rockbox/firmware/target/arm/as3525/sd-as3525v2.c
Michael Sevakis 19b2964d78 AMS v1/v2: Remove sd_enabled as an externally-visible variable.
Also removes the sd_enable() function call. It was only used in
the debug screen on AMSv1 and not used at all on AMS v2.

For v1,obtain debug info in a struture passed to a dedicated
debug info function so that enabling and disabling the controller
isn't racy.

Change-Id: I7c44693bc2df5a1f16168b05b3abfe622f9584ce
2018-07-04 15:20:47 +02:00

959 lines
28 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Daniel Ankers
* Copyright © 2008-2009 Rafaël Carré
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h" /* for HAVE_MULTIVOLUME */
#include "fs_defines.h"
#include "gcc_extensions.h"
#include "led.h"
#include "sdmmc.h"
#include "system.h"
#include "kernel.h"
#include "cpu.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "as3525v2.h"
#include "pl081.h" /* DMA controller */
#include "dma-target.h" /* DMA request lines */
#include "clock-target.h"
#include "storage.h"
#define INTERNAL_AS3525 0 /* embedded SD card */
#define SD_SLOT_AS3525 1 /* SD slot if present */
/* Clipv2 Clip+ and Fuzev2 OF all occupy the same size */
#define AMS_OF_SIZE 0xf000
/* command flags */
#define MCI_NO_RESP (0<<0)
#define MCI_RESP (1<<0)
#define MCI_LONG_RESP (1<<1)
#define MCI_ACMD (1<<2)
/* controller registers */
#define SD_BASE 0xC6070000
#define SD_REG(x) (*(volatile unsigned long *) (SD_BASE+x))
#define MCI_CTRL SD_REG(0x00)
/* control bits */
#define CTRL_RESET (1<<0)
#define FIFO_RESET (1<<1)
#define DMA_RESET (1<<2)
#define INT_ENABLE (1<<4)
#define DMA_ENABLE (1<<5)
#define READ_WAIT (1<<6)
#define SEND_IRQ_RESP (1<<7)
#define ABRT_READ_DATA (1<<8)
#define SEND_CCSD (1<<9)
#define SEND_AS_CCSD (1<<10)
#define EN_OD_PULLUP (1<<24)
#define MCI_PWREN SD_REG(0x04) /* power enable */
#define PWR_CRD_0 (1<<0)
#define PWR_CRD_1 (1<<1)
#define PWR_CRD_2 (1<<2)
#define PWR_CRD_3 (1<<3)
#define MCI_CLKDIV SD_REG(0x08) /* clock divider */
/* CLK_DIV_0 : bits 7:0
* CLK_DIV_1 : bits 15:8
* CLK_DIV_2 : bits 23:16
* CLK_DIV_3 : bits 31:24
*/
#define MCI_CLKSRC SD_REG(0x0C) /* clock source */
/* CLK_SRC_CRD0: bits 1:0
* CLK_SRC_CRD1: bits 3:2
* CLK_SRC_CRD2: bits 5:4
* CLK_SRC_CRD3: bits 7:6
*/
#define MCI_CLKENA SD_REG(0x10) /* clock enable */
#define CCLK_ENA_CRD0 (1<<0)
#define CCLK_ENA_CRD1 (1<<1)
#define CCLK_ENA_CRD2 (1<<2)
#define CCLK_ENA_CRD3 (1<<3)
#define CCLK_LP_CRD0 (1<<16) /* LP --> Low Power Mode? */
#define CCLK_LP_CRD1 (1<<17)
#define CCLK_LP_CRD2 (1<<18)
#define CCLK_LP_CRD3 (1<<19)
#define MCI_TMOUT SD_REG(0x14) /* timeout */
/* response timeout bits 0:7
* data timeout bits 8:31
*/
#define MCI_CTYPE SD_REG(0x18) /* card type */
