rockbox/firmware/target/arm/s5l8700/ipodnano2g/nand-nano2g.c
Michael Sevakis 1654efc313 Unify storage threads into one
* Editing a bunch of drivers' thread routines in order to
implement a new feature is tedious.

* No matter the number of storage drivers, they share one thread.
No extra threads needed for CONFIG_STORAGE_MULTI.

* Each has an event callback called by the storage thread.

* A default callback is provided to fake sleeping in order to
trigger idle callbacks. It could also do other default processing.
Changes to it will be part of driver code without editing each
one.

* Drivers may sleep and wake as they please as long as they give
a low pulse on their storage bit to ask to go into sleep mode.
Idle callback is called on its behalf and driver immediately put
into sleep mode.

* Drivers may indicate they are to continue receiving events in
USB mode, otherwise they receve nothing until disconnect (they
do receive SYS_USB_DISCONNECTED no matter what).

* Rework a few things to keep the callback implementation sane
and maintainable. ata.c was dreadful with all those bools; make
it a state machine and easier to follow. Remove last_user_activity;
it has no purpose that isn't served by keeping the disk active
through last_disk_activity instead.

* Even-out stack sizes partly because of a lack of a decent place
to define them by driver or SoC or whatever; it doesn't seem too
critical to do that anyway. Many are simply too large while at
least one isn't really adequate. They may be individually
overridden if necessary (figure out where). The thread uses the
greatest size demanded. Newer file code is much more frugal with
stack space. I barely see use crack 50% after idle callbacks
(usually mid-40s). Card insert/eject doesn't demand much.

* No forcing of idle callbacks. If it isn't necessary for one or
more non-disk storage types, it really isn't any more necessary for
disk storage. Besides, it makes the whole thing easier to implement.

Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-10-26 14:35:41 -04:00

791 lines
25 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 by Michael Sparmann
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "panic.h"
#include "system.h"
#include "kernel.h"
#include "cpu.h"
#include "inttypes.h"
#include "nand-target.h"
#include <pmu-target.h>
#include <mmu-arm.h>
#include <string.h>
#include "led.h"
#include "storage.h"
#define NAND_CMD_READ 0x00
#define NAND_CMD_PROGCNFRM 0x10
#define NAND_CMD_READ2 0x30
#define NAND_CMD_BLOCKERASE 0x60
#define NAND_CMD_GET_STATUS 0x70
#define NAND_CMD_PROGRAM 0x80
#define NAND_CMD_ERASECNFRM 0xD0
#define NAND_CMD_RESET 0xFF
#define NAND_STATUS_READY 0x40
static const struct nand_device_info_type nand_deviceinfotable[] =
{
{0x1580F1EC, 1024, 968, 0x40, 6, 2, 1, 2, 1},
{0x1580DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
{0x15C1DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
{0x1510DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x95C1DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x2514DCEC, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
{0x2514D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2555D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2555D5EC, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
