286a4c5caa
Additional status callback is added to pcm_play/rec_data instead of using a special function to set it. Status includes DMA error reporting to the status callback. Playback and recording callback become more alike except playback uses "const void **addr" (because the data should not be altered) and recording uses "void **addr". "const" is put in place throughout where appropriate. Most changes are fairly trivial. One that should be checked in particular because it isn't so much is telechips, if anyone cares to bother. PP5002 is not so trivial either but that tested as working. Change-Id: I4928d69b3b3be7fb93e259f81635232df9bd1df2 Reviewed-on: http://gerrit.rockbox.org/166 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested-by: Michael Sevakis <jethead71@rockbox.org>
1152 lines
37 KiB
C
1152 lines
37 KiB
C
/**************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2008 Lechner Michael / smoking gnu
|
|
*
|
|
* All files in this archive are subject to the GNU General Public License.
|
|
* See the file COPYING in the source tree root for full license agreement.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
* ----------------------------------------------------------------------------
|
|
*
|
|
* INTRODUCTION:
|
|
* OK, this is an attempt to write an instrument tuner for rockbox.
|
|
* It uses a Schmitt trigger algorithm, which I copied from
|
|
* tuneit [ (c) 2004 Mario Lang <mlang@delysid.org> ], for detecting the
|
|
* fundamental freqency of a sound. A FFT algorithm would be more accurate
|
|
* but also much slower.
|
|
*
|
|
* TODO:
|
|
* - Adapt the Yin FFT algorithm, which would reduce complexity from O(n^2)
|
|
* to O(nlogn), theoretically reducing latency by a factor of ~10. -David
|
|
*
|
|
* MAJOR CHANGES:
|
|
* 08.03.2008 Started coding
|
|
* 21.03.2008 Pitch detection works more or less
|
|
* Button definitions for most targets added
|
|
* 02.04.2008 Proper GUI added
|
|
* Todo, Major Changes and Current Limitations added
|
|
* 08.19.2009 Brought the code up to date with current plugin standards
|
|
* Made it work more nicely with color, BW and grayscale
|
|
* Changed pitch detection to use the Yin algorithm (better
|
|
* detection, but slower -- would be ~4x faster with
|
|
* fixed point math, I think). Code was poached from the
|
|
* Aubio sound processing library (aubio.org). -David
|
|
* 08.31.2009 Lots of changes:
|
|
* Added a menu to tweak settings
|
|
* Converted everything to fixed point (greatly improving
|
|
* latency)
|
|
* Improved the display
|
|
* Improved efficiency with judicious use of cpu_boost, the
|
|
* backlight, and volume detection to limit unneeded
|
|
* calculation
|
|
* Fixed a problem that caused an octave-off error
|
|
* -David
|
|
* 05.14.2010 Multibuffer continuous recording with two buffers
|
|
*
|
|
*
|
|
* CURRENT LIMITATIONS:
|
|
* - No gapless recording. Strictly speaking true gappless isn't possible,
|
|
* since the algorithm takes longer to calculate than the length of the
|
|
* sample, but latency could be improved a bit with proper use of the DMA
|
|
* recording functions.
|
|
* - Due to how the Yin algorithm works, latency is higher for lower
|
|
* frequencies.
|
|
*/
|
|
|
|
#include "plugin.h"
|
|
#include "lib/pluginlib_actions.h"
|
|
#include "lib/picture.h"
|
|
#include "lib/helper.h"
|
|
#include "pluginbitmaps/pitch_notes.h"
|
|
|
|
|
|
/* Some fixed point calculation stuff */
|
|
typedef int32_t fixed;
|
|
#define FIXED_PRECISION 18
|
|
#define FP_MAX ((fixed) {0x7fffffff})
|
|
#define FP_MIN ((fixed) {-0x80000000})
|
|
#define int2fixed(x) ((fixed)((x) << FIXED_PRECISION))
|
|
#define int2mantissa(x) ((fixed)(x))
|
|
#define fixed2int(x) ((int)((x) >> FIXED_PRECISION))
|
|
#define fixed2float(x) (((float)(x)) / ((float)(1 << FIXED_PRECISION)))
|
|
#define float2fixed(x) ((fixed)(x * (float)(1 << FIXED_PRECISION)))
|
|
|
|
/* I adapted these ones from the Rockbox fixed point library */
|
|
#define fp_mul(x, y) \
|
|
((fixed)((((int64_t)((x))) * ((int64_t)((y)))) >> (FIXED_PRECISION)))
|
|
#define fp_div(x, y) \
|
|
((fixed)((((int64_t)((x))) << (FIXED_PRECISION)) / ((int64_t)((y)))))
|
|
/* Operators for fixed point */
|
|