/* 1 bit per card, set = wide bus */
#define WIDTH4_CRD0 (1<<0)
#define WIDTH4_CRD1 (1<<1)
#define WIDTH4_CRD2 (1<<2)
#define WIDTH4_CRD3 (1<<3)
#define MCI_BLKSIZ SD_REG(0x1C) /* block size bits 0:15*/
#define MCI_BYTCNT SD_REG(0x20) /* byte count bits 0:31*/
#define MCI_MASK SD_REG(0x24) /* interrupt mask */
#define MCI_ARGUMENT SD_REG(0x28)
#define MCI_COMMAND SD_REG(0x2C)
/* command bits (bits 5:0 are the command index) */
#define CMD_RESP_EXP_BIT (1<<6)
#define CMD_RESP_LENGTH_BIT (1<<7)
#define CMD_CHECK_CRC_BIT (1<<8)
#define CMD_DATA_EXP_BIT (1<<9)
#define CMD_RW_BIT (1<<10)
#define CMD_TRANSMODE_BIT (1<<11)
#define CMD_SENT_AUTO_STOP_BIT (1<<12)
#define CMD_WAIT_PRV_DAT_BIT (1<<13)
#define CMD_ABRT_CMD_BIT (1<<14)
#define CMD_SEND_INIT_BIT (1<<15)
#define CMD_CARD_NO(x) ((x)<<16) /* 5 bits wide */
#define CMD_SEND_CLK_ONLY (1<<21)
#define CMD_READ_CEATA (1<<22)
#define CMD_CCS_EXPECTED (1<<23)
#define CMD_DONE_BIT (1<<31)
#define TRANSFER_CMD (cmd == SD_READ_MULTIPLE_BLOCK || \
cmd == SD_WRITE_MULTIPLE_BLOCK)
#define MCI_RESP0 SD_REG(0x30)
#define MCI_RESP1 SD_REG(0x34)
#define MCI_RESP2 SD_REG(0x38)
#define MCI_RESP3 SD_REG(0x3C)
#define MCI_MASK_STATUS SD_REG(0x40) /* masked interrupt status */
#define MCI_RAW_STATUS SD_REG(0x44) /* raw interrupt status, also used as
* status clear */
/* interrupt bits */ /* C D E (Cmd) (Data) (End) */
#define MCI_INT_CRDDET (1<<0) /* card detect */
#define MCI_INT_RE (1<<1) /* x response error */
#define MCI_INT_CD (1<<2) /* x command done */
#define MCI_INT_DTO (1<<3) /* x data transfer over */
#define MCI_INT_TXDR (1<<4) /* tx fifo data request */
#define MCI_INT_RXDR (1<<5) /* rx fifo data request */
#define MCI_INT_RCRC (1<<6) /* x response crc error */
#define MCI_INT_DCRC (1<<7) /* x data crc error */
#define MCI_INT_RTO (1<<8) /* x response timeout */
#define MCI_INT_DRTO (1<<9) /* x data read timeout */
#define MCI_INT_HTO (1<<10) /* x data starv timeout */
#define MCI_INT_FRUN (1<<11) /* x fifo over/underrun */
#define MCI_INT_HLE (1<<12) /* x x hw locked while error */
#define MCI_INT_SBE (1<<13) /* x start bit error */
#define MCI_INT_ACD (1<<14) /* auto command done */
#define MCI_INT_EBE (1<<15) /* x end bit error */
#define MCI_INT_SDIO (0xf<<16)
/*
* STATUS register
* & 0xBA80 = MCI_INT_DCRC | MCI_INT_DRTO | MCI_INT_FRUN | \
* MCI_INT_HLE | MCI_INT_SBE | MCI_INT_EBE
* & 8 = MCI_INT_DTO
* & 0x428 = MCI_INT_DTO | MCI_INT_RXDR | MCI_INT_HTO
* & 0x418 = MCI_INT_DTO | MCI_INT_TXDR | MCI_INT_HTO
*/
#define MCI_CMD_ERROR \
(MCI_INT_RE | \
MCI_INT_RCRC | \
MCI_INT_RTO | \
MCI_INT_HLE)
#define MCI_DATA_ERROR \
( MCI_INT_DCRC | \
MCI_INT_DRTO | \
MCI_INT_HTO | \
MCI_INT_FRUN | \
MCI_INT_HLE | \
MCI_INT_SBE | \
MCI_INT_EBE)
#define MCI_STATUS SD_REG(0x48)
