rockbox/utils/sbtools/sb.c
Amaury Pouly d2a58f3aad sbtools: move sb file production to its own file with a clean api, factor key reading even more
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@30851 a1c6a512-1295-4272-9138-f99709370657
2011-10-29 17:01:47 +00:00

426 lines
16 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "misc.h"
#include "crypto.h"
#include "sb.h"
static void fill_gaps(struct sb_file_t *sb)
{
for(int i = 0; i < sb->nr_sections; i++)
{
struct sb_section_t *sec = &sb->sections[i];
for(int j = 0; j < sec->nr_insts; j++)
{
struct sb_inst_t *inst = &sec->insts[j];
if(inst->inst != SB_INST_LOAD)
continue;
inst->padding_size = ROUND_UP(inst->size, BLOCK_SIZE) - inst->size;
/* emulate elftosb2 behaviour: generate 15 bytes (that's a safe maximum) */
inst->padding = xmalloc(15);
generate_random_data(inst->padding, 15);
}
}
}
static void compute_sb_offsets(struct sb_file_t *sb)
{
sb->image_size = 0;
/* sb header */
sb->image_size += sizeof(struct sb_header_t) / BLOCK_SIZE;
/* sections headers */
sb->image_size += sb->nr_sections * sizeof(struct sb_section_header_t) / BLOCK_SIZE;
/* key dictionary */
sb->image_size += g_nr_keys * sizeof(struct sb_key_dictionary_entry_t) / BLOCK_SIZE;
/* sections */
for(int i = 0; i < sb->nr_sections; i++)
{
/* each section has a preliminary TAG command */
sb->image_size += sizeof(struct sb_instruction_tag_t) / BLOCK_SIZE;
/* we might need to pad the section so compute next alignment */
uint32_t alignment = BLOCK_SIZE;
if((i + 1) < sb->nr_sections)
alignment = sb->sections[i + 1].alignment;
alignment /= BLOCK_SIZE; /* alignment in block sizes */
struct sb_section_t *sec = &sb->sections[i];
if(g_debug)
{
printf("%s section 0x%08x", sec->is_data ? "Data" : "Boot",
sec->identifier);
if(sec->is_cleartext)
printf(" (cleartext)");
printf("\n");
}
sec->file_offset = sb->image_size;
for(int j = 0; j < sec->nr_insts; j++)
{
struct sb_inst_t *inst = &sec->insts[j];
if(inst->inst == SB_INST_CALL || inst->inst == SB_INST_JUMP)
{
if(g_debug)
printf(" %s | addr=0x%08x | arg=0x%08x\n",
inst->inst == SB_INST_CALL ? "CALL" : "JUMP", inst->addr, inst->argument);
sb->image_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE;
sec->sec_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_FILL)
{
if(g_debug)
printf(" FILL | addr=0x%08x | len=0x%08x | pattern=0x%08x\n",
inst->addr, inst->size, inst->pattern);
sb->image_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE;
sec->sec_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_LOAD)
{
if(g_debug)
printf(" LOAD | addr=0x%08x | len=0x%08x\n", inst->addr, inst->size);
/* load header */
sb->image_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE;
sec->sec_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE;
/* data + alignment */
sb->image_size += (inst->size + inst->padding_size) / BLOCK_SIZE;
sec->sec_size += (inst->size + inst->padding_size) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_MODE)
{
if(g_debug)
printf(" MODE | mod=0x%08x", inst->addr);
sb->image_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE;
sec->sec_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_DATA)
{
if(g_debug)
printf(" DATA | size=0x%08x\n", inst->size);
sb->image_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE;
sec->sec_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE;
}
else
bug("die on inst %d\n", inst->inst);
}
/* we need to make sure next section starts on the right alignment.
* Since each section starts with a boot tag, we thus need to ensure
* that this sections ends at adress X such that X+BLOCK_SIZE is
* a multiple of the alignment.
