rockbox/firmware/target/arm/sandisk/sansa-e200/lcd-e200.c

694 lines
21 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Rockbox driver for Sansa e200 LCDs
*
* Based on reverse engineering done my MrH
*
* Copyright (c) 2006 Daniel Ankers
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "lcd.h"
#include "system.h"
#include <string.h>
#include "backlight-target.h"
#include "cpu.h"
/* Power and display status */
static bool power_on = false; /* Is the power turned on? */
static bool display_on NOCACHEBSS_ATTR = false; /* Is the display turned on? */
static unsigned lcd_yuv_options NOCACHEBSS_ATTR = 0;
/* Reverse Flag */
#define R_DISP_CONTROL_NORMAL 0x0004
#define R_DISP_CONTROL_REV 0x0000
static unsigned short r_disp_control_rev = R_DISP_CONTROL_NORMAL;
/* Flipping */
#define R_DRV_OUTPUT_CONTROL_NORMAL 0x101b
#define R_DRV_OUTPUT_CONTROL_FLIPPED 0x131b
static unsigned short r_drv_output_control = R_DRV_OUTPUT_CONTROL_NORMAL;
#define LCD_DATA_IN_GPIO GPIOB_INPUT_VAL
#define LCD_DATA_IN_PIN 6
#define LCD_DATA_OUT_GPIO GPIOB_OUTPUT_VAL
#define LCD_DATA_OUT_PIN 7
#define LCD_CLOCK_GPIO GPIOB_OUTPUT_VAL
#define LCD_CLOCK_PIN 5
#define LCD_CS_GPIO GPIOD_OUTPUT_VAL
#define LCD_CS_PIN 6
#define LCD_REG_0 (*(volatile unsigned long *)(0xc2000000))
#define LCD_REG_1 (*(volatile unsigned long *)(0xc2000004))
#define LCD_REG_2 (*(volatile unsigned long *)(0xc2000008))
#define LCD_REG_3 (*(volatile unsigned long *)(0xc200000c))
#define LCD_REG_4 (*(volatile unsigned long *)(0xc2000010))
#define LCD_REG_5 (*(volatile unsigned long *)(0xc2000014))
#define LCD_REG_6 (*(volatile unsigned long *)(0xc2000018))
#define LCD_REG_7 (*(volatile unsigned long *)(0xc200001c))
#define LCD_REG_8 (*(volatile unsigned long *)(0xc2000020))
#define LCD_REG_9 (*(volatile unsigned long *)(0xc2000024))
#define LCD_FB_BASE_REG (*(volatile unsigned long *)(0xc2000028))
/* Taken from HD66789 datasheet and seems similar enough.
Definitely a Renesas chip though with a perfect register index
match but at least one bit seems to be set that that datasheet
doesn't show. It says T.B.D. on the regmap anyway. */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_ENTRY_MODE 0x03
#define R_COMPARE_REG1 0x04
#define R_COMPARE_REG2 0x05
#define R_DISP_CONTROL1 0x07
#define R_DISP_CONTROL2 0x08
#define R_DISP_CONTROL3 0x09
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_INTF_CONTROL 0x0c
#define R_POWER_CONTROL1 0x10
#define R_POWER_CONTROL2 0x11
#define R_POWER_CONTROL3 0x12
#define R_POWER_CONTROL4 0x13
#define R_RAM_ADDR_SET 0x21
#define R_RAM_READ_DATA 0x21
#define R_RAM_WRITE_DATA 0x22
#define R_RAM_WRITE_DATA_MASK1 0x23
#define R_RAM_WRITE_DATA_MASK2 0x24
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_POS 0x38
#define R_GAMMA_AMP_ADJ_NEG 0x39
#define R_GATE_SCAN_START_POS 0x40
#define R_VERT_SCROLL_CONTROL 0x41
#define R_1ST_SCR_DRIVE_POS 0x42
#define R_2ND_SCR_DRIVE_POS 0x43
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
