rockbox/firmware/drivers/rtc/rtc_s35380a.c

233 lines
6.1 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* adopted for HD300 by Marcin Bukat
* Copyright (C) 2009 by Bertrik Sikken
* Copyright (C) 2008 by Robert Kukla
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "rtc.h"
#include "i2c-coldfire.h"
#include "lcd.h"
#include "font.h"
/* Driver for the Seiko S35380A real-time clock chip with i2c interface
This driver was derived from rtc_s3539a.c and adapted for the MPIO HD300
*/
#define RTC_ADDR 0x60
#define STATUS_REG1 0
#define STATUS_REG2 1
#define REALTIME_DATA1 2
#define REALTIME_DATA2 3
#define INT1_REG 4
#define INT2_REG 5
#define CLOCK_CORR_REG 6
#define FREE_REG 7
/* STATUS_REG1 flags
* bits order is reversed
*/
#define STATUS_REG1_POC 0x01
#define STATUS_REG1_BLD 0x02
#define STATUS_REG1_INT2 0x04
#define STATUS_REG1_INT1 0x08
#define STATUS_REG1_SC1 0x10
#define STATUS_REG1_SC0 0x20
#define STATUS_REG1_H1224 0x40
#define STATUS_REG1_RESET 0x80
/* STATUS_REG2 flags
* bits order is reversed
*/
#define STATUS_REG2_TEST 0x01
#define STATUS_REG2_INT2AE 0x02
#define STATUS_REG2_INT2ME 0x04
#define STATUS_REG2_INT2FE 0x08
#define STATUS_REG2_32kE 0x10
#define STATUS_REG2_INT1AE 0x20
#define STATUS_REG2_INT1ME 0x40
#define STATUS_REG2_INT1FE 0x80
static void reverse_bits(unsigned char* v, int size)
{
static const unsigned char flipnibble[] =
{0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F};
int i;
for (i = 0; i < size; i++) {
v[i] = (flipnibble[v[i] & 0x0F] << 4) |
flipnibble[(v[i] >> 4) & 0x0F];
}
}
void rtc_init(void)
{
unsigned char status_reg;
i2c_read(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1);
if ( (status_reg & STATUS_REG1_POC) ||
(status_reg & STATUS_REG1_BLD) )
{
/* perform rtc reset*/
status_reg |= STATUS_REG1_RESET;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1);
}
/* setup 24h time format */
status_reg = STATUS_REG1_H1224;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1);
#ifdef HAVE_RTC_ALARM
rtc_check_alarm_started(false);
#endif
/* disable all alarms */
status_reg = 0;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &status_reg, 1);
}
int rtc_read_datetime(struct tm *tm)
{
unsigned char buf[7];
unsigned int i;
int ret;
ret = i2c_read(I2C_IFACE_1, RTC_ADDR | (REALTIME_DATA1<<1), buf, sizeof(buf));
reverse_bits(buf, sizeof(buf));
buf[4] &= 0x3f; /* mask out p.m. flag */
for (i = 0; i < sizeof(buf); i++)
buf[i] = BCD2DEC(buf[i]);
tm->tm_sec = buf[6];
tm->tm_min = buf[5];
tm->tm_hour = buf[4];
tm->tm_wday = buf[3];
tm->tm_mday = buf[2];
tm->tm_mon = buf[1] - 1;
tm->tm_year = buf[0] + 100;
return ret;
}
int rtc_write_datetime(const struct tm *tm)
{
unsigned char buf[7];
unsigned int i;
int ret;
buf[6] = tm->tm_sec;
buf[5] = tm->tm_min;
buf[4] = tm->tm_hour;
buf[3] = tm->tm_wday;
buf[2] = tm->tm_mday;
buf[1] = tm->tm_mon + 1;
buf[0] = tm->tm_year - 100;
for (i = 0; i < sizeof(buf); i++)
buf[i] = DEC2BCD(buf[i]);
reverse_bits(buf, sizeof(buf));
ret = i2c_write(I2C_IFACE_1, RTC_ADDR | (REALTIME_DATA1<<1), buf, sizeof(buf));
return ret;
}
#ifdef HAVE_RTC_ALARM
void rtc_set_alarm(int h, int m)
{
/* 1) get the date
* 2) compare h:m with current time
if alarm time < current time set day += 1
3) check day if it is not needed to wrap around
4) set the validity bits
5) write to alarm register
*/
unsigned char buf[3];
unsigned char reg;
/* 0x80 - validity flag */
buf[2] = DEC2BCD(m) | 0x80;
buf[1] = DEC2BCD(h) | 0x80;
buf[0] = 0;
reverse_bits(buf, sizeof(buf));
reg = STATUS_REG2_INT1AE;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg, 1);
i2c_write(I2C_IFACE_1, RTC_ADDR | (INT1_REG<<1), buf, sizeof(buf));
}
void rtc_get_alarm(int *h, int *m)
{
unsigned char buf[3];
unsigned char reg,reg2;
i2c_read(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg, 1);
reg2 = reg | STATUS_REG2_INT1AE;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg2, 1);
i2c_read(I2C_IFACE_1, RTC_ADDR | (INT1_REG<<1), buf, sizeof(buf));
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg, 1);
reverse_bits(buf, sizeof(buf));
*h = BCD2DEC(buf[1] & 0x3f); /* mask out A1HE and PM/AM flag */
*m = BCD2DEC(buf[2] & 0x7f); /* mask out A1mE */
}
bool rtc_check_alarm_flag(void)
{
unsigned char status_reg;
i2c_read(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1);
return (status_reg & (STATUS_REG1_INT1 | STATUS_REG1_INT2));
}
void rtc_enable_alarm(bool enable)
{
unsigned char status_reg2;
status_reg2 = enable ? STATUS_REG2_INT1AE:0;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &status_reg2, 1);
}
bool rtc_check_alarm_started(bool release_alarm)
{
static bool run_before = false, alarm_state;
bool rc;
if (run_before)
{
rc = alarm_state;
alarm_state &= ~release_alarm;
}
else
{
rc = rtc_check_alarm_flag();
run_before = true;
}
return rc;
}
#endif