#define FIFO_RX_WM (1<<0)
#define FIFO_TX_WM (1<<1)
#define FIFO_EMPTY (1<<2)
#define FIFO_FULL (1<<3)
#define CMD_FSM_STATE_B0 (1<<4)
#define CMD_FSM_STATE_B1 (1<<5)
#define CMD_FSM_STATE_B2 (1<<6)
#define CMD_FSM_STATE_B3 (1<<7)
#define DATA_3_STAT (1<<8)
#define DATA_BUSY (1<<9)
#define DATA_STAT_MC_BUSY (1<<10)
#define RESP_IDX_B0 (1<<11)
#define RESP_IDX_B1 (1<<12)
#define RESP_IDX_B2 (1<<13)
#define RESP_IDX_B3 (1<<14)
#define RESP_IDX_B4 (1<<15)
#define RESP_IDX_B5 (1<<16)
#define FIFO_CNT_B00 (1<<17)
#define FIFO_CNT_B01 (1<<18)
#define FIFO_CNT_B02 (1<<19)
#define FIFO_CNT_B03 (1<<20)
#define FIFO_CNT_B04 (1<<21)
#define FIFO_CNT_B05 (1<<22)
#define FIFO_CNT_B06 (1<<23)
#define FIFO_CNT_B07 (1<<24)
#define FIFO_CNT_B08 (1<<25)
#define FIFO_CNT_B09 (1<<26)
#define FIFO_CNT_B10 (1<<27)
#define FIFO_CNT_B11 (1<<28)
#define FIFO_CNT_B12 (1<<29)
#define DMA_ACK (1<<30)
#define START_CMD (1<<31)
#define MCI_FIFOTH SD_REG(0x4C) /* FIFO threshold */
/* TX watermark : bits 11:0
* RX watermark : bits 27:16
* DMA MTRANS SIZE : bits 30:28
* bits 31, 15:12 : unused
*/
#define MCI_FIFOTH_MASK 0x8000f000
#define MCI_CDETECT SD_REG(0x50) /* card detect */
#define CDETECT_CRD_0 (1<<0)
#define CDETECT_CRD_1 (1<<1)
#define CDETECT_CRD_2 (1<<2)
#define CDETECT_CRD_3 (1<<3)
#define MCI_WRTPRT SD_REG(0x54) /* write protect */
#define MCI_GPIO SD_REG(0x58)
#define MCI_TCBCNT SD_REG(0x5C) /* transferred CIU byte count (card)*/
#define MCI_TBBCNT SD_REG(0x60) /* transferred host/DMA to/from bytes (FIFO)*/
#define MCI_DEBNCE SD_REG(0x64) /* card detect debounce bits 23:0*/
#define MCI_USRID SD_REG(0x68) /* user id */
#define MCI_VERID SD_REG(0x6C) /* version id */
#define MCI_HCON SD_REG(0x70) /* hardware config */
/* bit 0 : card type
* bits 5:1 : maximum card index
* bit 6 : BUS TYPE
* bits 9:7 : DATA WIDTH
* bits 15:10 : ADDR WIDTH
* bits 17:16 : DMA IF
* bits 20:18 : DMA WIDTH
* bit 21 : FIFO RAM INSIDE
* bit 22 : IMPL HOLD REG
* bit 23 : SET CLK FALSE
* bits 25:24 : MAX CLK DIV IDX
* bit 26 : AREA OPTIM
*/
#define MCI_BMOD SD_REG(0x80) /* bus mode */
/* bit 0 : SWR
* bit 1 : FB
* bits 6:2 : DSL
* bit 7 : DE
* bit 10:8 : PBL
*/
#define MCI_PLDMND SD_REG(0x84) /* poll demand */
#define MCI_DBADDR SD_REG(0x88) /* descriptor base address */
#define MCI_IDSTS SD_REG(0x8C) /* internal DMAC status */
/* bit 0 : TI
* bit 1 : RI
* bit 2 : FBE
* bit 3 : unused
* bit 4 : DU
* bit 5 : CES
* bits 7:6 : unused
* bits 8 : NIS
* bit 9 : AIS
* bits 12:10 : EB
* bits 16:13 : FSM
*/
#define MCI_IDINTEN SD_REG(0x90) /* internal DMAC interrupt enable */
/* bit 0 : TI
* bit 1 : RI
* bit 2 : FBE
* bit 3 : unused
* bit 4 : DU
* bit 5 : CES
* bits 7:6 : unused
* bits 8 : NI
* bit 9 : AI
*/