#define fp_add(x, y) ((fixed)((x) + (y)))
|
|
#define fp_sub(x, y) ((fixed)((x) - (y)))
|
|
#define fp_shl(x, y) ((fixed)((x) << (y)))
|
|
#define fp_shr(x, y) ((fixed)((x) >> (y)))
|
|
#define fp_neg(x) ((fixed)(-(x)))
|
|
#define fp_gt(x, y) ((x) > (y))
|
|
#define fp_gte(x, y) ((x) >= (y))
|
|
#define fp_lt(x, y) ((x) < (y))
|
|
#define fp_lte(x, y) ((x) <= (y))
|
|
#define fp_sqr(x) fp_mul((x), (x))
|
|
#define fp_equal(x, y) ((x) == (y))
|
|
#define fp_round(x) (fixed2int(fp_add((x), float2fixed(0.5))))
|
|
#define fp_data(x) (x)
|
|
#define fp_frac(x) (fp_sub((x), int2fixed(fixed2int(x))))
|
|
#define FP_ZERO ((fixed)0)
|
|
#define FP_LOW ((fixed)2)
|
|
|
|
/* Some defines for converting between period and frequency */
|
|
|
|
/* I introduce some divisors in this because the fixed point */
|
|
/* variables aren't big enough to hold higher than a certain */
|
|
/* value. This loses a bit of precision but it means we */
|
|
/* don't have to use 32.32 variables (yikes). */
|
|
/* With an 18-bit decimal precision, the max value in the */
|
|
/* integer part is 8192. Divide 44100 by 7 and it'll fit in */
|
|
/* that variable. */
|
|
#define fp_period2freq(x) fp_div(int2fixed(sample_rate / 7), \
|
|
fp_div((x),int2fixed(7)))
|
|
#define fp_freq2period(x) fp_period2freq(x)
|
|
#define period2freq(x) (sample_rate / (x))
|
|
#define freq2period(x) period2freq(x)
|
|
|
|
#define sqr(x) ((x)*(x))
|
|
|
|
/* Some constants for tuning */
|
|
#define A_FREQ float2fixed(440.0f)
|
|
#define D_NOTE float2fixed(1.059463094359f)
|
|
#define LOG_D_NOTE float2fixed(1.0f/12.0f)
|
|
#define D_NOTE_SQRT float2fixed(1.029302236643f)
|
|
#define LOG_2 float2fixed(1.0f)
|
|
|
|
/* The recording buffer size */
|
|
/* This is how much is sampled at a time. */
|
|
/* It also determines latency -- if BUFFER_SIZE == sample_rate then */
|
|
/* there'll be one sample per second, or a latency of one second. */
|
|
/* Furthermore, the lowest detectable frequency will be about twice */
|
|
/* the number of reads per second */
|
|
/* If we ever switch to Yin FFT algorithm then this needs to be
|
|
a power of 2 */
|
|
#define BUFFER_SIZE 4096
|
|
#define SAMPLE_SIZE 4096
|
|
#define SAMPLE_SIZE_MIN 1024
|
|
#define YIN_BUFFER_SIZE (BUFFER_SIZE / 4)
|
|
|
|
#define LCD_FACTOR (fp_div(int2fixed(LCD_WIDTH), int2fixed(100)))
|
|
/* The threshold for the YIN algorithm */
|
|
#define DEFAULT_YIN_THRESHOLD 5 /* 0.10 */
|
|
static const fixed yin_threshold_table[] IDATA_ATTR =
|
|
{
|
|
float2fixed(0.01),
|
|
float2fixed(0.02),
|
|
float2fixed(0.03),
|
|
float2fixed(0.04),
|
|
float2fixed(0.05),
|
|
float2fixed(0.10),
|
|
float2fixed(0.15),
|
|
float2fixed(0.20),
|
|
float2fixed(0.25),
|
|
float2fixed(0.30),
|
|
float2fixed(0.35),
|
|
float2fixed(0.40),
|
|
float2fixed(0.45),
|
|
float2fixed(0.50),
|
|
};
|
|
|
|
/* Structure for the reference frequency (frequency of A)
|
|
* It's used for scaling the frequency before finding out
|
|
* the note. The frequency is scaled in a way that the main
|
|
* algorithm can assume the frequency of A to be 440 Hz.
|
|
*/
|
|
static const struct
|
|
{
|
|
const int frequency; /* Frequency in Hz */
|
|
const fixed ratio; /* 440/frequency */
|
|
const fixed logratio; /* log2(factor) */
|
|
} freq_A[] =
|
|
{
|
|
{435, float2fixed(1.011363636), float2fixed( 0.016301812)},
|
|
{436, float2fixed(1.009090909), float2fixed( 0.013056153)},
|
|
{437, float2fixed(1.006818182), float2fixed( 0.009803175)},
|
|
{438, float2fixed(1.004545455), float2fixed( 0.006542846)},
|
|
{439, float2fixed(1.002272727), float2fixed( 0.003275132)},
|
|
{440, float2fixed(1.000000000), float2fixed( 0.000000000)},
|
|
{441, float2fixed(0.997727273), float2fixed(-0.003282584)},
|
|
{442, float2fixed(0.995454545), float2fixed(-0.006572654)},
|
|
{443, float2fixed(0.993181818), float2fixed(-0.009870244)},
|
|
{444, float2fixed(0.990909091), float2fixed(-0.013175389)},
|
|
{445, float2fixed(0.988636364), float2fixed(-0.016488123)},
|
|
};
|
|
|
|
/* Index of the entry for 440 Hz in the table (default frequency for A) */
|
|
#define DEFAULT_FREQ_A 5
|
|
#define NUM_FREQ_A (sizeof(freq_A)/sizeof(freq_A[0]))
|
|
|
|
/* How loud the audio has to be to start displaying pitch */
