rockbox/firmware/export/thread.h

568 lines
20 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Ulf Ralberg
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef THREAD_H
#define THREAD_H
#include "config.h"
#include <inttypes.h>
#include <stddef.h>
#include <stdbool.h>
/* Priority scheduling (when enabled with HAVE_PRIORITY_SCHEDULING) works
* by giving high priority threads more CPU time than less priority threads
* when they need it.
*
* If software playback codec pcm buffer is going down to critical, codec
* can change it own priority to REALTIME to override user interface and
* prevent playback skipping.
*/
#define HIGHEST_PRIORITY 1 /* The highest possible thread priority */
#define LOWEST_PRIORITY 100 /* The lowest possible thread priority */
#define PRIORITY_REALTIME 1
#define PRIORITY_USER_INTERFACE 4 /* The main thread */
#define PRIORITY_RECORDING 4 /* Recording thread */
#define PRIORITY_PLAYBACK 4 /* or REALTIME when needed */
#define PRIORITY_BUFFERING 4 /* Codec buffering thread */
#define PRIORITY_SYSTEM 6 /* All other firmware threads */
#define PRIORITY_BACKGROUND 8 /* Normal application threads */
#if CONFIG_CODEC == SWCODEC
#define MAXTHREADS 17
#else
#define MAXTHREADS 11
#endif
#define DEFAULT_STACK_SIZE 0x400 /* Bytes */
/**
* "Busy" values that can be swapped into a variable to indicate
* that the variable or object pointed to is in use by another processor
* core. When accessed, the busy value is swapped-in while the current
* value is atomically returned. If the swap returns the busy value,
* the processor should retry the operation until some other value is
* returned. When modification is finished, the new value should be
* written which unlocks it and updates it atomically.
*
* Procedure:
* while ((curr_value = swap(&variable, BUSY_VALUE)) == BUSY_VALUE);
*
* Modify/examine object at mem location or variable. Create "new_value"
* as suitable.
*
* variable = new_value or curr_value;
*
* To check a value for busy and perform an operation if not:
* curr_value = swap(&variable, BUSY_VALUE);
*
* if (curr_value != BUSY_VALUE)
* {
* Modify/examine object at mem location or variable. Create "new_value"
* as suitable.
* variable = new_value or curr_value;
* }
* else
* {
* Do nothing - already busy
* }
*
* Only ever restore when an actual value is returned or else it could leave
* the variable locked permanently if another processor unlocked in the
* meantime. The next access attempt would deadlock for all processors since
* an abandoned busy status would be left behind.
*/
#define STATE_BUSYuptr ((void*)UINTPTR_MAX)
#define STATE_BUSYu8 UINT8_MAX
#define STATE_BUSYi INT_MIN
#ifndef SIMULATOR
/* Need to keep structures inside the header file because debug_menu
* needs them. */
#ifdef CPU_COLDFIRE
struct regs
{
unsigned int macsr; /* 0 - EMAC status register */
unsigned int d[6]; /* 4-24 - d2-d7 */
unsigned int a[5]; /* 28-44 - a2-a6 */
void *sp; /* 48 - Stack pointer (a7) */
void *start; /* 52 - Thread start address, or NULL when started */
};
#elif CONFIG_CPU == SH7034
struct regs
{
unsigned int r[7]; /* 0-24 - Registers r8 thru r14 */
void *sp; /* 28 - Stack pointer (r15) */
