rockbox/firmware/target/arm/ata-nand-telechips.c
Solomon Peachy 3ba2f6e5c7 Nuke all TCC77x targets: iAudio 7, Sansa C100, M200(v1-3), Logik DAX
They were never finished, never saw any release ever, and haven't
compiled for the better part of a decade.  Given their HW capabilities [1],
they are not worth trying to fix.

[1] 1-2MB RAM, ~256MB onboard flash, no expandability

Change-Id: I7b2a5806d687114c22156bb0458d4a10a9734190
2021-04-26 07:41:51 -04:00

1066 lines
27 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 Rob Purchase
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <string.h>
#include "system.h"
#include "kernel.h"
#include "nand.h"
#include "ata-nand-target.h"
#include "led.h"
#include "panic.h"
#include "nand_id.h"
#include "storage.h"
#include "fs_defines.h"
/* ECC on read is implemented on the assumption that MLC-style 4-bit correction
is always used regardless of NAND chip type. This assumption is true for at
least D2 (MLC) and M200 (SLC). */
#define USE_ECC_CORRECTION
/* for compatibility */
int ata_spinup_time = 0;
long last_disk_activity = -1;
/** static, private data **/
static bool initialized = false;
static long next_yield = 0;
#define MIN_YIELD_PERIOD 1000
static struct mutex ata_mtx SHAREDBSS_ATTR;
#if defined(COWON_D2)
#define FTL_V2
#define MAX_WRITE_CACHES 8
#else
#define FTL_V1
#define MAX_WRITE_CACHES 4
#endif
/* Sector type identifiers - main data area */
#define SECTYPE_MAIN_LPT 0x12
#define SECTYPE_MAIN_DATA 0x13
#define SECTYPE_MAIN_RANDOM_CACHE 0x15
#define SECTYPE_MAIN_INPLACE_CACHE 0x17
/* We don't touch the hidden area at all - these are for reference */
#define SECTYPE_HIDDEN_LPT 0x22
#define SECTYPE_HIDDEN_DATA 0x23
#define SECTYPE_HIDDEN_RANDOM_CACHE 0x25
#define SECTYPE_HIDDEN_INPLACE_CACHE 0x27
#ifdef FTL_V1
#define SECTYPE_FIRMWARE 0x40
#else
#define SECTYPE_FIRMWARE 0xE0
#endif
/* Offsets to data within sector's spare area */
#define OFF_CACHE_PAGE_LOBYTE 2
#define OFF_CACHE_PAGE_HIBYTE 3
#define OFF_SECTOR_TYPE 4
#ifdef FTL_V2
#define OFF_LOG_SEG_LOBYTE 7
#define OFF_LOG_SEG_HIBYTE 6
#else
#define OFF_LOG_SEG_LOBYTE 6
#define OFF_LOG_SEG_HIBYTE 7
#endif
/* Chip characteristics, initialised by nand_get_chip_info() */
static struct nand_info* nand_data = NULL;
static int total_banks = 0;
static int pages_per_bank = 0;
static int sectors_per_page = 0;
static int bytes_per_segment = 0;
static int sectors_per_segment = 0;
static int segments_per_bank = 0;
static int pages_per_segment = 0;
/* Maximum values for static buffers */
#define MAX_PAGE_SIZE 4096
#define MAX_SPARE_SIZE 128
#define MAX_BLOCKS_PER_BANK 8192
#define MAX_PAGES_PER_BLOCK 128
#define MAX_BANKS 4
#define MAX_BLOCKS_PER_SEGMENT 4
#define MAX_SEGMENTS (MAX_BLOCKS_PER_BANK * MAX_BANKS / MAX_BLOCKS_PER_SEGMENT)
/* Logical/Physical translation table */
struct lpt_entry
{
short bank;
short phys_segment;
};
#ifdef BOOTLOADER
static struct lpt_entry lpt_lookup[MAX_SEGMENTS];
#else
/* core_alloc()'d in nand_init() when the correct size has been determined */
#include "core_alloc.h"
static int lpt_handle;
#endif
/* Write Caches */
struct write_cache
{
short log_segment;
short inplace_bank;
short inplace_phys_segment;
short inplace_pages_used;
short random_bank;
short random_phys_segment;
short page_map[MAX_PAGES_PER_BLOCK * MAX_BLOCKS_PER_SEGMENT];
};
static struct write_cache write_caches[MAX_WRITE_CACHES];
static int write_caches_in_use = 0;