|
|
/* Must be between 0 and 100 */
|
|
#define VOLUME_THRESHOLD (50)
|
|
|
|
/* Change to AUDIO_SRC_LINEIN if you want to record from line-in */
|
|
#ifdef HAVE_MIC_IN
|
|
#define INPUT_TYPE AUDIO_SRC_MIC
|
|
#else
|
|
#define INPUT_TYPE AUDIO_SRC_LINEIN
|
|
#endif
|
|
|
|
/* How many decimal places to display for the Hz value */
|
|
#define DISPLAY_HZ_PRECISION 100
|
|
|
|
/* Where to put the various GUI elements */
|
|
static int note_y;
|
|
static int bar_grad_y;
|
|
#define LCD_RES_MIN (LCD_HEIGHT < LCD_WIDTH ? LCD_HEIGHT : LCD_WIDTH)
|
|
#define BAR_PADDING (LCD_RES_MIN / 32)
|
|
#define BAR_Y (LCD_HEIGHT * 3 / 4)
|
|
#define BAR_HEIGHT (LCD_RES_MIN / 4 - BAR_PADDING)
|
|
#define BAR_HLINE_Y (BAR_Y - BAR_PADDING)
|
|
#define BAR_HLINE_Y2 (BAR_Y + BAR_HEIGHT + BAR_PADDING - 1)
|
|
#define HZ_Y 0
|
|
#define GRADUATION 10 /* Subdivisions of the whole 100-cent scale */
|
|
|
|
/* Bitmaps for drawing the note names. These need to have height
|
|
<= (bar_grad_y - note_y), or 15/32 * LCD_HEIGHT
|
|
*/
|
|
#define NUM_NOTE_IMAGES 9
|
|
#define NOTE_INDEX_A 0
|
|
#define NOTE_INDEX_B 1
|
|
#define NOTE_INDEX_C 2
|
|
#define NOTE_INDEX_D 3
|
|
#define NOTE_INDEX_E 4
|
|
#define NOTE_INDEX_F 5
|
|
#define NOTE_INDEX_G 6
|
|
#define NOTE_INDEX_SHARP 7
|
|
#define NOTE_INDEX_FLAT 8
|
|
|
|
static const struct picture note_bitmaps =
|
|
{
|
|
pitch_notes,
|
|
BMPWIDTH_pitch_notes,
|
|
BMPHEIGHT_pitch_notes,
|
|
BMPHEIGHT_pitch_notes/NUM_NOTE_IMAGES
|
|
};
|
|
|
|
|
|
static unsigned int sample_rate;
|
|
static int audio_head = 0; /* which of the two buffers to use? */
|
|
static volatile int audio_tail = 0; /* which of the two buffers to record? */
|
|
/* It's stereo, so make the buffer twice as big */
|
|
#ifndef SIMULATOR
|
|
static int16_t audio_data[2][BUFFER_SIZE] MEM_ALIGN_ATTR;
|
|
static fixed yin_buffer[YIN_BUFFER_SIZE] IBSS_ATTR;
|
|
#ifdef PLUGIN_USE_IRAM
|
|
static int16_t iram_audio_data[BUFFER_SIZE] IBSS_ATTR;
|
|
#else
|
|
#define iram_audio_data audio_data[audio_head]
|
|
#endif
|
|
#endif
|
|
|
|
/* Notes within one (reference) scale */
|
|
static const struct
|
|
{
|
|
const char *name; /* Name of the note, e.g. "A#" */
|
|
const fixed freq; /* Note frequency, Hz */
|
|
const fixed logfreq; /* log2(frequency) */
|
|
} notes[] =
|
|
{
|
|
{"A" , float2fixed(440.0000000f), float2fixed(8.781359714f)},
|
|
{"A#", float2fixed(466.1637615f), float2fixed(8.864693047f)},
|
|
{"B" , float2fixed(493.8833013f), float2fixed(8.948026380f)},
|
|
{"C" , float2fixed(523.2511306f), float2fixed(9.031359714f)},
|
|
{"C#", float2fixed(554.3652620f), float2fixed(9.114693047f)},
|
|
{"D" , float2fixed(587.3295358f), float2fixed(9.198026380f)},
|
|
{"D#", float2fixed(622.2539674f), float2fixed(9.281359714f)},
|
|
{"E" , float2fixed(659.2551138f), float2fixed(9.364693047f)},
|
|
{"F" , float2fixed(698.4564629f), float2fixed(9.448026380f)},
|
|
{"F#", float2fixed(739.9888454f), float2fixed(9.531359714f)},
|
|
{"G" , float2fixed(783.9908720f), float2fixed(9.614693047f)},
|
|
{"G#", float2fixed(830.6093952f), float2fixed(9.698026380f)},
|
|
};
|
|
|
|
/* GUI */
|
|
#if LCD_DEPTH > 1
|
|
static unsigned front_color;
|
|
#endif
|
|
static int font_w,font_h;
|
|
static int bar_x_0;
|
|
static int lbl_x_minus_50, lbl_x_minus_20, lbl_x_0, lbl_x_20, lbl_x_50;
|
|
|
|
/* Settings for the plugin */
|
|
static struct tuner_settings
|
|
{
|
|
unsigned volume_threshold;
|
|
unsigned record_gain;
|
|
unsigned sample_size;
|
|
unsigned lowest_freq;
|
|
unsigned yin_threshold;
|
|
int freq_A; /* Index of the frequency of A */
|
|
bool use_sharps;
|
|
bool display_hz;
|
|
int key_transposition; /* Which note to display as 'C'. */
|
|
/* 0=C, 1=D-flat, 2=D, ..., 11=B. This is useful if you */
|
|
/* use a transposing instrument. In that case, this */
|
|
/* setting tells which 'real' note is played by the */
|
|
/* instrument if you play a written 'C'. Thus, this */
|
|
/* setting is the number of semitones from the real 'C' */
|
|
/* up to the 'instrument key'. */
|
|
} settings;
|
|
|
|
/* By default, the real 'C' is displayed as 'C' */
|
|
#define DEFAULT_KEY_TRANSPOSITION 0
|
|
|
|
|
|
/*=================================================================*/