{0x2585D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0x9580DCAD, 4096, 3872, 0x40, 6, 3, 2, 3, 2},
{0xA514D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0xA550D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0xA560D5AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0xA555D5AD, 8192, 7744, 0x80, 7, 3, 2, 3, 2},
{0xA585D598, 8320, 7744, 0x80, 7, 3, 1, 2, 1},
{0xA584D398, 4160, 3872, 0x80, 7, 3, 1, 2, 1},
{0x95D1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x1580DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x15C1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x9590DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0xA594D32C, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2584DC2C, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
{0xA5D5D52C, 8192, 7744, 0x80, 7, 3, 2, 2, 1},
{0x95D1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x1580DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x15C1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x9590DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0xA594D389, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2584DC89, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
{0xA5D5D589, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
{0xA514D320, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0xA555D520, 8192, 3872, 0x80, 7, 2, 1, 2, 1}
};
static uint8_t nand_tunk1[4];
static uint8_t nand_twp[4];
static uint8_t nand_tunk2[4];
static uint8_t nand_tunk3[4];
static int nand_type[4];
static int nand_powered = 0;
static int nand_interleaved = 0;
static int nand_cached = 0;
static long nand_last_activity_value = -1;
static struct mutex nand_mtx;
static struct semaphore nand_complete;
static struct mutex ecc_mtx;
static struct semaphore ecc_complete;
static uint8_t nand_data[0x800] STORAGE_ALIGN_ATTR;
static uint8_t nand_ctrl[0x200] STORAGE_ALIGN_ATTR;
static uint8_t nand_spare[0x40] STORAGE_ALIGN_ATTR;
static uint8_t nand_ecc[0x30] STORAGE_ALIGN_ATTR;
static uint32_t nand_unlock(uint32_t rc)
{
led(false);
nand_last_activity_value = current_tick;
mutex_unlock(&nand_mtx);
return rc;
}
static uint32_t ecc_unlock(uint32_t rc)
{
mutex_unlock(&ecc_mtx);
return rc;
}
static uint32_t nand_timeout(long timeout)
{
if (TIME_AFTER(current_tick, timeout)) return 1;
else
{
yield();
return 0;
}
}
static uint32_t nand_wait_rbbdone(void)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & FMCSTAT_RBBDONE))
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_RBBDONE;
return 0;
}
static uint32_t nand_wait_cmddone(void)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & FMCSTAT_CMDDONE))
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_CMDDONE;
return 0;
}
static uint32_t nand_wait_addrdone(void)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & FMCSTAT_ADDRDONE))
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_ADDRDONE;
return 0;
}
static uint32_t nand_wait_chip_ready(uint32_t bank)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & (FMCSTAT_BANK0READY << bank)))
if (nand_timeout(timeout)) return 1;
FMCSTAT = (FMCSTAT_BANK0READY << bank);
return 0;
}
static void nand_set_fmctrl0(uint32_t bank, uint32_t flags)
{
FMCTRL0 = (nand_tunk1[bank] << 16) | (nand_twp[bank] << 12)