/* Conversion functions */
static int phys_segment_to_page_addr(int phys_segment, int page_in_seg)
{
int page_addr = 0;
switch (nand_data->planes)
{
case 1:
{
page_addr = (phys_segment * nand_data->pages_per_block);
break;
}
case 2:
case 4:
{
page_addr = phys_segment * nand_data->pages_per_block * 2;
if (page_in_seg & 1)
{
/* Data is located in block+1 */
page_addr += nand_data->pages_per_block;
}
if (nand_data->planes == 4 && page_in_seg & 2)
{
/* Data is located in 2nd half of bank */
page_addr +=
(nand_data->blocks_per_bank/2) * nand_data->pages_per_block;
}
break;
}
}
page_addr += (page_in_seg / nand_data->planes);
return page_addr;
}
/* NAND physical access functions */
static void nand_chip_select(int bank)
{
if (bank == -1)
{
/* Disable both chip selects */
NAND_GPIO_CLEAR(CS_GPIO_BIT);
NFC_CTRL |= NFC_CS0 | NFC_CS1;
}
else
{
/* NFC chip select */
if (bank & 1)
{
NFC_CTRL &= ~NFC_CS0;
NFC_CTRL |= NFC_CS1;
}
else
{
NFC_CTRL |= NFC_CS0;
NFC_CTRL &= ~NFC_CS1;
}
/* Secondary chip select */
if (bank & 2)
NAND_GPIO_SET(CS_GPIO_BIT);
else
NAND_GPIO_CLEAR(CS_GPIO_BIT);
}
}
static void nand_read_id(int bank, unsigned char* id_buf)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Reset NAND controller */
NFC_RST = 0;
/* Set slow cycle timings since the chip is as yet unidentified */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x353;
nand_chip_select(bank);
/* Set write protect */
NAND_GPIO_CLEAR(WE_GPIO_BIT);
/* Reset command */
NFC_CMD = 0xFF;
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Read ID command, single address cycle */
NFC_CMD = 0x90;
NFC_SADDR = 0x00;
/* Read the 5 chip ID bytes */
for (i = 0; i < 5; i++)
{
id_buf[i] = NFC_SDATA & 0xFF;
}
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
static void nand_read_uid(int bank, unsigned int* uid_buf)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Set cycle timing (stp = 1, pw = 3, hold = 1) */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;
nand_chip_select(bank);
/* Set write protect */
NAND_GPIO_CLEAR(WE_GPIO_BIT);
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Undocumented (SAMSUNG specific?) commands set the chip into a
special mode allowing a normally-hidden UID block to be read. */
NFC_CMD = 0x30;
NFC_CMD = 0x65;
/* Read command */
NFC_CMD = 0x00;
/* Write row/column address */
for (i = 0; i < nand_data->col_cycles; i++) NFC_SADDR = 0;
for (i = 0; i < nand_data->row_cycles; i++) NFC_SADDR = 0;
/* End of read */
NFC_CMD = 0x30;
/* Wait until complete */
while (!(NFC_CTRL & NFC_READY)) {};
/* Copy data to buffer (data repeats after 8 words) */
for (i = 0; i < 8; i++)
{
uid_buf[i] = NFC_WDATA;
}
/* Reset the chip back to normal mode */
NFC_CMD = 0xFF;
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
static void nand_setup_read(int bank, int row, int column)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Set cycle timing (stp = 1, pw = 3, hold = 1) */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;
nand_chip_select(bank);
/* Set write protect */
NAND_GPIO_CLEAR(WE_GPIO_BIT);
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Read command */
NFC_CMD = 0x00;
/* Write column address */
for (i = 0; i < nand_data->col_cycles; i++)
{
NFC_SADDR = column & 0xFF;
column = column >> 8;
}
/* Write row address */
for (i = 0; i < nand_data->row_cycles; i++)
{
NFC_SADDR = row & 0xFF;
row = row >> 8;
}
/* End of read command */