|
|
/* Settings loading and saving(adapted from the clock plugin) */
|
|
/*=================================================================*/
|
|
|
|
#define SETTINGS_FILENAME PLUGIN_APPS_DATA_DIR "/.pitch_detector_settings"
|
|
|
|
/* The settings as they exist on the hard disk, so that
|
|
* we can know at saving time if changes have been made */
|
|
static struct tuner_settings hdd_settings;
|
|
|
|
/*---------------------------------------------------------------------*/
|
|
|
|
static bool settings_needs_saving(void)
|
|
{
|
|
return(rb->memcmp(&settings, &hdd_settings, sizeof(settings)));
|
|
}
|
|
|
|
/*---------------------------------------------------------------------*/
|
|
|
|
static void tuner_settings_reset(void)
|
|
{
|
|
settings = (struct tuner_settings) {
|
|
.volume_threshold = VOLUME_THRESHOLD,
|
|
.record_gain = rb->global_settings->rec_mic_gain,
|
|
.sample_size = BUFFER_SIZE,
|
|
.lowest_freq = period2freq(BUFFER_SIZE / 4),
|
|
.yin_threshold = DEFAULT_YIN_THRESHOLD,
|
|
.freq_A = DEFAULT_FREQ_A,
|
|
.use_sharps = true,
|
|
.display_hz = false,
|
|
.key_transposition = DEFAULT_KEY_TRANSPOSITION,
|
|
};
|
|
}
|
|
|
|
/*---------------------------------------------------------------------*/
|
|
|
|
static void load_settings(void)
|
|
{
|
|
int fd = rb->open(SETTINGS_FILENAME, O_RDONLY);
|
|
if(fd < 0){ /* file doesn't exist */
|
|
/* Initializes the settings with default values at least */
|
|
tuner_settings_reset();
|
|
return;
|
|
}
|
|
|
|
/* basic consistency check */
|
|
if(rb->filesize(fd) == sizeof(settings)){
|
|
rb->read(fd, &settings, sizeof(settings));
|
|
rb->memcpy(&hdd_settings, &settings, sizeof(settings));
|
|
}
|
|
else{
|
|
tuner_settings_reset();
|
|
}
|
|
|
|
rb->close(fd);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------*/
|
|
|
|
static void save_settings(void)
|
|
{
|
|
if(!settings_needs_saving())
|
|
return;
|
|
|
|
int fd = rb->creat(SETTINGS_FILENAME, 0666);
|
|
if(fd >= 0){ /* does file exist? */
|
|
rb->write (fd, &settings, sizeof(settings));
|
|
rb->close(fd);
|
|
}
|
|
}
|
|
|
|
/*=================================================================*/
|
|
/* MENU */
|
|
/*=================================================================*/
|
|
|
|
/* Keymaps */
|
|
const struct button_mapping* plugin_contexts[]={
|
|
pla_main_ctx,
|
|
#if NB_SCREENS == 2
|
|
pla_remote_ctx,
|
|
#endif
|
|
};
|
|
#define PLA_ARRAY_COUNT sizeof(plugin_contexts)/sizeof(plugin_contexts[0])
|
|
|
|
/* Option strings */
|
|
|
|
/* This has to match yin_threshold_table */
|
|
static const struct opt_items yin_threshold_text[] =
|
|
{
|
|
{ "0.01", -1 },
|
|
{ "0.02", -1 },
|
|
{ "0.03", -1 },
|
|
{ "0.04", -1 },
|
|
{ "0.05", -1 },
|
|
{ "0.10", -1 },
|
|
{ "0.15", -1 },
|
|
{ "0.20", -1 },
|
|
{ "0.25", -1 },
|
|
{ "0.30", -1 },
|
|
{ "0.35", -1 },
|
|
{ "0.40", -1 },
|
|
{ "0.45", -1 },
|
|
{ "0.50", -1 },
|
|
};
|
|
|
|
static const struct opt_items accidental_text[] =
|
|
{
|
|
{ "Flat", -1 },
|
|
{ "Sharp", -1 },
|
|
};
|
|
|
|
static const struct opt_items transpose_text[] =
|
|
{
|
|
{ "C (Concert Pitch)", -1 },
|
|
{ "D-flat", -1 },
|
|
{ "D", -1 },
|
|
{ "E-flat", -1 },
|
|
{ "E", -1 },
|
|
{ "F", -1 },
|
|
{ "G-flat", -1 },
|
|
{ "G", -1 },
|
|
{ "A-flat", -1 },
|
|
{ "A", -1 },
|
|
{ "B-flat", -1 },
|
|
{ "B", -1 },
|
|
};
|
|
|
|
static void set_min_freq(int new_freq)
|
|
{
|
|
settings.sample_size = freq2period(new_freq) * 4;
|
|
|
|
/* clamp the sample size between min and max */
|
|
if(settings.sample_size <= SAMPLE_SIZE_MIN)
|
|
settings.sample_size = SAMPLE_SIZE_MIN;
|
|
else if(settings.sample_size >= BUFFER_SIZE)
|
|
settings.sample_size = BUFFER_SIZE;
|
|
|
|
/* sample size must be divisible by 4 - round up */
|
|
settings.sample_size = (settings.sample_size + 3) & ~3;
|
|
}
|
|
|
|
/* Displays the menu. Returns true iff the user selects 'quit'. */
|
|
static bool main_menu(void)
|
|
{
|
|
int selection = 0;
|
|
bool done = false;
|
|
bool exit_tuner = false;
|
|
int choice;
|
|
int freq_val;
|
|
bool reset;
|
|
|
|
backlight_use_settings();
|
|
#ifdef HAVE_SCHEDULER_BOOSTCTRL
|
|
rb->cancel_cpu_boost();
|
|
#endif
|
|
|
|