* For data sections, we just add random data, otherwise we add nops */
uint32_t missing_sz = alignment - ((sb->image_size + 1) % alignment);
if(missing_sz != alignment)
{
struct sb_inst_t *aug_insts;
int nr_aug_insts = 0;
if(sb->sections[i].is_data)
{
nr_aug_insts = 1;
aug_insts = malloc(sizeof(struct sb_inst_t));
memset(aug_insts, 0, sizeof(struct sb_inst_t));
aug_insts[0].inst = SB_INST_DATA;
aug_insts[0].size = missing_sz * BLOCK_SIZE;
aug_insts[0].data = xmalloc(missing_sz * BLOCK_SIZE);
generate_random_data(aug_insts[0].data, missing_sz * BLOCK_SIZE);
if(g_debug)
printf(" DATA | size=0x%08x\n", aug_insts[0].size);
}
else
{
nr_aug_insts = missing_sz;
aug_insts = malloc(sizeof(struct sb_inst_t) * nr_aug_insts);
memset(aug_insts, 0, sizeof(struct sb_inst_t) * nr_aug_insts);
for(int j = 0; j < nr_aug_insts; j++)
{
aug_insts[j].inst = SB_INST_NOP;
if(g_debug)
printf(" NOOP\n");
}
}
sb->sections[i].insts = augment_array(sb->sections[i].insts, sizeof(struct sb_inst_t),
sb->sections[i].nr_insts, aug_insts, nr_aug_insts);
sb->sections[i].nr_insts += nr_aug_insts;
/* augment image and section size */
sb->image_size += missing_sz;
sec->sec_size += missing_sz;
}
}
/* final signature */
sb->image_size += 2;
}
static uint64_t generate_timestamp()
{
struct tm tm_base = {0, 0, 0, 1, 0, 100, 0, 0, 1, 0, NULL}; /* 2000/1/1 0:00:00 */
time_t t = time(NULL) - mktime(&tm_base);
return (uint64_t)t * 1000000L;
}
static uint16_t swap16(uint16_t t)
{
return (t << 8) | (t >> 8);
}
static void fix_version(struct sb_version_t *ver)
{
ver->major = swap16(ver->major);
ver->minor = swap16(ver->minor);
ver->revision = swap16(ver->revision);
}
static void produce_sb_header(struct sb_file_t *sb, struct sb_header_t *sb_hdr)
{
struct sha_1_params_t sha_1_params;
sb_hdr->signature[0] = 'S';
sb_hdr->signature[1] = 'T';
sb_hdr->signature[2] = 'M';
sb_hdr->signature[3] = 'P';
sb_hdr->major_ver = IMAGE_MAJOR_VERSION;
sb_hdr->minor_ver = IMAGE_MINOR_VERSION;
sb_hdr->flags = 0;
sb_hdr->image_size = sb->image_size;
sb_hdr->header_size = sizeof(struct sb_header_t) / BLOCK_SIZE;
sb_hdr->first_boot_sec_id = sb->sections[0].identifier;
sb_hdr->nr_keys = g_nr_keys;
sb_hdr->nr_sections = sb->nr_sections;
sb_hdr->sec_hdr_size = sizeof(struct sb_section_header_t) / BLOCK_SIZE;
sb_hdr->key_dict_off = sb_hdr->header_size +
sb_hdr->sec_hdr_size * sb_hdr->nr_sections;
sb_hdr->first_boot_tag_off = sb_hdr->key_dict_off +
sizeof(struct sb_key_dictionary_entry_t) * sb_hdr->nr_keys / BLOCK_SIZE;
generate_random_data(sb_hdr->rand_pad0, sizeof(sb_hdr->rand_pad0));
generate_random_data(sb_hdr->rand_pad1, sizeof(sb_hdr->rand_pad1));
sb_hdr->timestamp = generate_timestamp();
sb_hdr->product_ver = sb->product_ver;
fix_version(&sb_hdr->product_ver);
sb_hdr->component_ver = sb->component_ver;
fix_version(&sb_hdr->component_ver);
sb_hdr->drive_tag = 0;
sha_1_init(&sha_1_params);