NFC_CMD = 0x30;
/* Wait until complete */
while (!(NFC_CTRL & NFC_READY)) {};
}
static void nand_end_read(void)
{
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
static void nand_read_raw(int bank, int row, int column, int size, void* buf)
{
int i;
nand_setup_read(bank, row, column);
/* Read data into page buffer */
if (((unsigned int)buf & 3) || (size & 3))
{
/* Use byte copy since either the buffer or size are not word-aligned */
/* TODO: Byte copy only where necessary (use words for mid-section) */
for (i = 0; i < size; i++)
{
((unsigned char*)buf)[i] = NFC_SDATA;
}
}
else
{
/* Use 4-byte copy as buffer and size are both word-aligned */
for (i = 0; i < (size/4); i++)
{
((unsigned int*)buf)[i] = NFC_WDATA;
}
}
nand_end_read();
}
static void nand_get_chip_info(void)
{
unsigned char manuf_id;
unsigned char id_buf[8];
/* Read chip id from bank 0 */
nand_read_id(0, id_buf);
manuf_id = id_buf[0];
/* Identify the chip geometry */
nand_data = nand_identify(id_buf);
if (nand_data == NULL)
{
panicf("Unknown NAND: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x",
id_buf[0],id_buf[1],id_buf[2],id_buf[3],id_buf[4]);
}
pages_per_bank = nand_data->blocks_per_bank * nand_data->pages_per_block;
segments_per_bank = nand_data->blocks_per_bank / nand_data->planes;
bytes_per_segment = nand_data->page_size * nand_data->pages_per_block
* nand_data->planes;
sectors_per_page = nand_data->page_size / SECTOR_SIZE;
sectors_per_segment = bytes_per_segment / SECTOR_SIZE;
pages_per_segment = sectors_per_segment / sectors_per_page;
/* Establish how many banks are present */
nand_read_id(1, id_buf);
if (id_buf[0] == manuf_id)
{
/* Bank 1 is populated, now check if banks 2/3 are valid */
nand_read_id(2, id_buf);
if (id_buf[0] == manuf_id)
{
/* Bank 2 returned matching id - check if 2/3 are shadowing 0/1 */
unsigned int uid_buf0[8];
unsigned int uid_buf2[8];
nand_read_uid(0, uid_buf0);
nand_read_uid(2, uid_buf2);
if (memcmp(uid_buf0, uid_buf2, 32) == 0)
{
/* UIDs match, assume banks 2/3 are shadowing 0/1 */
total_banks = 2;
}
else
{
/* UIDs differ, assume banks 2/3 are valid */
total_banks = 4;
}
}
else
{
/* Bank 2 returned differing id - assume 2/3 are junk */
total_banks = 2;
}
}
else
{
/* Bank 1 returned differing id - assume it is junk */
total_banks = 1;
}
/*
Sanity checks:
1. "BMP" tag at block 0, page 0, offset <page_size> [always present]
2. On most D2s, <page_size>+3 is 'M' and <page_size>+4 is no. of banks.
This is not present on some older players (formatted with early FW?)
*/
nand_read_raw(0, 0, /* bank, page */
nand_data->page_size, /* offset */
8, id_buf); /* length, dest */
if (strncmp(id_buf, "BMP", 3)) panicf("BMP tag not present");
if (id_buf[3] == 'M')
{
if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch");
}
}
static bool nand_read_sector_of_phys_page(int bank, int page,
int sector, void* buf)
{
bool ret = true;
int i;
int page_offset = sector * (SECTOR_SIZE + 16);
#ifdef USE_ECC_CORRECTION
unsigned long spare_buf[4];
/* Set up the ECC controller to monitor reads from NFC_WDATA */
BCLKCTR |= DEV_ECC;
ECC_BASE = (unsigned long)&NFC_WDATA;
ECC_CTRL |= ECC_M4EN;
ECC_CTRL &= ~ECC_ENC;
ECC_CTRL |= ECC_READY;
ECC_CLR = 0;
#endif
/* Read the sector data */
nand_setup_read(bank, page, page_offset);
/* Read data into page buffer */
if ((unsigned int)buf & 3)
{
/* If unaligned, read into a temporary buffer and copy to destination.
