rockbox/firmware/export/pl080.h
Cástor Muñoz d6ee2c9eaf iPod Classic: introduce PL080 DMA controller driver
Motivation:

 This driver began as a set of functions to help to test and
 experiment with different DMA configurations. It is cumbersome,
 time consuming, and leads to mistakes to handle LLIs and DMA
 registers dispersed along the code.

 Later, i decided to adapt an old DMA queue driver written in the
 past for a similar (scatter-gather) controller, all task/queue
 code is based on the old driver.

 Finally, some cleaning and dmac_ch_get_info() function was added
 to complete RB needs.

Description:

 - Generic, can be used by other targets including the same
   controller. Not difficult to adapt for other similar
   controllers if necesary.

 - Easy to experiment and compare results using different
   setups and/or queue algorithms:

   Multi-controller and fully configurable from an unique place.

   All task and LLI management is done by the driver, user only
   has to (statically) allocate them.

 - Two queue modes:

   QUEUE_NORMAL: each task in the queue is launched using a new
   DMA transfer once previous task is finished.

   QUEUE_LINK: when a task is queued, it is linked with the last
   queued task, creating a single continuous DMA transfer. New
   tasks must be queued while the channel is running, otherwise
   the continuous DMA transfer will be broken.

   On Classic, QUEUE_LINK mode is needed for I2S continuous
   transfers, QUEUE_NORMAL is used for LCD and could be useful
   in the future for I2C or UART (non-blocking serial debug) if
   necessary.

 - Robust DMA transfer progress info (peak meter), needs final
   testing, see below.

Technical details about DMA progress:

 There are comments in the code related to the method actually
 used (sequence method), it reads progress without halting the
 DMA transfer. Althought the datasheet does not recommend to do
 that, the sequence method seems to be robust, I ran tests calling
 dmac_ch_get_info() millions of times and the results were always
 as expected (tests done at 2:1 CPU/AHB clock ratio, no other
 ratios were tried but probably sequence method will work for any
 typical ratio).

 This controller allows to halt the transfer and drain the DMAC
 FIFO, DMA requests are ignored when the DMA channel is halted.
 This method is not suitable for playback because FIFO is never
 drained to I2S peripheral (who raises the DMA requests). This
 method probably works for capture, the FIFO is drained to memory
 before halting.

 Another way is to disable (stop) the playback channel. When the
 channel is disabled, all FIFO data is lost. It is unknown how much
 the FIFO was filled when it was cleared, SRCADDR counter includes
 the lost data, therefore the only useful information is LINK and
 COUNT, that is the same information disponible when using the
 sequence method. At this point we must procced in the same way as
 in sequence method, in addition the playback channel should be
 relaunched (configure + start) after calculating real SRCADDR.

 The stop+relaunch method should work, it is a bit complicated,
 and not valid for all peripheral FIFO configurations (depending
 on stream rate). Moreover, due to the way the COUNT register is
 implemented in HW, I suspect that this method will fail when
 source and destination bus widths doesn't match. And more
 important, it is not easy to garantize that no sample is lost
 here or there, using the sequence method we can always be sure
 that playback is ok.