void *pr; /* 32 - Procedure register */
void *start; /* 36 - Thread start address, or NULL when started */
};
#elif defined(CPU_ARM)
struct regs
{
unsigned int r[8]; /* 0-28 - Registers r4-r11 */
void *sp; /* 32 - Stack pointer (r13) */
unsigned int lr; /* 36 - r14 (lr) */
void *start; /* 40 - Thread start address, or NULL when started */
};
#endif /* CONFIG_CPU */
#else
struct regs
{
void *t; /* Simulator OS thread */
void *c; /* Condition for blocking and sync */
void (*start)(void); /* Start function */
};
#endif /* !SIMULATOR */
/* NOTE: The use of the word "queue" may also refer to a linked list of
threads being maintainted that are normally dealt with in FIFO order
and not nescessarily kernel event_queue */
enum
{
/* States without a timeout must be first */
STATE_KILLED = 0, /* Thread is killed (default) */
STATE_RUNNING, /* Thread is currently running */
STATE_BLOCKED, /* Thread is indefinitely blocked on a queue */
/* These states involve adding the thread to the tmo list */
STATE_SLEEPING, /* Thread is sleeping with a timeout */
STATE_BLOCKED_W_TMO, /* Thread is blocked on a queue with a timeout */
/* Miscellaneous states */
STATE_FROZEN, /* Thread is suspended and will not run until
thread_thaw is called with its ID */
THREAD_NUM_STATES,
TIMEOUT_STATE_FIRST = STATE_SLEEPING,
#if NUM_CORES > 1
STATE_BUSY = STATE_BUSYu8, /* Thread slot is being examined */
#endif
};
#if NUM_CORES > 1
#define THREAD_DESTRUCT ((const char *)0x84905617)
#endif
/* Link information for lists thread is in */
struct thread_entry; /* forward */
struct thread_list
{
struct thread_entry *prev; /* Previous thread in a list */
struct thread_entry *next; /* Next thread in a list */
};
/* Small objects for core-wise mutual exclusion */
#if CONFIG_CORELOCK == SW_CORELOCK
/* No reliable atomic instruction available - use Peterson's algorithm */
struct corelock
{
volatile unsigned char myl[NUM_CORES];
volatile unsigned char turn;
} __attribute__((packed));
void corelock_init(struct corelock *cl);
void corelock_lock(struct corelock *cl);
int corelock_try_lock(struct corelock *cl);
void corelock_unlock(struct corelock *cl);
#elif CONFIG_CORELOCK == CORELOCK_SWAP
/* Use native atomic swap/exchange instruction */
struct corelock
{
unsigned char locked;
} __attribute__((packed));
#define corelock_init(cl) \
({ (cl)->locked = 0; })
#define corelock_lock(cl) \
({ while (test_and_set(&(cl)->locked, 1)); })
#define corelock_try_lock(cl) \
({ test_and_set(&(cl)->locked, 1) ? 0 : 1; })
#define corelock_unlock(cl) \
({ (cl)->locked = 0; })
#else
/* No atomic corelock op needed or just none defined */
#define corelock_init(cl)
#define corelock_lock(cl)
#define corelock_try_lock(cl)
#define corelock_unlock(cl)
#endif /* core locking selection */
struct thread_queue
{
struct thread_entry *queue; /* list of threads waiting -
_must_ be first member */
#if CONFIG_CORELOCK == SW_CORELOCK
struct corelock cl; /* lock for atomic list operations */
#endif
};
/* Information kept in each thread slot
* members are arranged according to size - largest first - in order
* to ensure both alignment and packing at the same time.
