New plugin: FFT, A frequency analyzer plugin

There is some more work needed:
- Keymaps are definitely not perfect, touchscreen targets are disabled due to no keymap
- There is no manual yet

Author: Delyan Kratunov 
Flyspray: FS#10065



git-svn-id: svn://svn.rockbox.org/rockbox/trunk@24587 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Frank Gevaerts 2010-02-10 19:44:11 +00:00
parent fa4ab10bbb
commit 43264a946f
19 changed files with 4810 additions and 0 deletions

View file

@ -448,6 +448,7 @@ static const struct plugin_api rockbox_api = {
pcm_play_pause,
pcm_get_bytes_waiting,
pcm_calculate_peaks,
pcm_get_peak_buffer,
pcm_play_lock,
pcm_play_unlock,
#ifdef HAVE_RECORDING

View file

@ -580,6 +580,7 @@ struct plugin_api {
void (*pcm_play_pause)(bool play);
size_t (*pcm_get_bytes_waiting)(void);
void (*pcm_calculate_peaks)(int *left, int *right);
const void* (*pcm_get_peak_buffer)(int *count);
void (*pcm_play_lock)(void);
void (*pcm_play_unlock)(void);
#ifdef HAVE_RECORDING

View file

@ -24,6 +24,7 @@ dict,apps
disktidy,apps
doom,games
euroconverter,apps
fft,demos
fire,demos
fireworks,demos
firmware_flash,apps

View file

@ -19,6 +19,9 @@ rockboy
#ifdef HAVE_TAGCACHE
pictureflow
#endif
#if CONFIG_CODEC == SWCODEC && !defined(HAVE_TOUCHSCREEN)
fft
#endif
chessbox
fractals
imageviewer

View file

@ -261,6 +261,11 @@ clock_logo.112x64x1.bmp
clock_messages.112x64x1.bmp
#endif
/* FFT only needs a bitmap with colors mapping to amplitude */
#ifdef HAVE_LCD_COLOR
fft_colors.16.bmp
#endif
/* Flipit */
#ifdef HAVE_LCD_COLOR
#if LCD_WIDTH >= 480

Binary file not shown.