sha_1_update(&sha_1_params, &sb_hdr->signature[0],
sizeof(struct sb_header_t) - sizeof(sb_hdr->sha1_header));
sha_1_finish(&sha_1_params);
sha_1_output(&sha_1_params, sb_hdr->sha1_header);
}
static void produce_sb_section_header(struct sb_section_t *sec,
struct sb_section_header_t *sec_hdr)
{
sec_hdr->identifier = sec->identifier;
sec_hdr->offset = sec->file_offset;
sec_hdr->size = sec->sec_size;
sec_hdr->flags = (sec->is_data ? 0 : SECTION_BOOTABLE)
| (sec->is_cleartext ? SECTION_CLEARTEXT : 0);
}
static uint8_t instruction_checksum(struct sb_instruction_header_t *hdr)
{
uint8_t sum = 90;
byte *ptr = (byte *)hdr;
for(int i = 1; i < 16; i++)
sum += ptr[i];
return sum;
}
static void produce_section_tag_cmd(struct sb_section_t *sec,
struct sb_instruction_tag_t *tag, bool is_last)
{
tag->hdr.opcode = SB_INST_TAG;
tag->hdr.flags = is_last ? SB_INST_LAST_TAG : 0;
tag->identifier = sec->identifier;
tag->len = sec->sec_size;
tag->flags = (sec->is_data ? 0 : SECTION_BOOTABLE)
| (sec->is_cleartext ? SECTION_CLEARTEXT : 0);
tag->hdr.checksum = instruction_checksum(&tag->hdr);
}
void produce_sb_instruction(struct sb_inst_t *inst,
struct sb_instruction_common_t *cmd)
{
memset(cmd, 0, sizeof(struct sb_instruction_common_t));
cmd->hdr.opcode = inst->inst;
switch(inst->inst)
{
case SB_INST_CALL:
case SB_INST_JUMP:
cmd->addr = inst->addr;
cmd->data = inst->argument;
break;
case SB_INST_FILL:
cmd->addr = inst->addr;
cmd->len = inst->size;
cmd->data = inst->pattern;
break;
case SB_INST_LOAD:
cmd->addr = inst->addr;
cmd->len = inst->size;
cmd->data = crc_continue(crc(inst->data, inst->size),
inst->padding, inst->padding_size);
break;
case SB_INST_MODE:
cmd->data = inst->addr;
break;
case SB_INST_NOP:
break;
default:
bug("die\n");
}
cmd->hdr.checksum = instruction_checksum(&cmd->hdr);
}
void sb_produce_file(struct sb_file_t *sb, const char *filename)
{
FILE *fd = fopen(filename, "wb");
if(fd == NULL)
bugp("cannot open output file");
struct crypto_key_t real_key;
real_key.method = CRYPTO_KEY;
byte crypto_iv[16];
byte (*cbc_macs)[16] = xmalloc(16 * g_nr_keys);
/* init CBC-MACs */
for(int i = 0; i < g_nr_keys; i++)
memset(cbc_macs[i], 0, 16);
fill_gaps(sb);
compute_sb_offsets(sb);
generate_random_data(real_key.u.key, 16);
/* global SHA-1 */
struct sha_1_params_t file_sha1;
sha_1_init(&file_sha1);
/* produce and write header */
struct sb_header_t sb_hdr;
produce_sb_header(sb, &sb_hdr);
sha_1_update(&file_sha1, (byte *)&sb_hdr, sizeof(sb_hdr));
fwrite(&sb_hdr, 1, sizeof(sb_hdr), fd);
memcpy(crypto_iv, &sb_hdr, 16);
/* update CBC-MACs */
for(int i = 0; i < g_nr_keys; i++)
crypto_cbc((byte *)&sb_hdr, NULL, sizeof(sb_hdr) / BLOCK_SIZE, &g_key_array[i],
cbc_macs[i], &cbc_macs[i], 1);
/* produce and write section headers */
for(int i = 0; i < sb_hdr.nr_sections; i++)
{
struct sb_section_header_t sb_sec_hdr;
produce_sb_section_header(&sb->sections[i], &sb_sec_hdr);