*/
struct thread_entry
{
struct regs context; /* Register context at switch -
_must_ be first member */
void *stack; /* Pointer to top of stack */
const char *name; /* Thread name */
long tmo_tick; /* Tick when thread should be woken from
timeout */
struct thread_list l; /* Links for blocked/waking/running -
circular linkage in both directions */
struct thread_list tmo; /* Links for timeout list -
Self-pointer-terminated in reverse direction,
NULL-terminated in forward direction */
struct thread_queue *bqp; /* Pointer to list variable in kernel
object where thread is blocked - used
for implicit unblock and explicit wake */
#if CONFIG_CORELOCK == SW_CORELOCK
struct thread_entry **bqnlp; /* Pointer to list variable in kernel
object where thread is blocked - non-locked
operations will be used */
#endif
struct thread_entry *queue; /* List of threads waiting for thread to be
removed */
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
intptr_t retval; /* Return value from a blocked operation */
#endif
#ifdef HAVE_PRIORITY_SCHEDULING
long last_run; /* Last tick when started */
#endif
unsigned short stack_size; /* Size of stack in bytes */
#ifdef HAVE_PRIORITY_SCHEDULING
unsigned char priority; /* Current priority */
unsigned char priority_x; /* Inherited priority - right now just a
runtime guarantee flag */
#endif
unsigned char state; /* Thread slot state (STATE_*) */
#if NUM_CORES > 1
unsigned char core; /* The core to which thread belongs */
#endif
#ifdef HAVE_SCHEDULER_BOOSTCTRL
unsigned char boosted; /* CPU frequency boost flag */
#endif
#if CONFIG_CORELOCK == SW_CORELOCK
struct corelock cl; /* Corelock to lock thread slot */
#endif
};
#if NUM_CORES > 1
/* Operations to be performed just before stopping a thread and starting
a new one if specified before calling switch_thread */
#define TBOP_UNLOCK_LIST 0x01 /* Set a pointer variable address var_ptrp */
#if CONFIG_CORELOCK == CORELOCK_SWAP
#define TBOP_SET_VARi 0x02 /* Set an int at address var_ip */
#define TBOP_SET_VARu8 0x03 /* Set an unsigned char at address var_u8p */
#define TBOP_VAR_TYPE_MASK 0x03 /* Mask for variable type*/
#endif /* CONFIG_CORELOCK */
#define TBOP_UNLOCK_CORELOCK 0x04
#define TBOP_UNLOCK_THREAD 0x08 /* Unlock a thread's slot */
#define TBOP_UNLOCK_CURRENT 0x10 /* Unlock the current thread's slot */
#define TBOP_IRQ_LEVEL 0x20 /* Set a new irq level */
#define TBOP_SWITCH_CORE 0x40 /* Call the core switch preparation routine */
struct thread_blk_ops
{
int irq_level; /* new IRQ level to set */
#if CONFIG_CORELOCK != SW_CORELOCK
union
{
int var_iv; /* int variable value to set */
uint8_t var_u8v; /* unsigned char valur to set */
struct thread_entry *list_v; /* list pointer queue value to set */
};
#endif
union
{
#if CONFIG_CORELOCK != SW_CORELOCK
int *var_ip; /* pointer to int variable */
uint8_t *var_u8p; /* pointer to unsigned char varuable */
#endif
struct thread_queue *list_p; /* pointer to list variable */
};
#if CONFIG_CORELOCK == SW_CORELOCK
struct corelock *cl_p; /* corelock to unlock */
struct thread_entry *thread; /* thread to unlock */
#elif CONFIG_CORELOCK == CORELOCK_SWAP
unsigned char state; /* new thread state (performs unlock) */
#endif /* SOFTWARE_CORELOCK */
unsigned char flags; /* TBOP_* flags */
};
#endif /* NUM_CORES > 1 */
/* Information kept for each core
* Member are arranged for the same reason as in thread_entry
*/
struct core_entry
{
/* "Active" lists - core is constantly active on these and are never
locked and interrupts do not access them */
struct thread_entry *running; /* threads that are running */
struct thread_entry *timeout; /* threads that are on a timeout before
running again */
/* "Shared" lists - cores interact in a synchronized manner - access
is locked between cores and interrupts */
struct thread_queue waking; /* intermediate locked list that
hold threads other core should wake up
on next task switch */
long next_tmo_check; /* soonest time to check tmo threads */
#if NUM_CORES > 1
struct thread_blk_ops blk_ops; /* operations to perform when
blocking a thread */
#else
#define STAY_IRQ_LEVEL (-1)
int irq_level; /* sets the irq level to irq_level */
#endif /* NUM_CORES */
#ifdef HAVE_PRIORITY_SCHEDULING
unsigned char highest_priority;
#endif
};
#ifdef HAVE_PRIORITY_SCHEDULING
#define IF_PRIO(...) __VA_ARGS__
#else
#define IF_PRIO(...)