| (1 << 11) | 1 | (1 << (bank + 1)) | flags;
}
static uint32_t nand_send_cmd(uint32_t cmd)
{
FMCMD = cmd;
return nand_wait_rbbdone();
}
static uint32_t nand_send_address(uint32_t page, uint32_t offset)
{
FMANUM = 4;
FMADDR0 = (page << 16) | offset;
FMADDR1 = (page >> 16) & 0xFF;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
return nand_wait_cmddone();
}
uint32_t nand_reset(uint32_t bank)
{
nand_set_fmctrl0(bank, 0);
if (nand_send_cmd(NAND_CMD_RESET)) return 1;
if (nand_wait_chip_ready(bank)) return 1;
FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
sleep(0);
return 0;
}
static uint32_t nand_wait_status_ready(uint32_t bank)
{
long timeout = current_tick + HZ / 50;
nand_set_fmctrl0(bank, 0);
if ((FMCSTAT & (FMCSTAT_BANK0READY << bank)))
FMCSTAT = (FMCSTAT_BANK0READY << bank);
FMCTRL1 = FMCTRL1_CLEARRFIFO;
if (nand_send_cmd(NAND_CMD_GET_STATUS)) return 1;
while (1)
{
if (nand_timeout(timeout)) return 1;
FMDNUM = 0;
FMCTRL1 = FMCTRL1_DOREADDATA;
if (nand_wait_addrdone()) return 1;
if ((FMFIFO & NAND_STATUS_READY)) break;
FMCTRL1 = FMCTRL1_CLEARRFIFO;
}
FMCTRL1 = FMCTRL1_CLEARRFIFO;
return nand_send_cmd(NAND_CMD_READ);
}
static void nand_transfer_data_start(uint32_t bank, uint32_t direction,
void* buffer, uint32_t size)
{
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
FMDNUM = size - 1;
FMCTRL1 = FMCTRL1_DOREADDATA << direction;
DMACON3 = (2 << DMACON_DEVICE_SHIFT)
| (direction << DMACON_DIRECTION_SHIFT)
| (2 << DMACON_DATA_SIZE_SHIFT)
| (3 << DMACON_BURST_LEN_SHIFT);
while ((DMAALLST & DMAALLST_CHAN3_MASK))
DMACOM3 = DMACOM_CLEARBOTHDONE;
DMABASE3 = (uint32_t)buffer;
DMATCNT3 = (size >> 4) - 1;
commit_dcache();
DMACOM3 = 4;
}
static uint32_t nand_transfer_data_collect(uint32_t direction)
{
long timeout = current_tick + HZ / 50;
while ((DMAALLST & DMAALLST_DMABUSY3))
if (nand_timeout(timeout)) return 1;
if (!direction) commit_discard_dcache();
if (nand_wait_addrdone()) return 1;
if (!direction) FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
else FMCTRL1 = FMCTRL1_CLEARRFIFO;
return 0;
}
static uint32_t nand_transfer_data(uint32_t bank, uint32_t direction,
void* buffer, uint32_t size)
{
nand_transfer_data_start(bank, direction, buffer, size);
uint32_t rc = nand_transfer_data_collect(direction);
return rc;
}
static void ecc_start(uint32_t size, void* databuffer, void* sparebuffer,
uint32_t type)
{
mutex_lock(&ecc_mtx);
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
ECC_UNK1 = size;
ECC_DATA_PTR = (uint32_t)databuffer;
ECC_SPARE_PTR = (uint32_t)sparebuffer;
commit_dcache();
ECC_CTRL = type;
}
static uint32_t ecc_collect(void)
{
long timeout = current_tick + HZ / 50;
while (!(SRCPND & INTMSK_ECC))
if (nand_timeout(timeout)) return ecc_unlock(1);
commit_discard_dcache();
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
return ecc_unlock(ECC_RESULT);
}
static uint32_t ecc_decode(uint32_t size, void* databuffer, void* sparebuffer)
{
ecc_start(size, databuffer, sparebuffer, ECCCTRL_STARTDECODING);
uint32_t rc = ecc_collect();
return rc;
}
static uint32_t ecc_encode(uint32_t size, void* databuffer, void* sparebuffer)
{
ecc_start(size, databuffer, sparebuffer, ECCCTRL_STARTENCODING);
ecc_collect();
return 0;
}
static uint32_t nand_check_empty(uint8_t* buffer)