Change-Id: Ib12a1e2992e2b6da4fc68431128c793a21b4b540
2015-10-07 06:15:03 +02:00

269 lines
9.7 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2014 Cástor Muñoz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef _PL080_H
#define _PL080_H
/*
* ARM PrimeCell PL080 Multiple Master DMA controller
*/
#include <stddef.h>
#include <stdbool.h>
/* general defines */
#define DMAC_CH_COUNT 8
#define DMAC_LLI_MAX_COUNT 0xfff
#define DMAC_CH_PRIO(x) (x)
#define DMAC_CH_BASE(dmac_ba,ch_n) ((dmac_ba) + 0x100 + ((ch_n) << 5))
/* PL080 controller registers */
#define DMACINTSTS(base) (*((uint32_t volatile*)((base) + 0x00)))
#define DMACINTTCSTS(base) (*((uint32_t volatile*)((base) + 0x04)))
#define DMACINTTCCLR(base) (*((uint32_t volatile*)((base) + 0x08)))
#define DMACINTERRSTS(base) (*((uint32_t volatile*)((base) + 0x0c)))
#define DMACINTERRCLR(base) (*((uint32_t volatile*)((base) + 0x10)))
#define DMACRAWINTTCSTS(base) (*((uint32_t volatile*)((base) + 0x14)))
#define DMACRAWINTERRSTS(base) (*((uint32_t volatile*)((base) + 0x18)))
#define DMACENABLEDCHANS(base) (*((uint32_t volatile*)((base) + 0x1c)))
#define DMACSOFTBREQ(base) (*((uint32_t volatile*)((base) + 0x20)))
#define DMACSOFTSREQ(base) (*((uint32_t volatile*)((base) + 0x24)))
#define DMACSOFTLBREQ(base) (*((uint32_t volatile*)((base) + 0x28)))
#define DMACSOFTLSREQ(base) (*((uint32_t volatile*)((base) + 0x2c)))
#define DMACCONFIG(base) (*((uint32_t volatile*)((base) + 0x30)))
#define DMACSYNC(base) (*((uint32_t volatile*)((base) + 0x34)))
/* PL080 controller channel registers */
#define DMACCxSRCADDR(base) (*((void* volatile*)((base) + 0x00)))
#define DMACCxDESTADDR(base) (*((void* volatile*)((base) + 0x04)))
#define DMACCxLINK(base) (*((uint32_t volatile*)((base) + 0x08)))
#define DMACCxCONTROL(base) (*((uint32_t volatile*)((base) + 0x0c)))
#define DMACCxCONFIG(base) (*((uint32_t volatile*)((base) + 0x10)))
/* PL080 controller channel LLI */
#define DMACCxLLI(base) ((struct dmac_lli volatile*)(base))
/* PL080 DMA controller configuration register */
#define DMACCONFIG_E_POS 0 /* DMAC enable */
#define DMACCONFIG_E_MSK 0x1
#define DMACCONFIG_M1_POS 1 /* AHB Master 1 endianness */
#define DMACCONFIG_M1_MSK 0x1
#define DMACCONFIG_M2_POS 2 /* AHB Master 2 endianness */
#define DMACCONFIG_M2_MSK 0x1
#define DMACCONFIG_E_BIT (1 << DMACCONFIG_E_POS)
#define DMACCONFIG_M1_BIT (1 << DMACCCONFI_M1_POS)
#define DMACCONFIG_M2_BIT (1 << DMACCCONFI_M2_POS)
#define DMACCONFIG_M_LITTLE_ENDIAN 0
#define DMACCONFIG_M_BIG_ENDIAN 1
/* PL080 DMA controller channel LLI register */
#define DMACCxLINK_LM_POS 0
#define DMACCxLINK_LM_MSK 0x1
#define DMACCxLINK_NEXTLLI_POS 2
#define DMACCxLINK_NEXTLLI_MSK 0x3fffffff
/* PL080 channel control register */
#define DMACCxCONTROL_I_POS 31 /* terminal count interrupt */
#define DMACCxCONTROL_I_MSK 0x1
#define DMACCxCONTROL_PROT_POS 28 /* protection bits */
#define DMACCxCONTROL_PROT_MSK 0x7
#define DMACCxCONTROL_DI_POS 27 /* destination addr increment */
#define DMACCxCONTROL_DI_MSK 0x1
#define DMACCxCONTROL_SI_POS 26 /* source addr increment */
#define DMACCxCONTROL_SI_MSK 0x1
#define DMACCxCONTROL_D_POS 25 /* destinantion AHB master */
#define DMACCxCONTROL_D_MSK 0x1
#define DMACCxCONTROL_S_POS 24 /* source AHB master */
#define DMACCxCONTROL_S_MSK 0x1
#define DMACCxCONTROL_DWIDTH_POS 21 /* destinantion transfer width */
#define DMACCxCONTROL_DWIDTH_MSK 0x7
#define DMACCxCONTROL_SWIDTH_POS 18 /* source transfer width */
#define DMACCxCONTROL_SWIDTH_MSK 0x7
#define DMACCxCONTROL_DBSIZE_POS 15 /* destinantion burst size */
#define DMACCxCONTROL_DBSIZE_MSK 0x7
#define DMACCxCONTROL_SBSIZE_POS 12 /* source burst size */
#define DMACCxCONTROL_SBSIZE_MSK 0x7
#define DMACCxCONTROL_COUNT_POS 0 /* n SWIDTH size transfers */
#define DMACCxCONTROL_COUNT_MSK 0xfff
#define DMACCxCONTROL_WIDTH_8 0
#define DMACCxCONTROL_WIDTH_16 1
#define DMACCxCONTROL_WIDTH_32 2
#define DMACCxCONTROL_BSIZE_1 0
#define DMACCxCONTROL_BSIZE_4 1
#define DMACCxCONTROL_BSIZE_8 2
#define DMACCxCONTROL_BSIZE_16 3