This way, reads are always done through NFC_WDATA - otherwise they
would not be 'seen' by the ECC controller. */
static char temp_buf[SECTOR_SIZE];
unsigned int* ptr = (unsigned int*) temp_buf;
for (i = 0; i < (SECTOR_SIZE/4); i++)
{
*ptr++ = NFC_WDATA;
}
memcpy(buf, temp_buf, SECTOR_SIZE);
}
else
{
/* Use straight word copy as buffer and size are both word-aligned */
unsigned int* ptr = (unsigned int*) buf;
for (i = 0; i < (SECTOR_SIZE/4); i++)
{
*ptr++ = NFC_WDATA;
}
}
#ifdef USE_ECC_CORRECTION
/* Stop monitoring before we read the OOB data */
ECC_CTRL &= ~ECC_M4EN;
BCLKCTR &= ~DEV_ECC;
/* Read a further 4 words (sector OOB data) */
spare_buf[0] = NFC_WDATA;
spare_buf[1] = NFC_WDATA;
spare_buf[2] = NFC_WDATA;
spare_buf[3] = NFC_WDATA;
/* Calculate MLC4 ECC using bytes 0,1,8-15 */
BCLKCTR |= DEV_ECC;
ECC_CTRL |= ECC_M4EN;
MLC_ECC0W = *(unsigned short*)spare_buf;
MLC_ECC1W = spare_buf[2];
MLC_ECC2W = spare_buf[3];
while (!(ECC_CTRL & ECC_READY)) {};
int errors = ECC_ERR_NUM & 7;
switch (errors)
{
case 4: /* nothing to correct */
break;
case 7: /* fail, can't correct */
ret = false;
break;
default: /* between 1 and 4 errors */
{
int i;
unsigned char* char_buf = (unsigned char*)buf;
for (i = 0; i < errors + 1; i++)
{
int offset = 0x207 - ECC_ERRADDR(i);
char_buf[offset] ^= ECC_ERRDATA(i);
}
}
}
/* Disable ECC block */
ECC_CTRL &= ~ECC_M4EN;
BCLKCTR &= ~DEV_ECC;
#endif
nand_end_read();
return ret;
}
static bool nand_read_sector_of_phys_segment(int bank, int phys_segment,
int page_in_seg, int sector,
void* buf)
{
int page_addr = phys_segment_to_page_addr(phys_segment,
page_in_seg);
return nand_read_sector_of_phys_page(bank, page_addr, sector, buf);
}
static bool nand_read_sector_of_logical_segment(int log_segment, int sector,
void* buf)
{
int page_in_segment = sector / sectors_per_page;
int sector_in_page = sector % sectors_per_page;
#ifndef BOOTLOADER
struct lpt_entry* lpt_lookup = core_get_data(lpt_handle);
#endif
int bank = lpt_lookup[log_segment].bank;
int phys_segment = lpt_lookup[log_segment].phys_segment;
/* Check if any of the write caches refer to this segment/page.
If present we need to read the cached page instead. */
int cache_num = 0;
bool found = false;
while (!found && cache_num < write_caches_in_use)
{
if (write_caches[cache_num].log_segment == log_segment)
{
if (write_caches[cache_num].page_map[page_in_segment] != -1)
{
/* data is located in random pages cache */
found = true;
bank = write_caches[cache_num].random_bank;
phys_segment = write_caches[cache_num].random_phys_segment;
page_in_segment =
write_caches[cache_num].page_map[page_in_segment];
}
else if (write_caches[cache_num].inplace_pages_used != -1 &&
write_caches[cache_num].inplace_pages_used > page_in_segment)
{
/* data is located in in-place pages cache */
found = true;
bank = write_caches[cache_num].inplace_bank;
phys_segment = write_caches[cache_num].inplace_phys_segment;
}
}
cache_num++;
}
return nand_read_sector_of_phys_segment(bank, phys_segment,
page_in_segment,
sector_in_page, buf);
}
/* Miscellaneous helper functions */
static inline unsigned char get_sector_type(char* spare_buf)
{
return spare_buf[OFF_SECTOR_TYPE];
}
static inline unsigned short get_log_segment_id(int phys_seg, char* spare_buf)
{
(void)phys_seg;
return ((spare_buf[OFF_LOG_SEG_HIBYTE] << 8) |
spare_buf[OFF_LOG_SEG_LOBYTE])
#if defined(FTL_V1)
+ 984 * (phys_seg / 1024)
#endif
;
}
static inline unsigned short get_cached_page_id(char* spare_buf)
{
return (spare_buf[OFF_CACHE_PAGE_HIBYTE] << 8) |
spare_buf[OFF_CACHE_PAGE_LOBYTE];
}
static int find_write_cache(int log_segment)
{
int i;
for (i = 0; i < write_caches_in_use; i++)
if (write_caches[i].log_segment == log_segment)
return i;
return -1;
}
static void read_random_writes_cache(int bank, int phys_segment)
{
int page = 0;
short log_segment;
unsigned char spare_buf[16];
nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
SECTOR_SIZE, /* offset to first sector's spare */
16, spare_buf);
log_segment = get_log_segment_id(phys_segment, spare_buf);
if (log_segment == -1)
return;
/* Find which cache this is related to */
int cache_no = find_write_cache(log_segment);
if (cache_no == -1)
{
if (write_caches_in_use < MAX_WRITE_CACHES)
{
cache_no = write_caches_in_use;
write_caches_in_use++;
}
else
{
panicf("Max NAND write caches reached");
}
}
write_caches[cache_no].log_segment = log_segment;
write_caches[cache_no].random_bank = bank;
write_caches[cache_no].random_phys_segment = phys_segment;
#ifndef FTL_V1
/* Loop over each page in the phys segment (from page 1 onwards).