{
uint32_t i, count;
count = 0;
for (i = 0; i < 0x40; i++) if (buffer[i] != 0xFF) count++;
if (count < 2) return 1;
return 0;
}
static uint32_t nand_get_chip_type(uint32_t bank)
{
mutex_lock(&nand_mtx);
uint32_t result;
if (nand_reset(bank)) return nand_unlock(0xFFFFFFFE);
if (nand_send_cmd(0x90)) return nand_unlock(0xFFFFFFFD);
FMANUM = 0;
FMADDR0 = 0;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
if (nand_wait_cmddone()) return nand_unlock(0xFFFFFFFC);
FMDNUM = 4;
FMCTRL1 = FMCTRL1_DOREADDATA;
if (nand_wait_addrdone()) return nand_unlock(0xFFFFFFFB);
result = FMFIFO;
FMCTRL1 = FMCTRL1_CLEARRFIFO;
return nand_unlock(result);
}
void nand_set_active(void)
{
nand_last_activity_value = current_tick;
}
long nand_last_activity(void)
{
return nand_last_activity_value;
}
void nand_power_up(void)
{
uint32_t i;
mutex_lock(&nand_mtx);
nand_last_activity_value = current_tick;
PWRCONEXT &= ~0x40;
PWRCON &= ~0x100000;
PCON2 = 0x33333333;
PDAT2 = 0;
PCON3 = 0x11113333;
PDAT3 = 0;
PCON4 = 0x33333333;
PDAT4 = 0;
PCON5 = (PCON5 & ~0xF) | 3;
PUNK5 = 1;
pmu_ldo_set_voltage(4, 0x15);
pmu_ldo_power_on(4);
sleep(HZ / 20);
nand_last_activity_value = current_tick;
for (i = 0; i < 4; i++)
if (nand_type[i] >= 0)
if (nand_reset(i))
panicf("nand_power_up: nand_reset(bank=%d) failed.",(unsigned int)i);
nand_powered = 1;
nand_last_activity_value = current_tick;
mutex_unlock(&nand_mtx);
}
void nand_power_down(void)
{
mutex_lock(&nand_mtx);
if (nand_powered)
{
pmu_ldo_power_off(4);
PCON2 = 0x11111111;
PDAT2 = 0;
PCON3 = 0x11111111;
PDAT3 = 0;
PCON4 = 0x11111111;
PDAT4 = 0;
PCON5 = (PCON5 & ~0xF) | 1;
PUNK5 = 1;
PWRCONEXT |= 0x40;
PWRCON |= 0x100000;
nand_powered = 0;
}
mutex_unlock(&nand_mtx);
}
uint32_t nand_read_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc,
uint32_t checkempty)
{
uint8_t* data = nand_data;
uint8_t* spare = nand_spare;
if (databuffer && !((uint32_t)databuffer & 0xf))
data = (uint8_t*)databuffer;
if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
spare = (uint8_t*)sparebuffer;
mutex_lock(&nand_mtx);
nand_last_activity_value = current_tick;
led(true);
if (!nand_powered) nand_power_up();
uint32_t rc, eccresult;
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_READ)) return nand_unlock(1);
if (nand_send_address(page, databuffer ? 0 : 0x800))
return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_READ2)) return nand_unlock(1);
if (nand_wait_status_ready(bank)) return nand_unlock(1);
if (databuffer)
if (nand_transfer_data(bank, 0, data, 0x800))
return nand_unlock(1);
rc = 0;
if (!doecc)
{
if (databuffer && data != databuffer) memcpy(databuffer, data, 0x800);
if (sparebuffer)
{
if (nand_transfer_data(bank, 0, spare, 0x40))
return nand_unlock(1);
if (sparebuffer && spare != sparebuffer)
memcpy(sparebuffer, spare, 0x800);
if (checkempty)
rc = nand_check_empty((uint8_t*)sparebuffer) << 1;
}
return nand_unlock(rc);
}
if (nand_transfer_data(bank, 0, spare, 0x40)) return nand_unlock(1);
if (databuffer)
{
memcpy(nand_ecc, &spare[0xC], 0x28);
rc |= (ecc_decode(3, data, nand_ecc) & 0xF) << 4;
if (data != databuffer) memcpy(databuffer, data, 0x800);
}
memset(nand_ctrl, 0xFF, 0x200);
memcpy(nand_ctrl, spare, 0xC);
memcpy(nand_ecc, &spare[0x34], 0xC);
eccresult = ecc_decode(0, nand_ctrl, nand_ecc);