/* We don't know how to receive a DMA finished signal from the LCD controller
* To avoid problems with flickering, we double-buffer the framebuffer and turn
* off DMA while updates are taking place
* At least the alignment as in lcd-16bit.c and cache interference free */
static fb_data lcd_driver_framebuffer[LCD_FBHEIGHT][LCD_FBWIDTH]
CACHEALIGN_AT_LEAST_ATTR(16);
#ifdef BOOTLOADER
static void lcd_init_gpio(void)
{
GPIOB_ENABLE |= (1<<7);
GPIOB_ENABLE |= (1<<5);
GPIOB_OUTPUT_EN |= (1<<7);
GPIOB_OUTPUT_EN |= (1<<5);
GPIOD_ENABLE |= (1<<6);
GPIOD_OUTPUT_EN |= (1<<6);
}
#endif
static void lcd_bus_idle(void)
{
LCD_CLOCK_GPIO |= (1 << LCD_CLOCK_PIN);
LCD_DATA_OUT_GPIO |= (1 << LCD_DATA_OUT_PIN);
}
static void lcd_send_byte(unsigned char byte)
{
int i;
for (i = 7; i >=0 ; i--)
{
LCD_CLOCK_GPIO &= ~(1 << LCD_CLOCK_PIN);
if ((byte >> i) & 1)
{
LCD_DATA_OUT_GPIO |= (1 << LCD_DATA_OUT_PIN);
} else {
LCD_DATA_OUT_GPIO &= ~(1 << LCD_DATA_OUT_PIN);
}
udelay(1);
LCD_CLOCK_GPIO |= (1 << LCD_CLOCK_PIN);
udelay(1);
lcd_bus_idle();
udelay(3);
}
}
static void lcd_send_msg(unsigned char cmd, unsigned int data)
{
lcd_bus_idle();
udelay(1);
LCD_CS_GPIO &= ~(1 << LCD_CS_PIN);
udelay(10);
lcd_send_byte(cmd);
lcd_send_byte((unsigned char)(data >> 8));
lcd_send_byte((unsigned char)(data & 0xff));
LCD_CS_GPIO |= (1 << LCD_CS_PIN);
udelay(1);
lcd_bus_idle();
}
static void lcd_write_reg(unsigned int reg, unsigned int data)
{
lcd_send_msg(0x70, reg);
lcd_send_msg(0x72, data);
}
/* The LCD controller gets passed the address of the framebuffer, but can only
use the physical, not the remapped, address. This is a quick and dirty way
of correcting it */
static inline unsigned long phys_fb_address(typeof (lcd_driver_framebuffer) fb)
{
if ((unsigned long)fb < 0x10000000)
{
return (unsigned long)fb + 0x10000000;
}
else
{
return (unsigned long)fb;
}
}
/* Run the powerup sequence for the driver IC */
static void lcd_power_on(void)
{
/* Clear standby bit */
lcd_write_reg(R_POWER_CONTROL1, 0x0000);
/** Power ON Sequence **/
lcd_write_reg(R_START_OSC, 0x0001);
/* 10ms or more for oscillation circuit to stabilize */
sleep(HZ/50);
/* SAP2-0=100, BT2-0=100, AP2-0=100, DK=1, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x4444);
/* DC12-10=000, DC2-0=000, VC2-0=001 */
lcd_write_reg(R_POWER_CONTROL2, 0x0001);
/* PON=0, VRH3-0=0011 */
lcd_write_reg(R_POWER_CONTROL3, 0x0003);
/* VCOMG=0, VDV4-0=10001, VCM3-0=11001 */
lcd_write_reg(R_POWER_CONTROL4, 0x1119);
/* PON=1, VRH3-0=0011 */
lcd_write_reg(R_POWER_CONTROL3, 0x0013);
sleep(HZ/25);
/* SAP2-0=100, BT2-0=100, AP2-0=100, DK=0, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x4440);
/* VCOMG=1, VDV4-0=10001, VCM3-0=11001 */
lcd_write_reg(R_POWER_CONTROL4, 0x3119);
sleep(HZ/6);
/* VSPL=0, HSPL=0, DPL=1, EPL=0, SM=0, GS=x, SS=x, NL4-0=11011 */
lcd_write_reg(R_DRV_OUTPUT_CONTROL, r_drv_output_control);
/* FLD=0, FLD0=1, B/C=1, EOR=1, NW5-0=000000 */
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);
