors[color]);
rb->lcd_drawpixel(graph_settings.spectrogram.column, y);
#else
grey_set_foreground(255 - color);
grey_drawpixel(graph_settings.spectrogram.column, y);
#endif
y--;
avg = 0;
count = 0;
}
if(y < 0)
break;
}
if(graph_settings.spectrogram.column != LCD_WIDTH-1)
graph_settings.spectrogram.column++;
else
#ifdef HAVE_LCD_COLOR
xlcd_scroll_left(1);
#else
grey_scroll_left(1);
#endif
}
void draw_spectrogram_horizontal(void)
{
const int32_t scale_factor = ARRAYSIZE_PLOT / LCD_WIDTH
#ifdef HAVE_LCD_COLOR
,colors_per_val_log = Q16_DIV((COLORS-1) << 16, QLOG_MAX),
colors_per_val_lin = Q16_DIV((COLORS-1) << 16, QLIN_MAX)
#else
,grey_vals_per_val_log = Q16_DIV(255 << 16, QLOG_MAX),
grey_vals_per_val_lin = Q16_DIV(255 << 16, QLIN_MAX)
#endif
;
const int32_t remaining_div =
(ARRAYSIZE_PLOT-scale_factor*LCD_WIDTH) > 0 ?
( Q16_DIV((scale_factor*LCD_WIDTH) << 16,
(ARRAYSIZE_PLOT-scale_factor*LCD_WIDTH) << 16)
+ (1<<15) ) >> 16 : 0;
calc_magnitudes(graph_settings.logarithmic);
if(graph_settings.changed.mode || graph_settings.changed.orientation)
{
graph_settings.spectrogram.row = 0;
#ifdef HAVE_LCD_COLOR
rb->lcd_clear_display();
#else
grey_clear_display();
#endif
}
int i, x = 0, count = 0, rem_count = 0;
uint64_t avg = 0;
bool added_extra_value = false;
for(i = 0; i < ARRAYSIZE_PLOT; ++i)
{
if(plot[i] > 0)
avg += plot[i];
++count;
++rem_count;
/* Kinda hacky - due to the rounding in scale_factor, we try to
* uniformly interweave the extra values in our calculations */
if(remaining_div > 0 && rem_count >= remaining_div &&
i < (ARRAYSIZE_PLOT-1))
{
++i;
if(plot[i] > 0)
avg += plot[i];
rem_count = 0;
added_extra_value = true;
}
if(count >= scale_factor)
{
if(added_extra_value)
{ ++count; added_extra_value = false; }
int32_t color;
avg = Q16_DIV(avg, count << 16);
#ifdef HAVE_LCD_COLOR
if(graph_settings.logarithmic)
color = Q16_MUL(avg, colors_per_val_log) >> 16;
else
color = Q16_MUL(avg, colors_per_val_lin) >> 16;
if(color >= COLORS) /* TODO same as _vertical */
color = COLORS-1;
else if (color < 0)
color = 0;
#else
if(graph_settings.logarithmic)
color = Q16_MUL(avg, grey_vals_per_val_log) >> 16;
else
color = Q16_MUL(avg, grey_vals_per_val_lin) >> 16;
if(color > 255)
color = 255;
else if (color < 0)
color = 0;
#endif
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(fft_colors[color]);
rb->lcd_drawpixel(x, graph_settings.spectrogram.row);
#else
grey_set_foreground(255 - color);
grey_drawpixel(x, graph_settings.spectrogram.row);
#endif
x++;
avg = 0;
count = 0;
}
if(x >= LCD_WIDTH)
break;
}
if(graph_settings.spectrogram.row != LCD_HEIGHT-1)
graph_settings.spectrogram.row++;
else
#ifdef HAVE_LCD_COLOR
xlcd_scroll_up(1);
#else
grey_scroll_up(1);
#endif
}
/********************* End of plotting functions (modes) *********************/
static long thread_stack[DEFAULT_STACK_SIZE/sizeof(long)];
void input_thread_entry(void)
{
kiss_fft_scalar * value;
kiss_fft_scalar left;
int count;
int idx = 0; /* offset in the buffer */
int fft_idx = 0; /* offset in input */
while(true)
{
rb->mutex_lock(&input_mutex);
if(!input_thread_run)
rb->thread_exit();
value = (kiss_fft_scalar*) rb->pcm_get_peak_buffer(&count);
if (value == 0 || count == 0)
{
rb->mutex_unlock(&input_mutex);
rb->yield();
continue;
/* This block can introduce discontinuities in our data. Meaning, the FFT
* will not be done a continuous segment of the signal. Which can be bad. Or not.