rc |= (eccresult & 0xF) << 8;
if (sparebuffer)
{
if (spare != sparebuffer) memcpy(sparebuffer, spare, 0x40);
if (eccresult & 1) memset(sparebuffer, 0xFF, 0xC);
else memcpy(sparebuffer, nand_ctrl, 0xC);
}
if (checkempty) rc |= nand_check_empty(spare) << 1;
return nand_unlock(rc);
}
static uint32_t nand_write_page_int(uint32_t bank, uint32_t page,
void* databuffer, void* sparebuffer,
uint32_t doecc, uint32_t wait)
{
uint8_t* data = nand_data;
uint8_t* spare = nand_spare;
if (databuffer && !((uint32_t)databuffer & 0xf))
data = (uint8_t*)databuffer;
if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
spare = (uint8_t*)sparebuffer;
mutex_lock(&nand_mtx);
nand_last_activity_value = current_tick;
led(true);
if (!nand_powered) nand_power_up();
if (sparebuffer)
{
if (spare != sparebuffer) memcpy(spare, sparebuffer, 0x40);
}
else memset(spare, 0xFF, 0x40);
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_PROGRAM)) return nand_unlock(1);
if (nand_send_address(page, databuffer ? 0 : 0x800))
return nand_unlock(1);
if (databuffer && data != databuffer) memcpy(data, databuffer, 0x800);
if (databuffer) nand_transfer_data_start(bank, 1, data, 0x800);
if (doecc)
{
if (ecc_encode(3, data, nand_ecc)) return nand_unlock(1);
memcpy(&spare[0xC], nand_ecc, 0x28);
memset(nand_ctrl, 0xFF, 0x200);
memcpy(nand_ctrl, spare, 0xC);
if (ecc_encode(0, nand_ctrl, nand_ecc)) return nand_unlock(1);
memcpy(&spare[0x34], nand_ecc, 0xC);
}
if (databuffer)
if (nand_transfer_data_collect(1))
return nand_unlock(1);
if (sparebuffer || doecc)
if (nand_transfer_data(bank, 1, spare, 0x40))
return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_PROGCNFRM)) return nand_unlock(1);
if (wait) if (nand_wait_status_ready(bank)) return nand_unlock(1);
return nand_unlock(0);
}
uint32_t nand_block_erase(uint32_t bank, uint32_t page)
{
mutex_lock(&nand_mtx);
nand_last_activity_value = current_tick;
led(true);
if (!nand_powered) nand_power_up();
nand_set_fmctrl0(bank, 0);
if (nand_send_cmd(NAND_CMD_BLOCKERASE)) return nand_unlock(1);
FMANUM = 2;
FMADDR0 = page;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
if (nand_wait_cmddone()) return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_ERASECNFRM)) return nand_unlock(1);
if (nand_wait_status_ready(bank)) return nand_unlock(1);
return nand_unlock(0);
}
uint32_t nand_read_page_fast(uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc,
uint32_t checkempty)
{
uint32_t i, rc = 0;
if (((uint32_t)databuffer & 0xf) || ((uint32_t)sparebuffer & 0xf)
|| !databuffer || !sparebuffer || !doecc)
{
for (i = 0; i < 4; i++)
{
if (nand_type[i] < 0) continue;
void* databuf = (void*)0;
void* sparebuf = (void*)0;
if (databuffer) databuf = (void*)((uint32_t)databuffer + 0x800 * i);
if (sparebuffer) sparebuf = (void*)((uint32_t)sparebuffer + 0x40 * i);
uint32_t ret = nand_read_page(i, page, databuf, sparebuf, doecc, checkempty);
if (ret & 1) rc |= 1 << (i << 2);
if (ret & 2) rc |= 2 << (i << 2);
if (ret & 0x10) rc |= 4 << (i << 2);
if (ret & 0x100) rc |= 8 << (i << 2);
}
return rc;
}
mutex_lock(&nand_mtx);
nand_last_activity_value = current_tick;
led(true);
if (!nand_powered) nand_power_up();
uint8_t status[4];
for (i = 0; i < 4; i++) status[i] = (nand_type[i] < 0);
for (i = 0; i < 4; i++)