#define MCI_DSCADDR SD_REG(0x94) /* current host descriptor address */
#define MCI_BUFADDR SD_REG(0x98) /* current host buffer address */
#define MCI_FIFO ((unsigned long *) (SD_BASE+0x100))
#define UNALIGNED_NUM_SECTORS 10
static unsigned char aligned_buffer[UNALIGNED_NUM_SECTORS* SD_BLOCK_SIZE] __attribute__((aligned(32))); /* align on cache line size */
static unsigned char *uncached_buffer = AS3525_UNCACHED_ADDR(&aligned_buffer[0]);
static tCardInfo card_info[NUM_DRIVES];
#ifdef CONFIG_STORAGE_MULTI
static int sd_first_drive = 0;
#else
#define sd_first_drive 0
#endif
/* for compatibility */
static long last_disk_activity = -1;
static struct mutex sd_mtx SHAREDBSS_ATTR;
static struct semaphore transfer_completion_signal;
static struct semaphore command_completion_signal;
static volatile bool retry;
static volatile int cmd_error;
#if defined(HAVE_MULTIDRIVE)
#define EXT_SD_BITS (1<<2)
#endif
static inline void mci_delay(void) { udelay(1000); }
void INT_NAND(void)
{
MCI_CTRL &= ~INT_ENABLE;
/* use raw status here as we need to check some Ints that are masked */
const int status = MCI_RAW_STATUS;
MCI_RAW_STATUS = status; /* clear status */
if(status & MCI_DATA_ERROR)
retry = true;
if( status & (MCI_INT_DTO|MCI_DATA_ERROR))
semaphore_release(&transfer_completion_signal);
cmd_error = status & MCI_CMD_ERROR;
if(status & MCI_INT_CD)
semaphore_release(&command_completion_signal);
MCI_CTRL |= INT_ENABLE;
}
#ifndef BOOTLOADER
static void enable_controller(bool on)
{
if (on)
{
bitset32(&CGU_PERI, CGU_MCI_CLOCK_ENABLE);
CGU_SDSLOT |= (1<<7); /* interface enable */
}
else
{
CGU_SDSLOT &= ~(1<<7); /* interface enable */
bitclr32(&CGU_PERI, CGU_MCI_CLOCK_ENABLE);
}
}
#endif /* BOOTLOADER */
static inline bool card_detect_target(void)
{
#if defined(HAVE_MULTIDRIVE)
#if defined(SANSA_FUZEV2)
return GPIOA_PIN(2);
#elif defined(SANSA_CLIPPLUS) || defined(SANSA_CLIPZIP)
return !(GPIOA_PIN(2));
#else
#error "microSD pin not defined for your target"
#endif
#else
return false;
#endif
}
static bool send_cmd(const int drive, const int cmd, const int arg, const int flags,
unsigned long *response)
{
int card_no;
if ((flags & MCI_ACMD) && /* send SD_APP_CMD first */
!send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_RESP, response))
return false;
#if defined(SANSA_FUZEV2) || defined(SANSA_CLIPPLUS) || defined(SANSA_CLIPZIP)
if (amsv2_variant == 1)
GPIOB_PIN(5) = (drive == INTERNAL_AS3525) ? 1 << 5 : 0;
#endif
MCI_ARGUMENT = arg;
#if defined(SANSA_FUZEV2) || defined(SANSA_CLIPPLUS) || defined(SANSA_CLIPZIP)
if (amsv2_variant == 1)
card_no = 1 << 16;
else
#endif
card_no = CMD_CARD_NO(drive);
/* Construct MCI_COMMAND */
MCI_COMMAND =
/*b5:0*/ cmd
/*b6 */ | ((flags & MCI_RESP) ? CMD_RESP_EXP_BIT: 0)