Read spare for 1st sector, store location of page in array. */
for (page = 1;
page < (nand_data->pages_per_block * nand_data->planes);
page++)
{
unsigned short cached_page;
nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
SECTOR_SIZE, /* offset to first sector's spare */
16, spare_buf);
cached_page = get_cached_page_id(spare_buf);
if (cached_page != 0xFFFF)
write_caches[cache_no].page_map[cached_page] = page;
}
#endif /* !FTL_V1 */
}
static void read_inplace_writes_cache(int bank, int phys_segment)
{
int page = 0;
short log_segment;
unsigned char spare_buf[16];
nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
SECTOR_SIZE, /* offset to first sector's spare */
16, spare_buf);
log_segment = get_log_segment_id(phys_segment, spare_buf);
if (log_segment == -1)
return;
/* Find which cache this is related to */
int cache_no = find_write_cache(log_segment);
if (cache_no == -1)
{
if (write_caches_in_use < MAX_WRITE_CACHES)
{
cache_no = write_caches_in_use;
write_caches_in_use++;
}
else
{
panicf("Max NAND write caches reached");
}
}
write_caches[cache_no].log_segment = log_segment;
/* Find how many pages have been written to the new segment */
while (log_segment != -1 &&
page < (nand_data->pages_per_block * nand_data->planes) - 1)
{
page++;
nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
SECTOR_SIZE, 16, spare_buf);
log_segment = get_log_segment_id(phys_segment, spare_buf);
}
if (page != 0)
{
write_caches[cache_no].inplace_bank = bank;
write_caches[cache_no].inplace_phys_segment = phys_segment;
write_caches[cache_no].inplace_pages_used = page;
}
}
int nand_read_sectors(IF_MD(int drive,) unsigned long start, int incount,
void* inbuf)
{
#ifdef HAVE_MULTIDRIVE
(void)drive; /* unused for now */
#endif
int ret = 0;
mutex_lock(&ata_mtx);
led(true);
while (incount > 0)
{
int done = 0;
int segment = start / sectors_per_segment;
int secmod = start % sectors_per_segment;
while (incount > 0 && secmod < sectors_per_segment)
{
if (!nand_read_sector_of_logical_segment(segment, secmod, inbuf))
{
ret = -1;
goto nand_read_error;
}
if (TIME_AFTER(USEC_TIMER, next_yield))
{
next_yield = USEC_TIMER + MIN_YIELD_PERIOD;
yield();
}
inbuf += SECTOR_SIZE;
incount--;
secmod++;
done++;
}
if (done < 0)
{
ret = -1;
goto nand_read_error;
}
start += done;
}
nand_read_error:
mutex_unlock(&ata_mtx);
led(false);
return ret;
}
int nand_write_sectors(IF_MD(int drive,) unsigned long start, int count,
const void* outbuf)
{
#ifdef HAVE_MULTIDRIVE
(void)drive; /* unused for now */
#endif
/* TODO: Learn more about TNFTL and implement this one day... */
(void)start;
(void)count;
(void)outbuf;
return -1;
}
#ifdef HAVE_STORAGE_FLUSH
int nand_flush(void)
{
return 0;
}
#endif
#ifdef STORAGE_GET_INFO
void nand_get_info(IF_MD(int drive,) struct storage_info *info)
{
#ifdef HAVE_MULTIDRIVE
(void)drive; /* unused for now */
#endif
/* firmware version */
info->revision="0.00";
info->vendor="Rockbox";
info->product="Internal Storage";
/* blocks count */
info->num_sectors = sectors_per_segment * segments_per_bank * total_banks;
info->sector_size = SECTOR_SIZE;
}
#endif
int nand_init(void)