/* TRI=0, DFM1-0=11, BGR=0, HWM=1, ID1-0=10, AM=0, LG2-0=000
* AM: horizontal update direction
* ID1-0: H decrement, V increment
*/
lcd_write_reg(R_ENTRY_MODE, 0x6020);
lcd_write_reg(R_COMPARE_REG1, 0x0000);
lcd_write_reg(R_COMPARE_REG2, 0x0000);
/* FP3-0=0010, BP3-0=0010 */
lcd_write_reg(R_DISP_CONTROL2, 0x0202);
/* PTG1-0=00 (normal scan), ISC3-0=0000 (ignored) */
lcd_write_reg(R_DISP_CONTROL3, 0x0000);
/* NO2-0=01, SDT1-0=00, EQ1-0=01, DIV1-0=00, RTN3-0=0000 */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x4400);
/* RM=1, DM1-0=01, RIM1-0=00 */
lcd_write_reg(R_EXT_DISP_INTF_CONTROL, 0x0110);
/* SCN4-0=00000 - G1 if GS=0, G240 if GS=1 */
lcd_write_reg(R_GATE_SCAN_START_POS, 0x0000);
/* VL7-0=00000000 (0 lines) */
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0x0000);
/* SE17-10=219, SS17-10=0 - 220 gates */
lcd_write_reg(R_1ST_SCR_DRIVE_POS, (219 << 8));
/* SE27-10=0, SS27-10=0 - no second screen */
lcd_write_reg(R_2ND_SCR_DRIVE_POS, 0x0000);
/* HEA=175, HSA=0 = H window from 0-175 */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (175 << 8));
/* VEA=219, VSA=0 = V window from 0-219 */
lcd_write_reg(R_VERT_RAM_ADDR_POS, (219 << 8));
/* PKP12-10=000, PKP02-00=000 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0000);
/* PKP32-30=111, PKP22-20=100 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0704);
/* PKP52-50=001, PKP42-40=111 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0107);
/* PRP12-10=111, PRP02-00=100 */
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0704);
/* PKN12-10=001, PKN02-00=111 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0107);
/* PKN32-30=000, PKN22-20=010 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0002);
/* PKN52-50=111, PKN42-40=111 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0707);
/* PRN12-10=101, PRN02-00=011 */
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0503);
/* VRP14-10=00000, VRP03-00=0000 */
lcd_write_reg(R_GAMMA_AMP_ADJ_POS, 0x0000);
/* WRN14-10=00000, VRN03-00=0000 */
lcd_write_reg(R_GAMMA_AMP_ADJ_NEG, 0x0000);
/* AD15-0=175 (upper right corner) */
lcd_write_reg(R_RAM_ADDR_SET, 175);
/* RM=1, DM1-0=01, RIM1-0=00 */
lcd_write_reg(R_EXT_DISP_INTF_CONTROL, 0x0110);
power_on = true;
}
/* Run the display on sequence for the driver IC */
static void lcd_display_on(void)
{
if (!power_on)
{
/* Power has been turned off so full reinit is needed */
lcd_power_on();
}
else
{
/* Restore what we fiddled with when turning display off */
/* PON=1, VRH3-0=0011 */
lcd_write_reg(R_POWER_CONTROL3, 0x0013);
/* NO2-0=01, SDT1-0=00, EQ1-0=01, DIV1-0=00, RTN3-0=0000 */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x4400);
/* VCOMG=1, VDV4-0=10001, VCM3-0=11001 */
lcd_write_reg(R_POWER_CONTROL4, 0x3119);
}
/* SAP2-0=100, BT2-0=111, AP2-0=100, DK=1, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x4740);
sleep(HZ/25);
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=1, GON=0, DTE=0, CL=0,