/*b7 */ | ((flags & MCI_LONG_RESP) ? CMD_RESP_LENGTH_BIT: 0)
/*b8 | CMD_CHECK_CRC_BIT unused */
/*b9 */ | (TRANSFER_CMD ? CMD_DATA_EXP_BIT: 0)
/*b10 */ | ((cmd == SD_WRITE_MULTIPLE_BLOCK) ? CMD_RW_BIT: 0)
/*b11 | CMD_TRANSMODE_BIT unused */
/*b12 | CMD_SENT_AUTO_STOP_BIT unused */
/*b13 */ | ((cmd != SD_STOP_TRANSMISSION) ? CMD_WAIT_PRV_DAT_BIT: 0)
/*b14 | CMD_ABRT_CMD_BIT unused */
/*b15 */ | ((cmd == SD_GO_IDLE_STATE) ? CMD_SEND_INIT_BIT: 0)
/*b20:16 */ | card_no
/*b21 | CMD_SEND_CLK_ONLY unused */
/*b22 | CMD_READ_CEATA unused */
/*b23 | CMD_CCS_EXPECTED unused */
/*b31 */ | CMD_DONE_BIT;
semaphore_wait(&command_completion_signal, TIMEOUT_BLOCK);
/* Handle command responses & errors */
if(flags & MCI_RESP)
{
if(cmd_error & (MCI_INT_RCRC | MCI_INT_RTO))
return false;
if(flags & MCI_LONG_RESP)
{
response[0] = MCI_RESP3;
response[1] = MCI_RESP2;
response[2] = MCI_RESP1;
response[3] = MCI_RESP0;
}
else
response[0] = MCI_RESP0;
}
return true;
}
static int sd_wait_for_tran_state(const int drive)
{
unsigned long response;
unsigned int timeout = current_tick + 5*HZ;
int cmd_retry = 10;
while (1)
{
while (!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca, MCI_RESP,
&response) && cmd_retry > 0)
{
cmd_retry--;
}
if (cmd_retry <= 0)
return -1;
if (((response >> 9) & 0xf) == SD_TRAN)
return 0;
if(TIME_AFTER(current_tick, timeout))
return -10 * ((response >> 9) & 0xf);
last_disk_activity = current_tick;
}
}
static int sd_init_card(const int drive)
{
unsigned long response;
long init_timeout;
bool sd_v2 = false;
card_info[drive].initialized = 0;
card_info[drive].rca = 0;
/* assume 24 MHz clock / 60 = 400 kHz */
MCI_CLKDIV = (MCI_CLKDIV & ~(0xFF)) | 0x3C; /* CLK_DIV_0 : bits 7:0 */
/* 100 - 400kHz clock required for Identification Mode */
/* Start of Card Identification Mode ************************************/
/* CMD0 Go Idle */
if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL))
return -1;
mci_delay();
/* CMD8 Check for v2 sd card. Must be sent before using ACMD41
Non v2 cards will not respond to this command*/
if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP, &response))
if((response & 0xFFF) == 0x1AA)
sd_v2 = true;
/* timeout for initialization is 1sec, from SD Specification 2.00 */
init_timeout = current_tick + HZ;
do {
/* this timeout is the only valid error for this loop*/
if(TIME_AFTER(current_tick, init_timeout))
return -2;
/* ACMD41 For v2 cards set HCS bit[30] & send host voltage range to all */
if(!send_cmd(drive, SD_APP_OP_COND, (0x00FF8000 | (sd_v2 ? 1<<30 : 0)),
MCI_ACMD|MCI_RESP, &card_info[drive].ocr))
return -3;
} while(!(card_info[drive].ocr & (1<<31)) );
/* CMD2 send CID */
if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP, card_info[drive].cid))
return -4;