#define DMACCxCONTROL_BSIZE_32 4
#define DMACCxCONTROL_BSIZE_64 5
#define DMACCxCONTROL_BSIZE_128 6
#define DMACCxCONTROL_BSIZE_256 7
#define DMACCxCONTROL_INC_DISABLE 0
#define DMACCxCONTROL_INC_ENABLE 1
#define DMACCxCONTROL_I_BIT (1 << DMACCxCONTROL_I_POS)
/* protection bits */
#define DMAC_PROT_PRIV (1 << 0)
#define DMAC_PROT_BUFF (1 << 1)
#define DMAC_PROT_CACH (1 << 2)
/* bus */
#define DMAC_MASTER_AHB1 0
#define DMAC_MASTER_AHB2 1
/* PL080 channel configuration register */
#define DMACCxCONFIG_E_POS 0 /* enable */
#define DMACCxCONFIG_E_MSK 0x1
#define DMACCxCONFIG_SRCPERI_POS 1 /* source peripheral */
#define DMACCxCONFIG_SRCPERI_MSK 0xf
#define DMACCxCONFIG_DESTPERI_POS 6 /* destination peripheral */
#define DMACCxCONFIG_DESTPERI_MSK 0xf
#define DMACCxCONFIG_FLOWCNTRL_POS 11 /* DMA transfer type */
#define DMACCxCONFIG_FLOWCNTRL_MSK 0x7
#define DMACCxCONFIG_IE_POS 14 /* interrupt error mask */
#define DMACCxCONFIG_IE_MSK 0x1
#define DMACCxCONFIG_ITC_POS 15 /* interrupt terminal count mask */
#define DMACCxCONFIG_ITC_MSK 0x1
#define DMACCxCONFIG_L_POS 16 /* lock */
#define DMACCxCONFIG_L_MSK 0x1
#define DMACCxCONFIG_A_POS 17 /* active */
#define DMACCxCONFIG_A_MSK 0x1
#define DMACCxCONFIG_H_POS 18 /* halt */
#define DMACCxCONFIG_H_MSK 0x1
#define DMACCxCONFIG_E_BIT (1 << DMACCxCONFIG_E_POS)
#define DMACCxCONFIG_IE_BIT (1 << DMACCxCONFIG_IE_POS)
#define DMACCxCONFIG_ITC_BIT (1 << DMACCxCONFIG_ITC_POS)
#define DMACCxCONFIG_L_BIT (1 << DMACCxCONFIG_L_POS)
#define DMACCxCONFIG_A_BIT (1 << DMACCxCONFIG_A_POS)
#define DMACCxCONFIG_H_BIT (1 << DMACCxCONFIG_H_POS)
#define DMACCxCONFIG_FLOWCNTRL_MEMMEM_DMA 0
#define DMACCxCONFIG_FLOWCNTRL_MEMPERI_DMA 1
#define DMACCxCONFIG_FLOWCNTRL_PERIMEM_DMA 2
#define DMACCxCONFIG_FLOWCNTRL_PERIPERI_DMA 3
#define DMACCxCONFIG_FLOWCNTRL_PERIPERI_DSTPERI 4
#define DMACCxCONFIG_FLOWCNTRL_MEMPERI_PERI 5
#define DMACCxCONFIG_FLOWCNTRL_PERIMEM_PERI 6
#define DMACCxCONFIG_FLOWCNTRL_PERIPERI_SRCPERI 7
/*
* types
*/
struct dmac_lli {
void* srcaddr;
void* dstaddr;
uint32_t link;
uint32_t control;
} __attribute__((aligned(16)));
struct dmac_tsk {
struct dmac_lli volatile *start_lli;
struct dmac_lli volatile *end_lli;
uint32_t size;
void *cb_data;
};
/* used when src/dst peri is memory */
#define DMAC_PERI_NONE 0x80
struct dmac_ch_cfg {
uint8_t srcperi;
uint8_t dstperi;
uint8_t sbsize;
uint8_t dbsize;
uint8_t swidth;
uint8_t dwidth;
uint8_t sbus;
uint8_t dbus;
uint8_t sinc;
uint8_t dinc;
uint8_t prot;
uint16_t lli_xfer_max_count;
};
struct dmac_ch {
/** user configurable data **/
struct dmac *dmac;
unsigned int prio;
void (*cb_fn)(void *cb_data);
/* tsk circular buffer */
struct dmac_tsk *tskbuf;
uint32_t tskbuf_mask;
uint32_t queue_mode;
/* lli circular buffer */
struct dmac_lli volatile *llibuf;
uint32_t llibuf_mask;
uint32_t llibuf_bus;
/** private driver data **/
uint32_t baddr;
struct dmac_lli volatile *llibuf_top;
uint32_t tasks_queued; /* roll-over counter */
uint32_t tasks_done; /* roll-over counter */
uint32_t control;
struct dmac_ch_cfg *cfg;
};
struct dmac {
/* user configurable data */
const uint32_t baddr;
const uint8_t m1;
const uint8_t m2;
/* driver private data */
struct dmac_ch *ch_l[DMAC_CH_COUNT];
uint32_t ch_run_status; /* channel running status mask */
};
/* dmac_ch->queue_mode */
enum {
QUEUE_NORMAL,
QUEUE_LINK,
};
/*
* prototypes
*/
void dmac_callback(struct dmac *dmac);
void dmac_open(struct dmac *dmac);
void dmac_ch_init(struct dmac_ch *ch, struct dmac_ch_cfg *cfg);
void dmac_ch_lock_int(struct dmac_ch *ch);
void dmac_ch_unlock_int(struct dmac_ch *ch);
void dmac_ch_queue_2d(struct dmac_ch *ch, void *srcaddr, void *dstaddr,
size_t size, size_t width, size_t stride, void *cb_data);
#define dmac_ch_queue(ch, srcaddr, dstaddr, size, cb_data) \
dmac_ch_queue_2d(ch, srcaddr, dstaddr, size, 0, 0, cb_data)
void dmac_ch_stop(struct dmac_ch* ch);
bool dmac_ch_running(struct dmac_ch *ch);
void *dmac_ch_get_info(struct dmac_ch *ch,
size_t *bytes, size_t *t_bytes);
#endif /* _PL080_H */