After

Width:  |  Height:  |  Size: 822 B

4
apps/plugins/fft/SOURCES Normal file
View file

@ -0,0 +1,4 @@
kiss_fft.c
kiss_fftr.c
fft.c
math.c

View file

@ -0,0 +1,152 @@
/*
Copyright (c) 2003-2004, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* kiss_fft.h
defines kiss_fft_scalar as either short or a float type
and defines
typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */
#include "kiss_fft.h"
#include "math.h"
#include <limits.h>
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_state{
int nfft;
int inverse;
int factors[2*MAXFACTORS];
kiss_fft_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#ifdef FIXED_POINT
#if (FIXED_POINT==32)
# define FRACBITS 31
# define SAMPPROD int64_t
#define SAMP_MAX 2147483647
#else
# define FRACBITS 15
# define SAMPPROD int32_t
#define SAMP_MAX 32767
#endif
#define SAMP_MIN -SAMP_MAX
#if defined(CHECK_OVERFLOW)
# define CHECK_OVERFLOW_OP(a,op,b) \
if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \
fprintf(stderr,"WARNING:overflow @ " __FILE__ "(%d): (%d " #op" %d) = %ld\n",__LINE__,(a),(b),(SAMPPROD)(a) op (SAMPPROD)(b) ); }
#endif
# define smul(a,b) ( (SAMPPROD)(a)*(b) )
# define sround( x ) (kiss_fft_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS )
# define S_MUL(a,b) sround( smul(a,b) )
# define C_MUL(m,a,b) \
do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \
(m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0)
# define DIVSCALAR(x,k) \
(x) = sround( smul( x, SAMP_MAX/k ) )
# define C_FIXDIV(c,div) \
do { DIVSCALAR( (c).r , div); \
DIVSCALAR( (c).i , div); }while (0)
# define C_MULBYSCALAR( c, s ) \
do{ (c).r = sround( smul( (c).r , s ) ) ;\
(c).i = sround( smul( (c).i , s ) ) ; }while(0)
#else /* not FIXED_POINT*/
# define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
# define C_FIXDIV(c,div) /* NOOP */
# define C_MULBYSCALAR( c, s ) \
do{ (c).r *= (s);\
(c).i *= (s); }while(0)
#endif
#ifndef CHECK_OVERFLOW_OP
# define CHECK_OVERFLOW_OP(a,op,b) /* noop */
#endif
#define C_ADD( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
}while(0)
#define C_SUB( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
}while(0)
#define C_ADDTO( res , a)\
do { \
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
(res).r += (a).r; (res).i += (a).i;\
}while(0)
#define C_SUBFROM( res , a)\
do {\
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
(res).r -= (a).r; (res).i -= (a).i; \
}while(0)
#ifdef FIXED_POINT
# define HALF_OF(x) ((x)>>1)
#else
# define HALF_OF(x) ((x)*.5)
#endif
#define kf_cexp(x, k, n) \
do{ \
int32_t div = Q_DIV( (k) << 16, (n) << 16, 16 ); \
long cos, sin = fp_sincos(div << 16, &cos); \
(x)->r = ( Q_MUL(SAMP_MAX << 16, cos >> 15, 16) ) >> 16; \
(x)->i = ( Q_MUL(SAMP_MAX << 16, -1*(sin >> 15), 16) ) >> 16; \
}while(0)
#define kf_cexp_round(x, k, n) \
do{ \
int32_t div = Q_DIV( (k) << 16, (n) << 16, 16 ) + (1 << 15); \
long cos, sin = fp_sincos(div << 16, &cos); \
(x)->r = ( Q_MUL(SAMP_MAX << 16, cos >> 15, 16) ) >> 16; \
(x)->i = ( Q_MUL(SAMP_MAX << 16, -1*(sin >> 15), 16) ) >> 16; \
}while(0)
/* a debugging function */
#define pcpx(c)\
fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) )

2650
apps/plugins/fft/const.h Normal file

File diff suppressed because it is too large Load diff

1165
apps/plugins/fft/fft.c Normal file

File diff suppressed because it is too large Load diff

27
apps/plugins/fft/fft.make Normal file
View file

@ -0,0 +1,27 @@
# __________ __ ___.
# Open \______ \ ____ ____ | | _\_ |__ _______ ___
# Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
# Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
# Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
# \/ \/ \/ \/ \/
# $Id$
#
FFTSRCDIR := $(APPSDIR)/plugins/fft
FFTBUILDDIR := $(BUILDDIR)/apps/plugins/fft
ROCKS += $(FFTBUILDDIR)/fft.rock
FFT_SRC := $(call preprocess, $(FFTSRCDIR)/SOURCES)
FFT_OBJ := $(call c2obj, $(FFT_SRC))
# add source files to OTHER_SRC to get automatic dependencies
OTHER_SRC += $(FFT_SRC)
FFTFLAGS = $(filter-out -O%,$(PLUGINFLAGS)) -O3 -DFIXED_POINT=16
$(FFTBUILDDIR)/fft.rock: $(FFT_OBJ)
$(FFTBUILDDIR)/%.o: $(FFTSRCDIR)/%.c $(FFTSRCDIR)/fft.make
$(SILENT)mkdir -p $(dir $@)
$(call PRINTS,CC $(subst $(ROOTDIR)/,,$<))$(CC) -I$(dir $<) $(FFTFLAGS) -c $< -o $@