sha_1_update(&file_sha1, (byte *)&sb_sec_hdr, sizeof(sb_sec_hdr));
fwrite(&sb_sec_hdr, 1, sizeof(sb_sec_hdr), fd);
/* update CBC-MACs */
for(int j = 0; j < g_nr_keys; j++)
crypto_cbc((byte *)&sb_sec_hdr, NULL, sizeof(sb_sec_hdr) / BLOCK_SIZE,
&g_key_array[j], cbc_macs[j], &cbc_macs[j], 1);
}
/* produce key dictionary */
for(int i = 0; i < g_nr_keys; i++)
{
struct sb_key_dictionary_entry_t entry;
memcpy(entry.hdr_cbc_mac, cbc_macs[i], 16);
crypto_cbc(real_key.u.key, entry.key, 1, &g_key_array[i],
crypto_iv, NULL, 1);
fwrite(&entry, 1, sizeof(entry), fd);
sha_1_update(&file_sha1, (byte *)&entry, sizeof(entry));
}
/* HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK */
/* Image crafting, don't use it unless you understand what you do */
if(sb->real_key != NULL)
memcpy(real_key.u.key, *sb->real_key, 16);
if(sb->crypto_iv != NULL)
memcpy(crypto_iv, *sb->crypto_iv, 16);
/* KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH */
if(g_debug)
{
printf("Real key: ");
for(int j = 0; j < 16; j++)
printf("%02x", real_key.u.key[j]);
printf("\n");
printf("IV : ");
for(int j = 0; j < 16; j++)
printf("%02x", crypto_iv[j]);
printf("\n");
}
/* produce sections data */
for(int i = 0; i< sb_hdr.nr_sections; i++)
{
/* produce tag command */
struct sb_instruction_tag_t tag_cmd;
produce_section_tag_cmd(&sb->sections[i], &tag_cmd, (i + 1) == sb_hdr.nr_sections);
if(g_nr_keys > 0)
crypto_cbc((byte *)&tag_cmd, (byte *)&tag_cmd, sizeof(tag_cmd) / BLOCK_SIZE,
&real_key, crypto_iv, NULL, 1);
sha_1_update(&file_sha1, (byte *)&tag_cmd, sizeof(tag_cmd));
fwrite(&tag_cmd, 1, sizeof(tag_cmd), fd);
/* produce other commands */
byte cur_cbc_mac[16];
memcpy(cur_cbc_mac, crypto_iv, 16);
for(int j = 0; j < sb->sections[i].nr_insts; j++)
{
struct sb_inst_t *inst = &sb->sections[i].insts[j];
/* command */
if(inst->inst != SB_INST_DATA)
{
struct sb_instruction_common_t cmd;
produce_sb_instruction(inst, &cmd);
if(g_nr_keys > 0 && !sb->sections[i].is_cleartext)
crypto_cbc((byte *)&cmd, (byte *)&cmd, sizeof(cmd) / BLOCK_SIZE,
&real_key, cur_cbc_mac, &cur_cbc_mac, 1);
sha_1_update(&file_sha1, (byte *)&cmd, sizeof(cmd));
fwrite(&cmd, 1, sizeof(cmd), fd);
}
/* data */
if(inst->inst == SB_INST_LOAD || inst->inst == SB_INST_DATA)
{
uint32_t sz = inst->size + inst->padding_size;
byte *data = xmalloc(sz);
memcpy(data, inst->data, inst->size);
memcpy(data + inst->size, inst->padding, inst->padding_size);
if(g_nr_keys > 0 && !sb->sections[i].is_cleartext)
crypto_cbc(data, data, sz / BLOCK_SIZE,
&real_key, cur_cbc_mac, &cur_cbc_mac, 1);
sha_1_update(&file_sha1, data, sz);
fwrite(data, 1, sz, fd);
free(data);
}
}
}
/* write file SHA-1 */
byte final_sig[32];
sha_1_finish(&file_sha1);
sha_1_output(&file_sha1, final_sig);
generate_random_data(final_sig + 20, 12);
if(g_nr_keys > 0)
crypto_cbc(final_sig, final_sig, 2, &real_key, crypto_iv, NULL, 1);
fwrite(final_sig, 1, 32, fd);
fclose(fd);
}