#endif
/* Macros generate better code than an inline function is this case */
#if (defined (CPU_PP) || defined (CPU_ARM))
/* atomic */
#if CONFIG_CORELOCK == SW_CORELOCK
#define test_and_set(a, v, cl) \
xchg8((a), (v), (cl))
/* atomic */
#define xchg8(a, v, cl) \
({ uint32_t o; \
corelock_lock(cl); \
o = *(uint8_t *)(a); \
*(uint8_t *)(a) = (v); \
corelock_unlock(cl); \
o; })
#define xchg32(a, v, cl) \
({ uint32_t o; \
corelock_lock(cl); \
o = *(uint32_t *)(a); \
*(uint32_t *)(a) = (v); \
corelock_unlock(cl); \
o; })
#define xchgptr(a, v, cl) \
({ typeof (*(a)) o; \
corelock_lock(cl); \
o = *(a); \
*(a) = (v); \
corelock_unlock(cl); \
o; })
#elif CONFIG_CORELOCK == CORELOCK_SWAP
/* atomic */
#define test_and_set(a, v, ...) \
xchg8((a), (v))
#define xchg8(a, v, ...) \
({ uint32_t o; \
asm volatile( \
"swpb %0, %1, [%2]" \
: "=&r"(o) \
: "r"(v), \
"r"((uint8_t*)(a))); \
o; })
/* atomic */
#define xchg32(a, v, ...) \
({ uint32_t o; \
asm volatile( \
"swp %0, %1, [%2]" \
: "=&r"(o) \
: "r"((uint32_t)(v)), \
"r"((uint32_t*)(a))); \
o; })
/* atomic */
#define xchgptr(a, v, ...) \
({ typeof (*(a)) o; \
asm volatile( \
"swp %0, %1, [%2]" \
: "=&r"(o) \
: "r"(v), "r"(a)); \
o; })
#endif /* locking selection */
#elif defined (CPU_COLDFIRE)
/* atomic */
/* one branch will be optimized away if v is a constant expression */
#define test_and_set(a, v, ...) \
({ uint32_t o = 0; \
if (v) { \
asm volatile ( \
"bset.b #0, (%0)" \
: : "a"((uint8_t*)(a)) \
: "cc"); \
} else { \
asm volatile ( \
"bclr.b #0, (%0)" \
: : "a"((uint8_t*)(a)) \
: "cc"); \
} \
asm volatile ("sne.b %0" \
: "+d"(o)); \
o; })
#elif CONFIG_CPU == SH7034
/* atomic */
#define test_and_set(a, v, ...) \
({ uint32_t o; \
asm volatile ( \
"tas.b @%2 \n" \
"mov #-1, %0 \n" \
"negc %0, %0 \n" \
: "=r"(o) \
: "M"((uint32_t)(v)), /* Value of_v must be 1 */ \
"r"((uint8_t *)(a))); \
o; })
#endif /* CONFIG_CPU == */
/* defaults for no asm version */
#ifndef test_and_set
/* not atomic */
#define test_and_set(a, v, ...) \
({ uint32_t o = *(uint8_t *)(a); \
*(uint8_t *)(a) = (v); \
o; })
#endif /* test_and_set */
#ifndef xchg8
/* not atomic */
#define xchg8(a, v, ...) \
({ uint32_t o = *(uint8_t *)(a); \
*(uint8_t *)(a) = (v); \
o; })
#endif /* xchg8 */
#ifndef xchg32
/* not atomic */
#define xchg32(a, v, ...) \
({ uint32_t o = *(uint32_t *)(a); \
*(uint32_t *)(a) = (v); \
o; })
#endif /* xchg32 */
#ifndef xchgptr
/* not atomic */
#define xchgptr(a, v, ...) \
({ typeof (*(a)) o = *(a); \
*(a) = (v); \
o; })
#endif /* xchgptr */
void core_idle(void);
void core_wake(IF_COP_VOID(unsigned int core));
#define CREATE_THREAD_FROZEN 0x00000001 /* Thread is frozen at create time */
struct thread_entry*
create_thread(void (*function)(void), void* stack, int stack_size,
unsigned flags, const char *name
IF_PRIO(, int priority)
IF_COP(, unsigned int core));
#ifdef HAVE_SCHEDULER_BOOSTCTRL
void trigger_cpu_boost(void);
void cancel_cpu_boost(void);
#else
#define trigger_cpu_boost()
#define cancel_cpu_boost()
#endif
void thread_thaw(struct thread_entry *thread);
void thread_wait(struct thread_entry *thread);
void remove_thread(struct thread_entry *thread);
void switch_thread(struct thread_entry *old);
void sleep_thread(int ticks);
/**
* Setup to allow using thread queues as locked or non-locked without speed
* sacrifices in both core locking types.