428
apps/plugins/fft/kiss_fft.c Normal file
View file

@ -0,0 +1,428 @@
/*
Copyright (c) 2003-2004, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "_kiss_fft_guts.h"
/* The guts header contains all the multiplication and addition macros that are defined for
fixed or floating point complex numbers. It also delares the kf_ internal functions.
*/
static kiss_fft_cpx *scratchbuf=NULL;
static size_t nscratchbuf=0;
static kiss_fft_cpx *tmpbuf=NULL;
static size_t ntmpbuf=0;
#define CHECKBUF(buf,nbuf,n) \
do { \
if ( nbuf < (size_t)(n) ) {\
DEBUGF("CHECKBUF NOT IMPLEMENTED!");\
break;\
} \
}while(0)
static void kf_bfly2(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx * Fout2;
kiss_fft_cpx * tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do{
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
C_MUL (t, *Fout2 , *tw1);
tw1 += fstride;
C_SUB( *Fout2 , *Fout , t );
C_ADDTO( *Fout , t );
++Fout2;
++Fout;
}while (--m);
}
static void kf_bfly4(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
const size_t m
)
{
kiss_fft_cpx *tw1,*tw2,*tw3;
kiss_fft_cpx scratch[6];
size_t k=m;
const size_t m2=2*m;
const size_t m3=3*m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
C_MUL(scratch[0],Fout[m] , *tw1 );
C_MUL(scratch[1],Fout[m2] , *tw2 );
C_MUL(scratch[2],Fout[m3] , *tw3 );
C_SUB( scratch[5] , *Fout, scratch[1] );
C_ADDTO(*Fout, scratch[1]);
C_ADD( scratch[3] , scratch[0] , scratch[2] );
C_SUB( scratch[4] , scratch[0] , scratch[2] );
C_SUB( Fout[m2], *Fout, scratch[3] );
tw1 += fstride;
tw2 += fstride*2;
tw3 += fstride*3;
C_ADDTO( *Fout , scratch[3] );
if(st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
}else{
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
}while(--k);
}
static void kf_bfly3(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
size_t m
)
{
size_t k=m;
const size_t m2 = 2*m;
kiss_fft_cpx *tw1,*tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride*m];
tw1=tw2=st->twiddles;
do{
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
C_MUL(scratch[1],Fout[m] , *tw1);
C_MUL(scratch[2],Fout[m2] , *tw2);
C_ADD(scratch[3],scratch[1],scratch[2]);
C_SUB(scratch[0],scratch[1],scratch[2]);
tw1 += fstride;
tw2 += fstride*2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR( scratch[0] , epi3.i );
C_ADDTO(*Fout,scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
}while(--k);
}
static void kf_bfly5(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=st->twiddles;
for ( u=0; u<m; ++u ) {
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
scratch[0] = *Fout0;
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
C_ADD( scratch[7],scratch[1],scratch[4]);
C_SUB( scratch[10],scratch[1],scratch[4]);
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m,
int p
)
{
int u,k,q1,q;
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx t;
int Norig = st->nfft;
CHECKBUF(scratchbuf,nscratchbuf,p);
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
C_FIXDIV(scratchbuf[q1],p);
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratchbuf[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
C_MUL(t,scratchbuf[q] , twiddles[twidx] );
C_ADDTO( Fout[ k ] ,t);
}
k += m;
}
}
}
static
void kf_work(
kiss_fft_cpx * Fout,
const kiss_fft_cpx * f,
const size_t fstride,
int in_stride,
int * factors,
const kiss_fft_cfg st
)
{
kiss_fft_cpx * Fout_beg=Fout;
const int p=*factors++; /* the radix */
const int m=*factors++; /* stage's fft length/p */
const kiss_fft_cpx * Fout_end = Fout + p*m;
#ifdef _OPENMP
// use openmp extensions at the
// top-level (not recursive)
if (fstride==1) {
int k;
// execute the p different work units in different threads
# pragma omp parallel for
for (k=0;k<p;++k)
kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
// all threads have joined by this point
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
}
return;
}
#endif
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work( Fout , f, fstride*p, in_stride, factors,st);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
}
Fout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
}
}
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static
void kf_factor(int n,int * facbuf)
{
int p=4;
int32_t floor_sqrt = fp_sqrt(n, 15) >> 15;
/*factor out powers of 4, powers of 2, then any remaining primes */
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p > floor_sqrt)
p = n; /* no more factors, skip to end */
}
n /= p;
*facbuf++ = p;
*facbuf++ = n;
} while (n > 1);
}
/*
*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As such,
* It can be freed with free(), rather than a kiss_fft-specific function.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
{
kiss_fft_cfg st=NULL;
size_t memneeded = sizeof(struct kiss_fft_state)
+ sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/
if ( lenmem==NULL ) {
DEBUGF("This version of kiss fft can't use malloc");
return st;
/* st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded ); */
}else{
if (mem != NULL && *lenmem >= memneeded)
st = (kiss_fft_cfg)mem;
*lenmem = memneeded;
}
if (st) {
int i;
st->nfft=nfft;
st->inverse = inverse_fft;
for (i=0;i<nfft;++i) {
/* const double pi=3.141592653589793238462643383279502884197169399375105820974944;
double phase = -2*pi*i / nfft; */
if (st->inverse)
DEBUGF("Inverse FFT not implemented!"); /* kf_cexp(st->twiddles+i, -1*i, nfft ); */
else
kf_cexp( st->twiddles+i, i, nfft );
}
kf_factor(nfft,st->factors);
}
return st;
}
void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
{
if (fin == fout) {
CHECKBUF(tmpbuf,ntmpbuf,st->nfft);
kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
}else{
kf_work( fout, fin, 1,in_stride, st->factors,st );
}
}
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
{
kiss_fft_stride(cfg,fin,fout,1);
}
/* not really necessary to call, but if someone is doing in-place ffts, they may want to free the
buffers from CHECKBUF
*/
void kiss_fft_cleanup(void)
{
/* free(scratchbuf); */
scratchbuf = NULL;
nscratchbuf=0;
/* free(tmpbuf); */
tmpbuf=NULL;
ntmpbuf=0;
}
int kiss_fft_next_fast_size(int n)
{
while(1) {
int m=n;
while ( (m%2) == 0 ) m/=2;
while ( (m%3) == 0 ) m/=3;
while ( (m%5) == 0 ) m/=5;
if (m<=1)
break; /* n is completely factorable by twos, threes, and fives */
n++;
}
return n;
}