/* CMD3 send RCA */
if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &card_info[drive].rca))
return -5;
#ifdef HAVE_MULTIDRIVE
/* Make sure we have 2 unique rca numbers */
if(card_info[INTERNAL_AS3525].rca == card_info[SD_SLOT_AS3525].rca)
if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &card_info[drive].rca))
return -6;
#endif
/* End of Card Identification Mode ************************************/
/* Card back to full speed */
MCI_CLKDIV &= ~(0xFF); /* CLK_DIV_0 : bits 7:0 = 0x00 */
/* CMD9 send CSD */
if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca,
MCI_RESP|MCI_LONG_RESP, card_info[drive].csd))
return -11;
sd_parse_csd(&card_info[drive]);
if(drive == INTERNAL_AS3525) /* The OF is stored in the first blocks */
card_info[INTERNAL_AS3525].numblocks -= AMS_OF_SIZE;
#ifndef BOOTLOADER
/* Switch to to 4 bit widebus mode */
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &response))
return -12;
if(sd_wait_for_tran_state(drive) < 0)
return -13;
/* ACMD6: set bus width to 4-bit */
if(!send_cmd(drive, SD_SET_BUS_WIDTH, 2, MCI_ACMD|MCI_RESP, &response))
return -15;
/* ACMD42: disconnect the pull-up resistor on CD/DAT3 */
if(!send_cmd(drive, SD_SET_CLR_CARD_DETECT, 0, MCI_ACMD|MCI_RESP, &response))
return -17;
/* Now that card is widebus make controller aware */
#if defined(SANSA_FUZEV2) || defined(SANSA_CLIPPLUS) || defined(SANSA_CLIPZIP)
if (amsv2_variant == 1)
MCI_CTYPE |= 1<<1;
else
#endif
MCI_CTYPE |= (1<<drive);
#endif /* ! BOOTLOADER */
card_info[drive].initialized = 1;
return 0;
}
static void init_controller(void)
{
int hcon_numcards = ((MCI_HCON>>1) & 0x1F) + 1;
int card_mask = (1 << hcon_numcards) - 1;
int pwr_mask;
#if defined(SANSA_FUZEV2) || defined(SANSA_CLIPPLUS) || defined(SANSA_CLIPZIP)
if (amsv2_variant == 1)
pwr_mask = 1 << 1;
else
#endif
pwr_mask = card_mask;
MCI_PWREN &= ~pwr_mask; /* power off all cards */
MCI_PWREN = pwr_mask; /* power up cards */
MCI_CTRL |= CTRL_RESET;
while(MCI_CTRL & CTRL_RESET)
;
MCI_RAW_STATUS = 0xffffffff; /* Clear all MCI Interrupts */
MCI_TMOUT = 0xffffffff; /* data b31:8, response b7:0 */
MCI_CTYPE = 0x0; /* all cards 1 bit bus for now */
MCI_CLKENA = card_mask; /* Enables card clocks */
MCI_ARGUMENT = 0;
MCI_COMMAND = CMD_DONE_BIT|CMD_SEND_CLK_ONLY|CMD_WAIT_PRV_DAT_BIT;
while(MCI_COMMAND & CMD_DONE_BIT)
;
MCI_DEBNCE = 0xfffff; /* default value */
/* Rx watermark = 63(sd reads) Tx watermark = 128 (sd writes) */
MCI_FIFOTH = (MCI_FIFOTH & MCI_FIFOTH_MASK) | 0x503f0080;
/* RCRC & RTO interrupts should be set together with the CD interrupt but
* in practice sometimes incorrectly precede the CD interrupt. If we leave
* them masked for now we can check them in the isr by reading raw status when
* the CD int is triggered.