{
int bank, phys_segment, lptbuf_size;
unsigned char spare_buf[16];
if (initialized) return 0;
mutex_init(&ata_mtx);
/* Set GPIO direction for chip select & write protect */
NAND_GPIO_OUT_EN(CS_GPIO_BIT | WE_GPIO_BIT);
/* Get chip characteristics and number of banks */
nand_get_chip_info();
#ifndef BOOTLOADER
/* Use chip info to allocate the correct size LPT buffer */
lptbuf_size = sizeof(struct lpt_entry) * segments_per_bank * total_banks;
lpt_handle = core_alloc("lpt lookup", lptbuf_size);
struct lpt_entry* lpt_lookup = core_get_data(lpt_handle);
#else
/* Use a static array in the bootloader */
lptbuf_size = sizeof(lpt_lookup);
#endif
memset(lpt_lookup, 0xff, lptbuf_size);
memset(write_caches, 0xff, sizeof(write_caches));
write_caches_in_use = 0;
/* Scan banks to build up block translation table */
for (bank = 0; bank < total_banks; bank++)
{
for (phys_segment = 0; phys_segment < segments_per_bank; phys_segment++)
{
/* Read spare bytes from first sector of each segment */
nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, 0),
SECTOR_SIZE, /* offset */
16, spare_buf);
int type = get_sector_type(spare_buf);
#ifdef FTL_V2
if (type == SECTYPE_MAIN_INPLACE_CACHE)
{
/* Since this type of segment is written to sequentially, its
job is complete if the final page has been written. In this
case we need to treat it as a normal data segment. */
nand_read_raw(bank, phys_segment_to_page_addr
(phys_segment, pages_per_segment - 1),
SECTOR_SIZE, 16, spare_buf);
if (get_sector_type(spare_buf) != 0xff)
{
type = SECTYPE_MAIN_DATA;
}
}
#endif
switch (type)
{
case SECTYPE_MAIN_DATA:
{
/* Main data area segment */
unsigned short log_segment =
get_log_segment_id(phys_segment, spare_buf);
if (log_segment < segments_per_bank * total_banks)
{
#ifndef BOOTLOADER
lpt_lookup = core_get_data(lpt_handle);
#endif
if (lpt_lookup[log_segment].bank == -1 ||
lpt_lookup[log_segment].phys_segment == -1)
{
lpt_lookup[log_segment].bank = bank;
lpt_lookup[log_segment].phys_segment = phys_segment;
}
else
{
//panicf("duplicate data segment 0x%x!", log_segment);
}
}
break;
}
case SECTYPE_MAIN_RANDOM_CACHE:
{
/* Newly-written random page data (Main data area) */
read_random_writes_cache(bank, phys_segment);
break;
}
case SECTYPE_MAIN_INPLACE_CACHE:
{
/* Newly-written sequential page data (Main data area) */
read_inplace_writes_cache(bank, phys_segment);
break;
}
}
}
}
initialized = true;
return 0;
}
long nand_last_disk_activity(void)
{
return last_disk_activity;
}
void nand_sleep(void)
{
}
void nand_spin(void)
{
}
void nand_spindown(int seconds)
{
(void)seconds;
}
#ifdef CONFIG_STORAGE_MULTI
int nand_num_drives(int first_drive)
{
/* We don't care which logical drive number we have been assigned */
(void)first_drive;
return 1;
}
void nand_sleepnow(void)
{
}
bool nand_disk_is_active(void)
{
return false;
}
int nand_soft_reset(void)
{
return 0;
}
int nand_spinup_time(void)
{
return 0;
}
void nand_enable(bool onoff)
{
(void)onoff;
}
#endif /* CONFIG_STORAGE_MULTI */
int nand_event(long id, intptr_t data)
{
return storage_event_default_handler(id, data, last_disk_activity,
STORAGE_NAND);
}