MENUITEM_STRINGLIST(menu,"Tuner Settings",NULL,
|
|
"Return to Tuner",
|
|
"Volume Threshold",
|
|
"Listening Volume",
|
|
"Lowest Frequency",
|
|
"Algorithm Pickiness",
|
|
"Accidentals",
|
|
"Key Transposition",
|
|
"Display Frequency (Hz)",
|
|
"Frequency of A (Hz)",
|
|
"Reset Settings",
|
|
"Quit");
|
|
|
|
while(!done)
|
|
{
|
|
choice = rb->do_menu(&menu, &selection, NULL, false);
|
|
switch(choice)
|
|
{
|
|
case 1:
|
|
rb->set_int("Volume Threshold", "%", UNIT_INT,
|
|
&settings.volume_threshold,
|
|
NULL, 5, 5, 95, NULL);
|
|
break;
|
|
case 2:
|
|
rb->set_int("Listening Volume", "%", UNIT_INT,
|
|
&settings.record_gain,
|
|
NULL, 1, rb->sound_min(SOUND_MIC_GAIN),
|
|
rb->sound_max(SOUND_MIC_GAIN), NULL);
|
|
break;
|
|
case 3:
|
|
rb->set_int("Lowest Frequency", "Hz", UNIT_INT,
|
|
&settings.lowest_freq, set_min_freq, 1,
|
|
/* Range depends on the size of the buffer */
|
|
sample_rate / (BUFFER_SIZE / 4),
|
|
sample_rate / (SAMPLE_SIZE_MIN / 4), NULL);
|
|
break;
|
|
case 4:
|
|
rb->set_option(
|
|
"Algorithm Pickiness (Lower -> more discriminating)",
|
|
&settings.yin_threshold,
|
|
INT, yin_threshold_text,
|
|
sizeof(yin_threshold_text) / sizeof(yin_threshold_text[0]),
|
|
NULL);
|
|
break;
|
|
case 5:
|
|
rb->set_option("Display Accidentals As",
|
|
&settings.use_sharps,
|
|
BOOL, accidental_text, 2, NULL);
|
|
break;
|
|
case 6:
|
|
rb->set_option("Key Transposition",
|
|
&settings.key_transposition,
|
|
INT, transpose_text, 12, NULL);
|
|
break;
|
|
case 7:
|
|
rb->set_bool("Display Frequency (Hz)",
|
|
&settings.display_hz);
|
|
break;
|
|
case 8:
|
|
freq_val = freq_A[settings.freq_A].frequency;
|
|
rb->set_int("Frequency of A (Hz)",
|
|
"Hz", UNIT_INT, &freq_val, NULL,
|
|
1, freq_A[0].frequency, freq_A[NUM_FREQ_A-1].frequency,
|
|
NULL);
|
|
settings.freq_A = freq_val - freq_A[0].frequency;
|
|
break;
|
|
case 9:
|
|
reset = false;
|
|
rb->set_bool("Reset Tuner Settings?", &reset);
|
|
if (reset)
|
|
tuner_settings_reset();
|
|
break;
|
|
case 10:
|
|
exit_tuner = true;
|
|
done = true;
|
|
break;
|
|
case 0:
|
|
default:
|
|
/* Return to the tuner */
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
backlight_ignore_timeout();
|
|
return exit_tuner;
|
|
}
|
|
|
|
/*=================================================================*/
|
|
/* Binary Log */
|
|
/*=================================================================*/
|
|
|
|
/* Fixed-point log base 2*/
|
|
/* Adapted from python code at
|
|
http://en.wikipedia.org/wiki/Binary_logarithm#Algorithm
|
|
*/
|
|
static fixed log(fixed inp)
|
|
{
|
|
fixed x = inp;
|
|
fixed fp = int2fixed(1);
|
|
fixed res = int2fixed(0);
|
|
|
|
if(fp_lte(x, FP_ZERO))
|
|
{
|
|
return FP_MIN;
|
|
}
|
|
|
|
/* Integer part*/
|
|
/* while x<1 */
|
|
while(fp_lt(x, int2fixed(1)))
|
|
{
|
|
res = fp_sub(res, int2fixed(1));
|
|
x = fp_shl(x, 1);
|
|
}
|
|
/* while x>=2 */
|
|
while(fp_gte(x, int2fixed(2)))
|
|
{
|
|
res = fp_add(res, int2fixed(1));
|
|
x = fp_shr(x, 1);
|
|
}
|
|
|
|
/* Fractional part */
|
|
/* while fp > 0 */
|
|
while(fp_gt(fp, FP_ZERO))
|
|
{
|
|
fp = fp_shr(fp, 1);
|
|
x = fp_mul(x, x);
|
|
/* if x >= 2 */
|
|
if(fp_gte(x, int2fixed(2)))
|
|
{
|
|
x = fp_shr(x, 1);
|
|
res = fp_add(res, fp);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*=================================================================*/
|
|
/* GUI Stuff */
|
|
/*=================================================================*/
|
|
|
|
/* Draw the note bitmap */
|
|
static void draw_note(const char *note)
|
|
{
|
|
int i;
|
|
int note_x = (LCD_WIDTH - BMPWIDTH_pitch_notes) / 2;
|
|
int accidental_index = NOTE_INDEX_SHARP;
|
|
|
|
i = note[0]-'A';
|
|
|
|
if(note[1] == '#')
|
|
{
|
|
if(!(settings.use_sharps))
|
|
{
|
|
i = (i + 1) % 7;
|
|
accidental_index = NOTE_INDEX_FLAT;
|
|
}
|
|
|
|
vertical_picture_draw_sprite(rb->screens[0],
|
|
¬e_bitmaps,
|
|
accidental_index,
|
|
LCD_WIDTH / 2,
|
|
note_y);
|
|
note_x = LCD_WIDTH / 2 - BMPWIDTH_pitch_notes;
|
|
}
|
|
|
|
vertical_picture_draw_sprite(rb->screens[0], ¬e_bitmaps, i,
|
|
note_x,
|
|
note_y);
|
|
}
|
|
|
|
/* Draw the red bar and the white lines */
|
|
static void draw_bar(fixed wrong_by_cents)
|
|
{
|
|
unsigned n;