{
if (!status[i])
{
nand_set_fmctrl0(i, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_READ))
status[i] = 1;
}
if (!status[i])
if (nand_send_address(page, 0))
status[i] = 1;
if (!status[i])
if (nand_send_cmd(NAND_CMD_READ2))
status[i] = 1;
}
if (!status[0])
if (nand_wait_status_ready(0))
status[0] = 1;
if (!status[0])
if (nand_transfer_data(0, 0, databuffer, 0x800))
status[0] = 1;
if (!status[0])
if (nand_transfer_data(0, 0, sparebuffer, 0x40))
status[0] = 1;
for (i = 1; i < 4; i++)
{
if (!status[i])
if (nand_wait_status_ready(i))
status[i] = 1;
if (!status[i])
nand_transfer_data_start(i, 0, (void*)((uint32_t)databuffer
+ 0x800 * i), 0x800);
if (!status[i - 1])
{
memcpy(nand_ecc, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0xC), 0x28);
ecc_start(3, (void*)((uint32_t)databuffer
+ 0x800 * (i - 1)), nand_ecc, ECCCTRL_STARTDECODING);
}
if (!status[i])
if (nand_transfer_data_collect(0))
status[i] = 1;
if (!status[i])
nand_transfer_data_start(i, 0, (void*)((uint32_t)sparebuffer
+ 0x40 * i), 0x40);
if (!status[i - 1])
if (ecc_collect() & 1)
status[i - 1] = 4;
if (!status[i - 1])
{
memset(nand_ctrl, 0xFF, 0x200);
memcpy(nand_ctrl, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xC);
memcpy(nand_ecc, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0x34), 0xC);
ecc_start(0, nand_ctrl, nand_ecc, ECCCTRL_STARTDECODING);
}
if (!status[i])
if (nand_transfer_data_collect(0))
status[i] = 1;
if (!status[i - 1])
{
if (ecc_collect() & 1)
{
status[i - 1] |= 8;
memset((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xFF, 0xC);
}
else memcpy((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), nand_ctrl, 0xC);
if (checkempty)
status[i - 1] |= nand_check_empty((void*)((uint32_t)sparebuffer
+ 0x40 * (i - 1))) << 1;
}
}
if (!status[i - 1])
{
memcpy(nand_ecc,(void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0xC), 0x28);
if (ecc_decode(3, (void*)((uint32_t)databuffer
+ 0x800 * (i - 1)), nand_ecc) & 1)
status[i - 1] = 4;
}
if (!status[i - 1])
{
memset(nand_ctrl, 0xFF, 0x200);
memcpy(nand_ctrl, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xC);
memcpy(nand_ecc, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0x34), 0xC);
if (ecc_decode(0, nand_ctrl, nand_ecc) & 1)
{
status[i - 1] |= 8;
memset((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xFF, 0xC);
}
else memcpy((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), nand_ctrl, 0xC);
if (checkempty)
status[i - 1] |= nand_check_empty((void*)((uint32_t)sparebuffer
+ 0x40 * (i - 1))) << 1;
}
for (i = 0; i < 4; i++)
if (nand_type[i] < 0)
rc |= status[i] << (i << 2);
return nand_unlock(rc);
}
uint32_t nand_write_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc)
{
return nand_write_page_int(bank, page, databuffer, sparebuffer, doecc, 1);
}
uint32_t nand_write_page_start(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc)
{
if (((uint32_t)databuffer & 0xf) || ((uint32_t)sparebuffer & 0xf)
|| !databuffer || !sparebuffer || !doecc || !nand_interleaved)
return nand_write_page_int(bank, page, databuffer, sparebuffer, doecc, !nand_interleaved);
mutex_lock(&nand_mtx);
nand_last_activity_value = current_tick;
led(true);
if (!nand_powered) nand_power_up();
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_PROGRAM))