119
apps/plugins/fft/kiss_fft.h Normal file
View file

@ -0,0 +1,119 @@
#ifndef KISS_FFT_H
#define KISS_FFT_H
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <malloc.h>
#include "plugin.h"
#include "lib/helper.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
ATTENTION!
If you would like a :
-- a utility that will handle the caching of fft objects
-- real-only (no imaginary time component ) FFT
-- a multi-dimensional FFT
-- a command-line utility to perform ffts
-- a command-line utility to perform fast-convolution filtering
Then see kfc.h kiss_fftr.h kiss_fftnd.h fftutil.c kiss_fastfir.c
in the tools/ directory.
*/
#define KISS_FFT_MALLOC malloc
#ifdef FIXED_POINT
#include <inttypes.h>
# if (FIXED_POINT == 32)
# define kiss_fft_scalar int32_t
# else
# define kiss_fft_scalar int16_t
# endif
#else
# ifndef kiss_fft_scalar
/* default is float */
# define kiss_fft_scalar float
# endif
#endif
typedef struct {
kiss_fft_scalar r;
kiss_fft_scalar i;
}kiss_fft_cpx;
typedef struct kiss_fft_state* kiss_fft_cfg;
/*
* kiss_fft_alloc
*
* Initialize a FFT (or IFFT) algorithm's cfg/state buffer.
*
* typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0,NULL,NULL);
*
* The return value from fft_alloc is a cfg buffer used internally
* by the fft routine or NULL.
*
* If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using malloc.
* The returned value should be free()d when done to avoid memory leaks.
*
* The state can be placed in a user supplied buffer 'mem':
* If lenmem is not NULL and mem is not NULL and *lenmem is large enough,
* then the function places the cfg in mem and the size used in *lenmem
* and returns mem.
*
* If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough),
* then the function returns NULL and places the minimum cfg
* buffer size in *lenmem.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem);
/*
* kiss_fft(cfg,in_out_buf)
*
* Perform an FFT on a complex input buffer.
* for a forward FFT,
* fin should be f[0] , f[1] , ... ,f[nfft-1]
* fout will be F[0] , F[1] , ... ,F[nfft-1]
* Note that each element is complex and can be accessed like
f[k].r and f[k].i
* */
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout);
/*
A more generic version of the above function. It reads its input from every Nth sample.
* */
void kiss_fft_stride(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int fin_stride);
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
buffer and can be simply free()d when no longer needed*/
#define kiss_fft_free free
/*
Cleans up some memory that gets managed internally. Not necessary to call, but it might clean up
your compiler output to call this before you exit.
*/
void kiss_fft_cleanup(void);
/*
* Returns the smallest integer k, such that k>=n and k has only "fast" factors (2,3,5)
*/
int kiss_fft_next_fast_size(int n);
/* for real ffts, we need an even size */
#define kiss_fftr_next_fast_size_real(n) \
(kiss_fft_next_fast_size( ((n)+1)>>1)<<1)
#ifdef __cplusplus
}
#endif
#endif