REV=x, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL1, 0x0041 | r_disp_control_rev);
sleep(HZ/30);
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=1, GON=1, DTE=0, CL=0,
REV=x, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL1, 0x0061 | r_disp_control_rev);
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=1, GON=1, DTE=0, CL=0,
REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL1, 0x0063 | r_disp_control_rev);
sleep(HZ/30);
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=1, GON=1, DTE=1, CL=0,
REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL1, 0x0073 | r_disp_control_rev);
/* Go into write data mode */
lcd_send_msg(0x70, R_RAM_WRITE_DATA);
/* tell that we're on now */
display_on = true;
}
/* Turn off visible display operations */
static void lcd_display_off(void)
{
/* block drawing operations and changing of first */
display_on = false;
/* NO2-0=01, SDT1-0=00, EQ1-0=00, DIV1-0=00, RTN3-0=0000 */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x4000);
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=1, GON=1, DTE=1, CL=0,
REV=x, D1-0=10 */
lcd_write_reg(R_DISP_CONTROL1, 0x0072 | r_disp_control_rev);
sleep(HZ/25);
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=1, GON=1, DTE=0, CL=0,
REV=x, D1-0=10 */
lcd_write_reg(R_DISP_CONTROL1, 0x0062 | r_disp_control_rev);
sleep(HZ/25);
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=0, GON=0, DTE=0, CL=0,
REV=0, D1-0=00 */
lcd_write_reg(R_DISP_CONTROL1, 0x0000);
/* SAP2-0=000, BT2-0=000, AP2-0=000, DK=0, SLP=0, STBY=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x0000);
/* PON=0, VRH3-0=0011 */
lcd_write_reg(R_POWER_CONTROL3, 0x0003);
/* VCOMG=0, VDV4-0=10001, VCM4-0=11001 */
lcd_write_reg(R_POWER_CONTROL4, 0x1119);
}
void lcd_init_device(void)
{
/* All this is magic worked out by MrH */
/* Stop any DMA which is in progress */
LCD_REG_6 &= ~1;
udelay(100000);
#ifdef BOOTLOADER /* Bother at all to do this again? */
/* Init GPIO ports */
lcd_init_gpio();
/* Controller init */
GPO32_ENABLE |= (1 << 28);
GPO32_VAL &= ~(1 << 28);
DEV_INIT1 = ( (DEV_INIT1 & 0x03ffffff) | (0x15 << 26) );
outl(((inl(0x70000014) & (0x0fffffff)) | (0x5 << 28)), 0x70000014);
outl((inl(0x70000020) & ~(0x3 << 10)), 0x70000020);
DEV_EN |= DEV_LCD; /* Enable controller */
outl(0x6, 0x600060d0);
DEV_RS |= DEV_LCD; /* Reset controller */
outl((inl(0x70000020) & ~(1 << 14)), 0x70000020);
lcd_bus_idle();
DEV_RS &=~DEV_LCD; /* Clear reset */
udelay(1000);
LCD_REG_0 = (LCD_REG_0 & (0x00ffffff)) | (0x22 << 24);
LCD_REG_0 = (LCD_REG_0 & (0xff00ffff)) | (0x14 << 16);
LCD_REG_0 = (LCD_REG_0 & (0xffffc0ff)) | (0x3 << 8);
LCD_REG_0 = (LCD_REG_0 & (0xffffffc0)) | (0xa);
LCD_REG_1 &= 0x00ffffff;
LCD_REG_1 &= 0xff00ffff;
LCD_REG_1 = (LCD_REG_1 & 0xffff03ff) | (0x2 << 10);
LCD_REG_1 = (LCD_REG_1 & 0xfffffc00) | (0xdd);
LCD_REG_2 |= (1 << 5);
LCD_REG_2 |= (1 << 6);
LCD_REG_2 = (LCD_REG_2 & 0xfffffcff) | (0x2 << 8);
LCD_REG_7 &= (0xf800ffff);