return nand_unlock(1);
if (nand_send_address(page, 0))
return nand_unlock(1);
nand_transfer_data_start(bank, 1, databuffer, 0x800);
if (ecc_encode(3, databuffer, nand_ecc))
return nand_unlock(1);
memcpy((void*)((uint32_t)sparebuffer + 0xC), nand_ecc, 0x28);
memset(nand_ctrl, 0xFF, 0x200);
memcpy(nand_ctrl, sparebuffer, 0xC);
if (ecc_encode(0, nand_ctrl, nand_ecc))
return nand_unlock(1);
memcpy((void*)((uint32_t)sparebuffer + 0x34), nand_ecc, 0xC);
if (nand_transfer_data_collect(0))
return nand_unlock(1);
if (nand_transfer_data(bank, 1, sparebuffer, 0x40))
return nand_unlock(1);
return nand_unlock(nand_send_cmd(NAND_CMD_PROGCNFRM));
}
uint32_t nand_write_page_collect(uint32_t bank)
{
return nand_wait_status_ready(bank);
}
#if 0 /* currently unused */
static uint32_t nand_block_erase_fast(uint32_t page)
{
uint32_t i, rc = 0;
mutex_lock(&nand_mtx);
nand_last_activity_value = current_tick;
led(true);
if (!nand_powered) nand_power_up();
for (i = 0; i < 4; i++)
{
if (nand_type[i] < 0) continue;
nand_set_fmctrl0(i, 0);
if (nand_send_cmd(NAND_CMD_BLOCKERASE))
{
rc |= 1 << i;
continue;
}
FMANUM = 2;
FMADDR0 = page;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
if (nand_wait_cmddone())
{
rc |= 1 << i;
continue;
}
if (nand_send_cmd(NAND_CMD_ERASECNFRM)) rc |= 1 << i;
}
for (i = 0; i < 4; i++)
{
if (nand_type[i] < 0) continue;
if (rc & (1 << i)) continue;
if (nand_wait_status_ready(i)) rc |= 1 << i;
}
return nand_unlock(rc);
}
#endif
const struct nand_device_info_type* nand_get_device_type(uint32_t bank)
{
if (nand_type[bank] < 0)
return (struct nand_device_info_type*)0;
return &nand_deviceinfotable[nand_type[bank]];
}
int nand_device_init(void)
{
mutex_init(&nand_mtx);
semaphore_init(&nand_complete, 1, 0);
mutex_init(&ecc_mtx);
semaphore_init(&ecc_complete, 1, 0);
uint32_t type;
uint32_t i, j;
/* Assume there are 0 banks, to prevent
nand_power_up from talking with them yet. */
for (i = 0; i < 4; i++) nand_type[i] = -1;
nand_power_up();
/* Now that the flash is powered on, detect how
many banks we really have and initialize them. */
for (i = 0; i < 4; i++)
{
nand_tunk1[i] = 7;
nand_twp[i] = 7;
nand_tunk2[i] = 7;
nand_tunk3[i] = 7;
type = nand_get_chip_type(i);
if (type >= 0xFFFFFFF0)
{
nand_type[i] = (int)type;
continue;
}
for (j = 0; ; j++)
{
if (j == ARRAYLEN(nand_deviceinfotable)) break;
else if (nand_deviceinfotable[j].id == type)
{
nand_type[i] = j;
break;
}
}
nand_tunk1[i] = nand_deviceinfotable[nand_type[i]].tunk1;
nand_twp[i] = nand_deviceinfotable[nand_type[i]].twp;
nand_tunk2[i] = nand_deviceinfotable[nand_type[i]].tunk2;
nand_tunk3[i] = nand_deviceinfotable[nand_type[i]].tunk3;
}
if (nand_type[0] < 0) return nand_type[0];
nand_interleaved = ((nand_deviceinfotable[nand_type[0]].id >> 22) & 1);
nand_cached = ((nand_deviceinfotable[nand_type[0]].id >> 23) & 1);
nand_last_activity_value = current_tick;
return 0;
}
int nand_event(long id, intptr_t data)
{
int rc = 0;
if (LIKELY(id == Q_STORAGE_TICK))
{
if (!nand_powered ||
TIME_BEFORE(current_tick, nand_last_activity_value + HZ / 5))
{
STG_EVENT_ASSERT_ACTIVE(STORAGE_NAND);
}
}
else if (id == Q_STORAGE_SLEEPNOW)
{
nand_power_down();
}
else
{
rc = storage_event_default_handler(id, data, nand_last_activity_value,
STORAGE_NAND);
}
return rc;
}