View file

@ -0,0 +1,153 @@
/*
Copyright (c) 2003-2004, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "kiss_fftr.h"
#include "_kiss_fft_guts.h"
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
{
int i;
kiss_fftr_cfg st = NULL;
size_t subsize, memneeded;
if (nfft & 1) {
DEBUGF("Real FFT optimization must be even.\n");
return NULL;
}
nfft >>= 1;
kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
if (lenmem == NULL) {
DEBUGF("Cannot use malloc!"); /*st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);*/
} else {
if (*lenmem >= memneeded)
st = (kiss_fftr_cfg) mem;
*lenmem = memneeded;
}
if (!st)
return NULL;
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
st->super_twiddles = st->tmpbuf + nfft;
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
for (i = 0; i < nfft/2; ++i) {
/*double phase =
-3.14159265358979323846264338327 * ((double) (i+1) / nfft + .5);*/
if (inverse_fft)
{
DEBUGF("Inverse FFT not implemented!"); /*phase *= -1;*/
}
kf_cexp_round (st->super_twiddles+i, i+1, nfft);
}
return st;
}
void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
{
/* input buffer timedata is stored row-wise */
int k,ncfft;
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
if ( st->substate->inverse) {
DEBUGF("kiss fft usage error: improper alloc\n");
return;
}
ncfft = st->substate->nfft;
/*perform the parallel fft of two real signals packed in real,imag*/
kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
* contains the sum of the even-numbered elements of the input time sequence
* The imag part is the sum of the odd-numbered elements
*
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
* yielding DC of input time sequence
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
* yielding Nyquist bin of input time sequence
*/
tdc.r = st->tmpbuf[0].r;
tdc.i = st->tmpbuf[0].i;
C_FIXDIV(tdc,2);
CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
freqdata[0].r = tdc.r + tdc.i;
freqdata[ncfft].r = tdc.r - tdc.i;
#ifdef USE_SIMD
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
#else
freqdata[ncfft].i = freqdata[0].i = 0;
#endif
for ( k=1;k <= ncfft/2 ; ++k ) {
fpk = st->tmpbuf[k];
fpnk.r = st->tmpbuf[ncfft-k].r;
fpnk.i = - st->tmpbuf[ncfft-k].i;
C_FIXDIV(fpk,2);
C_FIXDIV(fpnk,2);
C_ADD( f1k, fpk , fpnk );
C_SUB( f2k, fpk , fpnk );
C_MUL( tw , f2k , st->super_twiddles[k-1]);
freqdata[k].r = HALF_OF(f1k.r + tw.r);
freqdata[k].i = HALF_OF(f1k.i + tw.i);
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
}
}
void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata)
{
/* input buffer timedata is stored row-wise */
int k, ncfft;
if (st->substate->inverse == 0) {
DEBUGF("kiss fft usage error: improper alloc\n");
return;
}
ncfft = st->substate->nfft;
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
C_FIXDIV(st->tmpbuf[0],2);
for (k = 1; k <= ncfft / 2; ++k) {
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
fk = freqdata[k];
fnkc.r = freqdata[ncfft - k].r;
fnkc.i = -freqdata[ncfft - k].i;
C_FIXDIV( fk , 2 );
C_FIXDIV( fnkc , 2 );
C_ADD (fek, fk, fnkc);
C_SUB (tmp, fk, fnkc);
C_MUL (fok, tmp, st->super_twiddles[k-1]);
C_ADD (st->tmpbuf[k], fek, fok);
C_SUB (st->tmpbuf[ncfft - k], fek, fok);
#ifdef USE_SIMD
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
#else
st->tmpbuf[ncfft - k].i *= -1;
#endif
}
kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
}