*/
MCI_MASK |= (MCI_DATA_ERROR | MCI_INT_DTO | MCI_INT_CD);
MCI_CTRL |= INT_ENABLE | DMA_ENABLE;
MCI_BLKSIZ = SD_BLOCK_SIZE;
}
int sd_init(void)
{
int ret;
bitset32(&CGU_PERI, CGU_MCI_CLOCK_ENABLE);
CGU_SDSLOT = (1<<7) /* interface enable */
| (AS3525_SDSLOT_DIV << 2)
| 1; /* clock source = PLLA */
mutex_init(&sd_mtx);
semaphore_init(&transfer_completion_signal, 1, 0);
semaphore_init(&command_completion_signal, 1, 0);
#if defined(SANSA_FUZEV2) || defined(SANSA_CLIPPLUS) || defined(SANSA_CLIPZIP)
if (amsv2_variant == 1)
GPIOB_DIR |= 1 << 5;
#endif
#ifdef HAVE_MULTIDRIVE
/* clear previous irq */
GPIOA_IC = EXT_SD_BITS;
/* enable edge detecting */
GPIOA_IS &= ~EXT_SD_BITS;
/* detect both raising and falling edges */
GPIOA_IBE |= EXT_SD_BITS;
/* enable the card detect interrupt */
GPIOA_IE |= EXT_SD_BITS;
#endif /* HAVE_MULTIDRIVE */
#ifndef SANSA_CLIPV2
/* Configure XPD for SD-MCI interface */
bitmod32(&CCU_IO, 1<<2, 3<<2);
#endif
VIC_INT_ENABLE = INTERRUPT_NAND;
init_controller();
ret = sd_init_card(INTERNAL_AS3525);
if(ret < 0)
return ret;
#ifndef BOOTLOADER
enable_controller(false);
#endif
return 0;
}
static int sd_transfer_sectors(IF_MD(int drive,) unsigned long start,
int count, void* buf, bool write)
{
unsigned long response;
int ret = 0;
#ifndef HAVE_MULTIDRIVE
const int drive = 0;
#endif
bool aligned = !((uintptr_t)buf & (CACHEALIGN_SIZE - 1));
int retry_all = 2;
int const retry_data_max = 3;
int retry_data;
unsigned int real_numblocks;
mutex_lock(&sd_mtx);
#ifndef BOOTLOADER
enable_controller(true);
led(true);
#endif
if(count < 1) /* XXX: why is it signed ? */
{
panicf("SD count:%d write:%d drive:%d", count, write, drive);
/*
ret = -18;
goto exit;
*/
}
/* skip SanDisk OF */
if (drive == INTERNAL_AS3525)
start += AMS_OF_SIZE;
while (!card_info[drive].initialized)
{
retry_with_reinit:
if (--retry_all < 0)
goto exit;
ret = sd_init_card(drive);
}
/* Check the real block size after the card has been initialized */
real_numblocks = card_info[drive].numblocks;
/* 'start' represents the real (physical) starting sector
* so we must compare it to the real (physical) number of sectors */
if (drive == INTERNAL_AS3525)
real_numblocks += AMS_OF_SIZE;
if ((start+count) > real_numblocks)
{
ret = -19;
goto retry_with_reinit;
}
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_NO_RESP, NULL))
{
ret = -20;
goto retry_with_reinit;
}
dma_retain();
if(aligned)
{ /* direct transfer, indirect is always uncached */
if(write)
commit_dcache_range(buf, count * SECTOR_SIZE);
else
discard_dcache_range(buf, count * SECTOR_SIZE);
}
const int cmd = write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK;
retry_data = retry_data_max;
while (count > 0)
{
void *dma_buf;
unsigned int transfer = count;
last_disk_activity = current_tick;
if(aligned)
{
dma_buf = AS3525_PHYSICAL_ADDR(buf);
}
else
{
dma_buf = AS3525_PHYSICAL_ADDR(&aligned_buffer[0]);
if(transfer > UNALIGNED_NUM_SECTORS)
transfer = UNALIGNED_NUM_SECTORS;
if(write)
memcpy(uncached_buffer, buf, transfer * SD_BLOCK_SIZE);
}
/* Interrupt handler might set this to true during transfer */
retry = false;
MCI_BYTCNT = transfer * SD_BLOCK_SIZE;
int arg = start;
if(!(card_info[drive].ocr & (1<<30))) /* not SDHC */
arg *= SD_BLOCK_SIZE;
if(write)
dma_enable_channel(1, dma_buf, MCI_FIFO, DMA_PERI_SD,
DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL);
else
dma_enable_channel(1, MCI_FIFO, dma_buf, DMA_PERI_SD,
DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL);
if(!send_cmd(drive, cmd, arg, MCI_RESP, &response))
{
ret = -21;
break;
}
semaphore_wait(&transfer_completion_signal, TIMEOUT_BLOCK);
last_disk_activity = current_tick;
if(write)
{
/* wait for the card to exit programming state */
while(MCI_STATUS & DATA_BUSY) ;
}
if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_RESP, &response))
{
ret = -22;
break;
}
ret = sd_wait_for_tran_state(drive);
if (ret < 0)
{
ret -= 25;
break;
}
/* According to datasheet DMA channel should be automatically disabled
* when transfer completes. But it not true for DMA_PERI_SD.