|
|
int x;
|
|
|
|
#ifdef HAVE_LCD_COLOR
|
|
rb->lcd_set_foreground(LCD_RGBPACK(255,255,255)); /* Color screens */
|
|
#elif LCD_DEPTH > 1
|
|
rb->lcd_set_foreground(LCD_BLACK); /* Greyscale screens */
|
|
#endif
|
|
|
|
rb->lcd_hline(0,LCD_WIDTH-1, BAR_HLINE_Y);
|
|
rb->lcd_hline(0,LCD_WIDTH-1, BAR_HLINE_Y2);
|
|
|
|
/* Draw graduation lines on the off-by readout */
|
|
for(n = 0; n <= GRADUATION; n++)
|
|
{
|
|
x = (LCD_WIDTH * n + GRADUATION / 2) / GRADUATION;
|
|
if (x >= LCD_WIDTH)
|
|
x = LCD_WIDTH - 1;
|
|
rb->lcd_vline(x, BAR_HLINE_Y, BAR_HLINE_Y2);
|
|
}
|
|
|
|
#if LCD_DEPTH > 1
|
|
rb->lcd_set_foreground(front_color);
|
|
#endif
|
|
rb->lcd_putsxyf(lbl_x_minus_50 ,bar_grad_y, "%d", -50);
|
|
rb->lcd_putsxyf(lbl_x_minus_20 ,bar_grad_y, "%d", -20);
|
|
rb->lcd_putsxyf(lbl_x_0 ,bar_grad_y, "%d", 0);
|
|
rb->lcd_putsxyf(lbl_x_20 ,bar_grad_y, "%d", 20);
|
|
rb->lcd_putsxyf(lbl_x_50 ,bar_grad_y, "%d", 50);
|
|
|
|
#ifdef HAVE_LCD_COLOR
|
|
rb->lcd_set_foreground(LCD_RGBPACK(255,0,0)); /* Color screens */
|
|
#elif LCD_DEPTH > 1
|
|
rb->lcd_set_foreground(LCD_DARKGRAY); /* Greyscale screens */
|
|
#endif
|
|
|
|
if (fp_gt(wrong_by_cents, FP_ZERO))
|
|
{
|
|
rb->lcd_fillrect(bar_x_0, BAR_Y,
|
|
fixed2int(fp_mul(wrong_by_cents, LCD_FACTOR)), BAR_HEIGHT);
|
|
}
|
|
else
|
|
{
|
|
rb->lcd_fillrect(bar_x_0 + fixed2int(fp_mul(wrong_by_cents,LCD_FACTOR)),
|
|
BAR_Y,
|
|
fixed2int(fp_mul(wrong_by_cents, LCD_FACTOR)) * -1,
|
|
BAR_HEIGHT);
|
|
}
|
|
}
|
|
|
|
/* Calculate how wrong the note is and draw the GUI */
|
|
static void display_frequency (fixed freq)
|
|
{
|
|
fixed ldf, mldf;
|
|
fixed lfreq, nfreq;
|
|
fixed orig_freq;
|
|
int i, note = 0;
|
|
|
|
if (fp_lt(freq, FP_LOW))
|
|
freq = FP_LOW;
|
|
|
|
/* We calculate the frequency and its log as if */
|
|
/* the reference frequency of A were 440 Hz. */
|
|
orig_freq = freq;
|
|
lfreq = fp_add(log(freq), freq_A[settings.freq_A].logratio);
|
|
freq = fp_mul(freq, freq_A[settings.freq_A].ratio);
|
|
|
|
/* This calculates a log freq offset for note A */
|
|
/* Get the frequency to within the range of our reference table, */
|
|
/* i.e. into the right octave. */
|
|
while (fp_lt(lfreq, fp_sub(notes[0].logfreq, fp_shr(LOG_D_NOTE, 1))))
|
|
lfreq = fp_add(lfreq, LOG_2);
|
|
while (fp_gte(lfreq, fp_sub(fp_add(notes[0].logfreq, LOG_2),
|
|
fp_shr(LOG_D_NOTE, 1))))
|
|
lfreq = fp_sub(lfreq, LOG_2);
|
|
mldf = LOG_D_NOTE;
|
|
for (i=0; i<12; i++)
|
|
{
|
|
ldf = fp_gt(fp_sub(lfreq,notes[i].logfreq), FP_ZERO) ?
|
|
fp_sub(lfreq,notes[i].logfreq) : fp_neg(fp_sub(lfreq,notes[i].logfreq));
|
|
if (fp_lt(ldf, mldf))
|
|
{
|
|
mldf = ldf;
|
|
note = i;
|
|
}
|
|
}
|
|
nfreq = notes[note].freq;
|
|
while (fp_gt(fp_div(nfreq, freq), D_NOTE_SQRT))
|
|
nfreq = fp_shr(nfreq, 1);
|
|
|
|
while (fp_gt(fp_div(freq, nfreq), D_NOTE_SQRT))
|
|
nfreq = fp_shl(nfreq, 1);
|
|
|
|
ldf = fp_mul(int2fixed(1200), log(fp_div(freq,nfreq)));
|
|
|
|
rb->lcd_clear_display();
|
|
draw_bar(ldf); /* The red bar */
|
|
if(fp_round(freq) != 0)
|
|
{
|
|
/* Raise the displayed pitch an octave minus key_transposition */
|
|
/* semitones, effectively lowering it. Note that the pitch */
|
|
/* displayed alongside the frequency is unaffected. */
|
|
int transposition = 12 - settings.key_transposition;
|
|
|
|
draw_note(notes[(note + transposition) % 12].name);
|
|
|
|
if(settings.display_hz)
|
|
{
|
|
#if LCD_DEPTH > 1
|
|
rb->lcd_set_foreground(front_color);
|
|
#endif
|
|
rb->lcd_putsxyf(0, HZ_Y, "%s : %d cents (%d.%02dHz)",
|
|
notes[note].name, fp_round(ldf) ,fixed2int(orig_freq),
|
|
fp_round(fp_mul(fp_frac(orig_freq),
|
|
int2fixed(DISPLAY_HZ_PRECISION))));
|
|
}
|
|
}
|
|
rb->lcd_update();
|
|
}
|
|
|
|
#ifndef SIMULATOR
|
|
/*-----------------------------------------------------------------------
|
|
* Functions for the Yin algorithm
|
|
*
|
|
* These were all adapted from the versions in Aubio v0.3.2
|
|
* Here's what the Aubio documentation has to say:
|
|
*
|
|
* This algorithm was developped by A. de Cheveigne and H. Kawahara and
|
|
* published in:
|
|
*
|
|
* de Cheveign?, A., Kawahara, H. (2002) "YIN, a fundamental frequency
|
|
* estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.