LCD_REG_7 &= (0xfffff800);
LCD_REG_8 = (LCD_REG_8 & (0xf800ffff)) | (0xb0 << 16);
LCD_REG_8 = (LCD_REG_8 & (0xfffff800)) | (0xdc); /* X-Y Geometry? */
LCD_REG_5 |= 0xc;
LCD_REG_5 = (LCD_REG_5 & ~(0x70)) | (0x3 << 4);
LCD_REG_5 |= 2;
LCD_REG_6 &= ~(1 << 15);
LCD_REG_6 |= (0xe00);
LCD_REG_6 = (LCD_REG_6 & (0xffffff1f)) | (0x4 << 5);
LCD_REG_6 |= (1 << 4);
LCD_REG_5 &= ~(1 << 7);
LCD_FB_BASE_REG = phys_fb_address(lcd_driver_framebuffer);
udelay(100000);
/* LCD init */
/* Pull RESET low, then high to reset driver IC */
GPO32_VAL &= ~(1 << 28);
udelay(10000);
GPO32_VAL |= (1 << 28);
udelay(10000);
lcd_display_on();
#else
/* Power and display already ON - switch framebuffer address and reset
settings */
LCD_FB_BASE_REG = phys_fb_address(lcd_driver_framebuffer);
power_on = true;
display_on = true;
lcd_set_invert_display(false);
lcd_set_flip(false);
#endif
LCD_REG_6 |= 1; /* Start DMA */
}
void lcd_enable(bool on)
{
if (on == display_on)
return;
if (on)
{
DEV_EN |= DEV_LCD; /* Enable LCD controller */
lcd_display_on(); /* Turn on display */
lcd_update(); /* Resync display */
LCD_REG_6 |= 1; /* Restart DMA */
sleep(HZ/50); /* Wait for a frame to be written */
}
else
{
LCD_REG_6 &= ~1; /* Disable DMA */
sleep(HZ/50); /* Wait for dma end (assuming 50Hz) */
lcd_display_off(); /* Turn off display */
DEV_EN &= ~DEV_LCD; /* Disable LCD controller */
}
}
bool lcd_enabled(void)
{
return display_on;
}
void lcd_sleep(void)
{
LCD_REG_6 &= ~1;
sleep(HZ/50);
if (power_on)
{
/* Turn off display */
if (display_on)
lcd_display_off();
power_on = false;
}
/* Set standby mode */
/* SAP2-0=000, BT2-0=000, AP2-0=000, DK=0, SLP=0, STB=1 */
lcd_write_reg(R_POWER_CONTROL1, 0x0001);
}
/* Copies a rectangle from one framebuffer to another. Can be used in
single transfer mode with width = num pixels, and height = 1 which
allows a full-width rectangle to be copied more efficiently. */
extern void lcd_copy_buffer_rect(fb_data *dst, const fb_data *src,
int width, int height);
void lcd_update_rect(int x, int y, int width, int height)
{
fb_data *dst, *src;
if (!display_on)
return;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* Clip right */
if (x < 0)
width += x, x = 0; /* Clip left */
if (width <= 0)
return; /* nothing left to do */
if (y + height > LCD_HEIGHT)
height = LCD_HEIGHT - y; /* Clip bottom */
if (y < 0)
height += y, y = 0; /* Clip top */
if (height <= 0)
return; /* nothing left to do */
/* TODO: It may be faster to swap the addresses of lcd_driver_framebuffer
* and lcd_framebuffer */
dst = UNCACHED_ADDR(&lcd_driver_framebuffer[y][x]);
src = &lcd_framebuffer[y][x];
/* Copy part of the Rockbox framebuffer to the second framebuffer */
if (width < LCD_WIDTH)
{
/* Not full width - do line-by-line */
lcd_copy_buffer_rect(dst, src, width, height);
}
else
{
/* Full width - copy as one line */
lcd_copy_buffer_rect(dst, src, LCD_WIDTH*height, 1);
}
}
void lcd_update(void)
{
if (!display_on)
return;
/* TODO: It may be faster to swap the addresses of lcd_driver_framebuffer