* Disable DMA channel manually to prevent problems with DMA. */
dma_disable_channel(1);
if (retry) /* reset controller if we had an error */
{
MCI_CTRL |= (FIFO_RESET|DMA_RESET);
while (MCI_CTRL & (FIFO_RESET|DMA_RESET));
if (--retry_data >= 0)
continue;
ret -= 24;
break;
}
if (!write && !aligned)
memcpy(buf, uncached_buffer, transfer * SD_BLOCK_SIZE);
buf += transfer * SD_BLOCK_SIZE;
start += transfer;
count -= transfer;
}
dma_release();
if (ret != 0) /* if we have error */
goto retry_with_reinit;
/* CMD lines are separate, not common, so we need to actively deselect */
/* CMD7 w/rca =0 : deselects card & puts it in STBY state */
if(!send_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL))
ret = -23;
exit:
#ifndef BOOTLOADER
enable_controller(false);
led(false);
#endif
mutex_unlock(&sd_mtx);
return ret;
}
int sd_read_sectors(IF_MD(int drive,) unsigned long start, int count,
void* buf)
{
return sd_transfer_sectors(IF_MD(drive,) start, count, buf, false);
}
int sd_write_sectors(IF_MD(int drive,) unsigned long start, int count,
const void* buf)
{
return sd_transfer_sectors(IF_MD(drive,) start, count, (void*)buf, true);
}
#ifndef BOOTLOADER
long sd_last_disk_activity(void)
{
return last_disk_activity;
}
#endif /* BOOTLOADER */
tCardInfo *card_get_info_target(int card_no)
{
return &card_info[card_no];
}
#ifdef HAVE_HOTSWAP
bool sd_removable(IF_MD_NONVOID(int drive))
{
return (drive == SD_SLOT_AS3525);
}
bool sd_present(IF_MD_NONVOID(int drive))
{
return (drive == INTERNAL_AS3525) ? true : card_detect_target();
}
static int sd1_oneshot_callback(struct timeout *tmo)
{
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
queue_broadcast(card_detect_target() ? SYS_HOTSWAP_INSERTED :
SYS_HOTSWAP_EXTRACTED,
sd_first_drive + SD_SLOT_AS3525);
return 0;
(void)tmo;
}
void sd_gpioa_isr(void)
{
static struct timeout sd1_oneshot;
if (GPIOA_MIS & EXT_SD_BITS)
{
timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0);
GPIOA_IC = EXT_SD_BITS; /* acknowledge interrupt */
}
}
#endif /* HAVE_HOTSWAP */
#ifdef CONFIG_STORAGE_MULTI
int sd_num_drives(int first_drive)
{
sd_first_drive = first_drive;
return NUM_DRIVES;
}
#endif /* CONFIG_STORAGE_MULTI */
int sd_event(long id, intptr_t data)
{
int rc = 0;
switch (id)
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
mutex_lock(&sd_mtx); /* lock-out card activity */
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
card_info[data].initialized = 0;
if (id == SYS_HOTSWAP_INSERTED)
{
enable_controller(true);
rc = sd_init_card(data);
enable_controller(false);
}
mutex_unlock(&sd_mtx);
break;
#endif /* HAVE_HOTSWAP */
default:
rc = storage_event_default_handler(id, data, last_disk_activity,
STORAGE_SD);
break;
}
return rc;
}