|
|
*
|
|
* see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
|
|
-------------------------------------------------------------------------*/
|
|
|
|
/* Find the index of the minimum element of an array of floats */
|
|
static unsigned vec_min_elem(fixed *s, unsigned buflen)
|
|
{
|
|
unsigned j, pos=0.0f;
|
|
fixed tmp = s[0];
|
|
for (j=0; j < buflen; j++)
|
|
{
|
|
if(fp_gt(tmp, s[j]))
|
|
{
|
|
pos = j;
|
|
tmp = s[j];
|
|
}
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
|
|
static inline fixed aubio_quadfrac(fixed s0, fixed s1, fixed s2, fixed pf)
|
|
{
|
|
/* Original floating point version: */
|
|
/* tmp = s0 + (pf/2.0f) * (pf * ( s0 - 2.0f*s1 + s2 ) -
|
|
3.0f*s0 + 4.0f*s1 - s2);*/
|
|
/* Converted to explicit operator precedence: */
|
|
/* tmp = s0 + ((pf/2.0f) * ((((pf * ((s0 - (2*s1)) + s2)) -
|
|
(3*s0)) + (4*s1)) - s2)); */
|
|
|
|
/* I made it look like this so I could easily track the precedence and */
|
|
/* make sure it matched the original expression */
|
|
/* Oy, this is when I really wish I could do C++ operator overloading */
|
|
fixed tmp = fp_add
|
|
(
|
|
s0,
|
|
fp_mul
|
|
(
|
|
fp_shr(pf, 1),
|
|
fp_sub
|
|
(
|
|
fp_add
|
|
(
|
|
fp_sub
|
|
(
|
|
fp_mul
|
|
(
|
|
pf,
|
|
fp_add
|
|
(
|
|
fp_sub
|
|
(
|
|
s0,
|
|
fp_shl(s1, 1)
|
|
),
|
|
s2
|
|
)
|
|
),
|
|
fp_mul
|
|
(
|
|
float2fixed(3.0f),
|
|
s0
|
|
)
|
|
),
|
|
fp_shl(s1, 2)
|
|
),
|
|
s2
|
|
)
|
|
)
|
|
);
|
|
return tmp;
|
|
}
|
|
|
|
#define QUADINT_STEP float2fixed(1.0f/200.0f)
|
|
|
|
static fixed ICODE_ATTR vec_quadint_min(fixed *x, unsigned bufsize, unsigned pos, unsigned span)
|
|
{
|
|
fixed res, frac, s0, s1, s2;
|
|
fixed exactpos = int2fixed(pos);
|
|
/* init resold to something big (in case x[pos+-span]<0)) */
|
|
fixed resold = FP_MAX;
|
|
|
|
if ((pos > span) && (pos < bufsize-span))
|
|
{
|
|
s0 = x[pos-span];
|
|
s1 = x[pos] ;
|
|
s2 = x[pos+span];
|
|
/* increase frac */
|
|
for (frac = float2fixed(0.0f);
|
|
fp_lt(frac, float2fixed(2.0f));
|
|
frac = fp_add(frac, QUADINT_STEP))
|
|
{
|
|
res = aubio_quadfrac(s0, s1, s2, frac);
|
|
if (fp_lt(res, resold))
|
|
{
|
|
resold = res;
|
|
}
|
|
else
|
|
{
|
|
/* exactpos += (frac-QUADINT_STEP)*span - span/2.0f; */
|
|
exactpos = fp_add(exactpos,
|
|
fp_sub(
|
|
fp_mul(
|
|
fp_sub(frac, QUADINT_STEP),
|
|
int2fixed(span)
|
|
),
|
|
int2fixed(span)
|
|
)
|
|
);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return exactpos;
|
|
}
|
|
|
|
/* Calculate the period of the note in the
|
|
buffer using the YIN algorithm */
|
|
/* The yin pointer is just a buffer that the algorithm uses as a work
|
|
space. It needs to be half the length of the input buffer. */
|
|
|
|
static fixed ICODE_ATTR pitchyin(int16_t *input, fixed *yin)
|
|
{
|
|
fixed retval;
|
|
unsigned j,tau = 0;
|
|
int period;
|
|
unsigned yin_size = settings.sample_size / 4;
|
|
|
|
fixed tmp = FP_ZERO, tmp2 = FP_ZERO;
|
|
yin[0] = int2fixed(1);
|
|
for (tau = 1; tau < yin_size; tau++)
|
|
{
|
|
yin[tau] = FP_ZERO;
|
|
for (j = 0; j < yin_size; j++)
|
|
{
|
|
tmp = fp_sub(int2mantissa(input[2 * j]),
|
|
int2mantissa(input[2 * (j + tau)]));
|
|
yin[tau] = fp_add(yin[tau], fp_mul(tmp, tmp));
|
|
}
|
|
tmp2 = fp_add(tmp2, yin[tau]);
|
|
if(!fp_equal(tmp2, FP_ZERO))
|
|
{
|
|
yin[tau] = fp_mul(yin[tau], fp_div(int2fixed(tau), tmp2));
|
|
}
|
|
period = tau - 3;
|
|
if(tau > 4 && fp_lt(yin[period],
|
|
yin_threshold_table[settings.yin_threshold])
|
|
&& fp_lt(yin[period], yin[period+1]))
|
|
{
|
|
retval = vec_quadint_min(yin, yin_size, period, 1);
|
|
return retval;
|
|
}
|
|
}
|
|
retval = vec_quadint_min(yin, yin_size,
|
|
vec_min_elem(yin, yin_size), 1);
|
|
return retval;
|
|
/*return FP_ZERO;*/
|
|
}
|
|
|
|
/*-----------------------------------------------------------------*/
|
|
|
|
static uint32_t ICODE_ATTR buffer_magnitude(int16_t *input)
|
|
{
|
|
unsigned n;
|
|
uint64_t tally = 0;
|
|
const unsigned size = settings.sample_size;
|
|
|
|
/* Operate on only one channel of the stereo signal */
|
|
for(n = 0; n < size; n+=2)
|
|
{
|
|
int s = input[n];
|
|
tally += s * s;
|
|
}
|
|
|
|
tally /= size / 2;
|
|
|
|
/* now tally holds the average of the squares of all the samples */
|
|
/* It must be between 0 and 0x7fff^2, so it fits in 32 bits */
|
|
return (uint32_t)tally;
|
|
}
|
|
|
|
/* Stop the recording when the buffer is full */
|
|
static void recording_callback(void **start, size_t *size)
|
|
{
|
|
int tail = audio_tail ^ 1;
|
|
|
|
/* Do not overrun the reader. Reuse current buffer if full. */
|
|
if (tail != audio_head)
|
|
audio_tail = tail;
|
|
|
|
/* Always record full buffer, even if not required */
|
|
*start = audio_data[tail];
|
|
*size = BUFFER_SIZE * sizeof (int16_t);