View file

@ -0,0 +1,54 @@
#ifndef KISS_FTR_H
#define KISS_FTR_H
#include "kiss_fft.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
Real optimized version can save about 45% cpu time vs. complex fft of a real seq.
*/
struct kiss_fftr_state{
kiss_fft_cfg substate;
kiss_fft_cpx * tmpbuf;
kiss_fft_cpx * super_twiddles;
#ifdef USE_SIMD
long pad;
#endif
};
typedef struct kiss_fftr_state *kiss_fftr_cfg;
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem, size_t * lenmem);
/*
nfft must be even
If you don't care to allocate space, use mem = lenmem = NULL
*/
void kiss_fftr(kiss_fftr_cfg cfg,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata);
/*
input timedata has nfft scalar points
output freqdata has nfft/2+1 complex points
*/
void kiss_fftri(kiss_fftr_cfg cfg,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata);
/*
input freqdata has nfft/2+1 complex points
output timedata has nfft scalar points
*/
#define kiss_fftr_free free
#ifdef __cplusplus
}
#endif
#endif

13
apps/plugins/fft/math.c Normal file
View file

@ -0,0 +1,13 @@
#include "math.h"
int64_t fsqrt64(int64_t a, unsigned int fracbits)
{
int64_t b = a/2 + (1 << fracbits); /* initial approximation */
unsigned int n;
const unsigned int iterations = 3; /* very rough approximation */
for (n = 0; n < iterations; ++n)
b = (b + (((int64_t)(a) << fracbits)/b))/2;
return b;
}

28
apps/plugins/fft/math.h Normal file
View file

@ -0,0 +1,28 @@
#ifndef __MATH_H_
#define __MATH_H_
#include <inttypes.h>
#include <math.h>
#include "lib/fixedpoint.h"
#define Q_MUL(a, b, bits) (( (int64_t) (a) * (int64_t) (b) ) >> (bits))
#define Q15_MUL(a, b) Q_MUL(a,b,15)
#define Q16_MUL(a, b) Q_MUL(a,b,16)
#define Q_DIV(a, b, bits) ( (((int64_t) (a)) << (bits)) / (b) )
#define Q15_DIV(a, b) Q_DIV(a,b,15)
#define Q16_DIV(a, b) Q_DIV(a,b,16)
#define float_q(a, bits) (int32_t)( ((float)(a)) *(1<<(bits)))
#define float_q15(a) float_q(a, 15)
#define float_q16(a) float_q(a, 16)
/**
* Fixed point square root via Newton-Raphson.
* @param a square root argument.
* @param fracbits specifies number of fractional bits in argument.
* @return Square root of argument in same fixed point format as input.
*/
int64_t fsqrt64(int64_t a, unsigned int fracbits);
#endif

View file

@ -75,6 +75,7 @@ void pcm_play_data(pcm_more_callback_type get_more,
unsigned char* start, size_t size);
void pcm_calculate_peaks(int *left, int *right);
const void* pcm_get_peak_buffer(int* count);
size_t pcm_get_bytes_waiting(void);
void pcm_play_stop(void);

View file

@ -183,6 +183,11 @@ void pcm_calculate_peaks(int *left, int *right)
*right = peaks[1];
}
const void* pcm_get_peak_buffer(int * count)
{
return pcm_play_dma_get_peak_buffer(count);
}
/****************************************************************************
* Functions that do not require targeted implementation but only a targeted
* interface