*
* The blocking/waking function inline two different version of the real
* function into the stubs when a software or other separate core locking
* mechanism is employed.
*
* When a simple test-and-set or similar instruction is available, locking
* has no cost and so one version is used and the internal worker is called
* directly.
*
* CORELOCK_NONE is treated the same as when an atomic instruction can be
* used.
*/
/* Blocks the current thread on a thread queue */
#if CONFIG_CORELOCK == SW_CORELOCK
void block_thread(struct thread_queue *tq);
void block_thread_no_listlock(struct thread_entry **list);
#else
void _block_thread(struct thread_queue *tq);
static inline void block_thread(struct thread_queue *tq)
{ _block_thread(tq); }
static inline void block_thread_no_listlock(struct thread_entry **list)
{ _block_thread((struct thread_queue *)list); }
#endif /* CONFIG_CORELOCK */
/* Blocks the current thread on a thread queue for a max amount of time
* There is no "_no_listlock" version because timeout blocks without sync on
* the blocking queues is not permitted since either core could access the
* list at any time to do an implicit wake. In other words, objects with
* timeout support require lockable queues. */
void block_thread_w_tmo(struct thread_queue *tq, int timeout);
/* Wakes up the thread at the head of the queue */
#define THREAD_WAKEUP_NONE ((struct thread_entry *)NULL)
#define THREAD_WAKEUP_MISSING ((struct thread_entry *)(NULL+1))
#if CONFIG_CORELOCK == SW_CORELOCK
struct thread_entry * wakeup_thread(struct thread_queue *tq);
struct thread_entry * wakeup_thread_no_listlock(struct thread_entry **list);
#else
struct thread_entry * _wakeup_thread(struct thread_queue *list);
static inline struct thread_entry * wakeup_thread(struct thread_queue *tq)
{ return _wakeup_thread(tq); }
static inline struct thread_entry * wakeup_thread_no_listlock(struct thread_entry **list)
{ return _wakeup_thread((struct thread_queue *)list); }
#endif /* CONFIG_CORELOCK */
/* Initialize a thread_queue object. */
static inline void thread_queue_init(struct thread_queue *tq)
{ tq->queue = NULL; IF_SWCL(corelock_init(&tq->cl);) }
/* A convenience function for waking an entire queue of threads. */
static inline void thread_queue_wake(struct thread_queue *tq)
{ while (wakeup_thread(tq) != NULL); }
/* The no-listlock version of thread_queue_wake() */
static inline void thread_queue_wake_no_listlock(struct thread_entry **list)
{ while (wakeup_thread_no_listlock(list) != NULL); }
#ifdef HAVE_PRIORITY_SCHEDULING
int thread_set_priority(struct thread_entry *thread, int priority);
int thread_get_priority(struct thread_entry *thread);
/* Yield that guarantees thread execution once per round regardless of
thread's scheduler priority - basically a transient realtime boost
without altering the scheduler's thread precedence. */
void priority_yield(void);
#else
#define priority_yield yield
#endif /* HAVE_PRIORITY_SCHEDULING */
#if NUM_CORES > 1
unsigned int switch_core(unsigned int new_core);
#endif
struct thread_entry * thread_get_current(void);
void init_threads(void);
int thread_stack_usage(const struct thread_entry *thread);
#if NUM_CORES > 1
int idle_stack_usage(unsigned int core);
#endif
void thread_get_name(char *buffer, int size,
struct thread_entry *thread);
#ifdef RB_PROFILE
void profile_thread(void);
#endif
#endif /* THREAD_H */