* and lcd_framebuffer */
/* Copy the Rockbox framebuffer to the second framebuffer */
lcd_copy_buffer_rect(UNCACHED_ADDR(&lcd_driver_framebuffer[0][0]),
&lcd_framebuffer[0][0], LCD_WIDTH*LCD_HEIGHT, 1);
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
/* TODO: Implement lcd_set_contrast() */
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
bool dma_on = LCD_REG_6 & 1;
if (dma_on)
{
LCD_REG_6 &= ~1; /* Disable DMA */
sleep(HZ/50); /* Wait for dma end (assuming 50Hz) */
DEV_EN &= ~DEV_LCD; /* Disable LCD controller */
}
r_disp_control_rev = yesno ? R_DISP_CONTROL_REV :
R_DISP_CONTROL_NORMAL;
if (display_on)
{
/* PT1-0=00, VLE2-1=00, SPT=0, IB6(??)=1, GON=1, CL=0,
DTE=1, REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL1, 0x0073 | r_disp_control_rev);
}
if (dma_on)
{
DEV_EN |= DEV_LCD; /* Enable LCD controller */
lcd_send_msg(0x70, R_RAM_WRITE_DATA); /* Set to RAM write mode */
LCD_REG_6 |= 1; /* Restart DMA */
}
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
bool dma_on = LCD_REG_6 & 1;
if (dma_on)
{
LCD_REG_6 &= ~1; /* Disable DMA */
sleep(HZ/50); /* Wait for dma end (assuming 50Hz) */
DEV_EN &= ~DEV_LCD; /* Disable LCD controller */
}
r_drv_output_control = yesno ? R_DRV_OUTPUT_CONTROL_FLIPPED :
R_DRV_OUTPUT_CONTROL_NORMAL;
if (power_on)
{
/* VSPL=0, HSPL=0, DPL=1, EPL=0, SM=0, GS=x, SS=x,
NL4-0=11011 (G1-G224) */
lcd_write_reg(R_DRV_OUTPUT_CONTROL, r_drv_output_control);
}
if (dma_on)
{
DEV_EN |= DEV_LCD; /* Enable LCD controller */
lcd_send_msg(0x70, R_RAM_WRITE_DATA); /* Set to RAM write mode */
LCD_REG_6 |= 1; /* Restart DMA */
}
}
/* Blitting functions */
void lcd_blit(const fb_data* data, int x, int by, int width,
int bheight, int stride)
{
/* TODO: Implement lcd_blit() */
(void)data;
(void)x;
(void)by;
(void)width;
(void)bheight;
(void)stride;
}
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(fb_data *dst,
unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(fb_data *dst,
unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
/* Performance function to blit a YUV bitmap directly to the LCD */
/* For the e200 - show it rotated */
/* So the LCD_WIDTH is now the height */
void lcd_yuv_blit(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
unsigned char const * yuv_src[3];
off_t z;
if (!display_on)
return;
/* Sorry, but width and height must be >= 2 or else */
width &= ~1;
height >>= 1;
y = LCD_WIDTH - 1 - y;
fb_data *dst = UNCACHED_ADDR(&lcd_driver_framebuffer[x][y]);
z = stride*src_y;
yuv_src[0] = src[0] + z + src_x;
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
if (lcd_yuv_options & LCD_YUV_DITHER)
{
do
{
lcd_write_yuv420_lines_odither(dst, yuv_src, width, stride, y, x);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
dst -= 2;
y -= 2;
}
while (--height > 0);
}
else
{
do
{
lcd_write_yuv420_lines(dst, yuv_src, width, stride);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
dst -= 2;
}
while (--height > 0);
}
}