*
* Anyway, this is a demo, not a scientific tool. If you want accuracy, do a proper
* spectrum analysis.*/
}
else
{
idx = fft_idx = 0;
do
{
left = *(value + idx);
idx += 2;
input[fft_idx] = left;
fft_idx++;
input[fft_idx] = 0;
fft_idx++;
if (fft_idx == ARRAYSIZE_IN)
break;
} while (idx < count);
}
if(fft_idx == ARRAYSIZE_IN) /* there are cases when we don't have enough data to fill the buffer */
input_thread_has_data = true;
rb->mutex_unlock(&input_mutex);
rb->yield();
}
}
enum plugin_status plugin_start(const void* parameter)
{
(void) parameter;
if ((rb->audio_status() & AUDIO_STATUS_PLAY) == 0)
{
rb->splash(HZ * 2, "No track playing. Exiting..");
return PLUGIN_OK;
}
#ifndef HAVE_LCD_COLOR
unsigned char *gbuf;
size_t gbuf_size = 0;
/* get the remainder of the plugin buffer */
gbuf = (unsigned char *) rb->plugin_get_buffer(&gbuf_size);
/* initialize the greyscale buffer.*/
if (!grey_init(gbuf, gbuf_size, GREY_ON_COP | GREY_BUFFERED,
LCD_WIDTH, LCD_HEIGHT, NULL))
{
rb->splash(HZ, "Couldn't init greyscale display");
return PLUGIN_ERROR;
}
grey_show(true);
#endif
#if LCD_DEPTH > 1
rb->lcd_set_backdrop(NULL);
#endif
backlight_force_on();
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
rb->cpu_boost(true);
#endif
/* Defaults */
bool run = true;
graph_settings.mode = 0;
graph_settings.logarithmic = true;
graph_settings.orientation_vertical = true;
graph_settings.window_func = 0;
graph_settings.changed.mode = false;
graph_settings.changed.scale = false;
graph_settings.changed.orientation = false;
graph_settings.spectrogram.row = 0;
graph_settings.spectrogram.column = 0;
bool changed_window = false;
size_t size = sizeof(buffer);
FFT_CFG state = FFT_ALLOC(FFT_SIZE, 0, buffer, &size);
if (state == 0)
{
DEBUGF("needed data: %i", (int) size);
return PLUGIN_ERROR;
}
unsigned int input_thread = rb->create_thread(&input_thread_entry, thread_stack, sizeof(thread_stack), 0, "fft input thread" IF_PRIO(, PRIORITY_BACKGROUND) IF_COP(, CPU));
rb->yield();
while (run)
{
rb->mutex_lock(&input_mutex);
if(!input_thread_has_data)
{
/* Make sure the input thread has started before doing anything else */
rb->mutex_unlock(&input_mutex);
rb->yield();
continue;
}
apply_window_func(graph_settings.window_func);
FFT_FFT(state, input, output);
if(changed_window)
{
draw(window_text[graph_settings.window_func]);
changed_window = false;
}
else
draw(0);
input_thread_has_data = false;
rb->mutex_unlock(&input_mutex);
rb->yield();
int button = rb->button_get(false);
switch (button)
{
case FFT_QUIT:
run = false;
break;
case FFT_PREV_GRAPH: {
graph_settings.mode--;
if (graph_settings.mode < 0)
graph_settings.mode = MODES_COUNT-1;
draw(modes_text[graph_settings.mode]);
break;
}
case FFT_NEXT_GRAPH: {
graph_settings.mode++;
if (graph_settings.mode >= MODES_COUNT)
graph_settings.mode = 0;
draw(modes_text[graph_settings.mode]);
break;
}
case FFT_WINDOW: {
changed_window = true;
graph_settings.window_func ++;
if(graph_settings.window_func >= WINDOW_COUNT)
graph_settings.window_func = 0;
break;
}
case FFT_SCALE: {
graph_settings.logarithmic = !graph_settings.logarithmic;
draw(scales_text[graph_settings.logarithmic ? 1 : 0]);
break;
}
case FFT_ORIENTATION: {
graph_settings.orientation_vertical = !graph_settings.orientation_vertical;
draw(0);
break;
}
default: {
if (rb->default_event_handler(button) == SYS_USB_CONNECTED)
return PLUGIN_USB_CONNECTED;
}
}
}
/* Handle our input thread. We haven't yield()'d since our last mutex_unlock, so we know we have the mutex */
rb->mutex_lock(&input_mutex);
input_thread_run = false;
rb->mutex_unlock(&input_mutex);
rb->thread_wait(input_thread);
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
rb->cpu_boost(false);
#endif
#ifndef HAVE_LCD_COLOR
grey_release();
#endif
backlight_use_settings();
return PLUGIN_OK;
}