|
|
}
|
|
#endif /* SIMULATOR */
|
|
|
|
/* Start recording */
|
|
static void record_data(void)
|
|
{
|
|
#ifndef SIMULATOR
|
|
/* Always record full buffer, even if not required */
|
|
rb->pcm_record_data(recording_callback, NULL,
|
|
audio_data[audio_tail],
|
|
BUFFER_SIZE * sizeof (int16_t));
|
|
#endif
|
|
}
|
|
|
|
/* The main program loop */
|
|
static void record_and_get_pitch(void)
|
|
{
|
|
int quit=0, button;
|
|
#ifndef SIMULATOR
|
|
bool redraw = true;
|
|
#endif
|
|
/* For tracking the latency */
|
|
/*
|
|
long timer;
|
|
char debug_string[20];
|
|
*/
|
|
#ifndef SIMULATOR
|
|
fixed period;
|
|
bool waiting = false;
|
|
#else
|
|
audio_tail = 1;
|
|
#endif
|
|
|
|
backlight_ignore_timeout();
|
|
|
|
record_data();
|
|
|
|
while(!quit)
|
|
{
|
|
while (audio_head == audio_tail && !quit) /* wait for the buffer to be filled */
|
|
{
|
|
button=pluginlib_getaction(HZ/100, plugin_contexts, PLA_ARRAY_COUNT);
|
|
|
|
switch(button)
|
|
{
|
|
case PLA_EXIT:
|
|
quit=true;
|
|
break;
|
|
|
|
case PLA_CANCEL:
|
|
rb->pcm_stop_recording();
|
|
quit = main_menu();
|
|
if(!quit)
|
|
{
|
|
#ifndef SIMULATOR
|
|
redraw = true;
|
|
#endif
|
|
record_data();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(!quit)
|
|
{
|
|
#ifndef SIMULATOR
|
|
/* Only do the heavy lifting if the volume is high enough */
|
|
if(buffer_magnitude(audio_data[audio_head]) >
|
|
sqr(settings.volume_threshold *
|
|
rb->sound_max(SOUND_MIC_GAIN)))
|
|
{
|
|
waiting = false;
|
|
redraw = false;
|
|
|
|
#ifdef HAVE_SCHEDULER_BOOSTCTRL
|
|
rb->trigger_cpu_boost();
|
|
#endif
|
|
#ifdef PLUGIN_USE_IRAM
|
|
rb->memcpy(iram_audio_data, audio_data[audio_head],
|
|
settings.sample_size * sizeof (int16_t));
|
|
#endif
|
|
/* This returns the period of the detected pitch in samples */
|
|
period = pitchyin(iram_audio_data, yin_buffer);
|
|
/* Hz = sample rate / period */
|
|
if(fp_gt(period, FP_ZERO))
|
|
{
|
|
display_frequency(fp_period2freq(period));
|
|
}
|
|
else
|
|
{
|
|
display_frequency(FP_ZERO);
|
|
}
|
|
}
|
|
else if(redraw || !waiting)
|
|
{
|
|
waiting = true;
|
|
redraw = false;
|
|
display_frequency(FP_ZERO);
|
|
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
|
|
rb->cancel_cpu_boost();
|
|
#endif
|
|
}
|
|
|
|
/* Move to next buffer if not empty (but empty *shouldn't* happen
|
|
* here). */
|
|
if (audio_head != audio_tail)
|
|
audio_head ^= 1;
|
|
#else /* SIMULATOR */
|
|
/* Display a preselected frequency */
|
|
display_frequency(int2fixed(445));
|
|
#endif
|
|
}
|
|
}
|
|
rb->pcm_close_recording();
|
|
rb->pcm_set_frequency(HW_SAMPR_RESET | SAMPR_TYPE_REC);
|
|
#ifdef HAVE_SCHEDULER_BOOSTCTRL
|
|
rb->cancel_cpu_boost();
|
|
#endif
|
|
|
|
backlight_use_settings();
|
|
}
|
|
|
|
/* Init recording, tuning, and GUI */
|
|
static void init_everything(void)
|
|
{
|
|
/* Disable all talking before initializing IRAM */
|
|
rb->talk_disable(true);
|
|
|
|
load_settings();
|
|
rb->storage_sleep();
|
|
|
|
/* Stop all playback */
|
|
rb->plugin_get_audio_buffer(NULL);
|
|
|
|
/* --------- Init the audio recording ----------------- */
|
|
rb->audio_set_output_source(AUDIO_SRC_PLAYBACK);
|
|
rb->audio_set_input_source(INPUT_TYPE, SRCF_RECORDING);
|
|
|
|
/* set to maximum gain */
|
|
rb->audio_set_recording_gain(settings.record_gain,
|
|
settings.record_gain,
|
|
AUDIO_GAIN_MIC);
|
|
|
|
/* Highest C on piano is approx 4.186 kHz, so we need just over
|
|
* 8.372 kHz to pass it. */
|
|
sample_rate = rb->round_value_to_list32(9000, rb->rec_freq_sampr,
|
|
REC_NUM_FREQ, false);
|
|
sample_rate = rb->rec_freq_sampr[sample_rate];
|
|
rb->pcm_set_frequency(sample_rate | SAMPR_TYPE_REC);
|
|
rb->pcm_init_recording();
|
|
|
|
/* avoid divsion by zero */
|
|
if(settings.lowest_freq == 0)
|
|
settings.lowest_freq = period2freq(BUFFER_SIZE / 4);
|
|
|
|
/* GUI */
|
|
#if LCD_DEPTH > 1
|
|
front_color = rb->lcd_get_foreground();
|
|
#endif
|
|
rb->lcd_getstringsize("X", &font_w, &font_h);
|
|
|
|
bar_x_0 = LCD_WIDTH / 2;
|
|
lbl_x_minus_50 = 0;
|
|
lbl_x_minus_20 = (LCD_WIDTH / 2) -
|
|
fixed2int(fp_mul(LCD_FACTOR, int2fixed(20))) - font_w;
|
|
lbl_x_0 = (LCD_WIDTH - font_w) / 2;
|
|
lbl_x_20 = (LCD_WIDTH / 2) +
|
|
fixed2int(fp_mul(LCD_FACTOR, int2fixed(20))) - font_w;
|
|
lbl_x_50 = LCD_WIDTH - 2 * font_w;
|
|
|
|
bar_grad_y = BAR_Y - BAR_PADDING - font_h;
|
|
/* Put the note right between the top and bottom text elements */
|
|
note_y = ((font_h + bar_grad_y - note_bitmaps.slide_height) / 2);
|
|
|
|
rb->talk_disable(false);
|
|
}
|
|
|
|
enum plugin_status plugin_start(const void* parameter)
|
|
{
|
|
(void)parameter;
|
|
|
|
init_everything();
|
|
record_and_get_pitch();
|
|
save_settings();
|
|
|
|
return PLUGIN_OK;
|
|
}
|