rockbox/firmware/target/arm/ipod/lcd-gray.c
Jonathan Gordon b37e6bc8c1 lcd drivers: Convert lcd_[remote_]framebuffer to a pointer
Change all lcd drivers to using a pointer to the static framebuffer
instead of directly accessing the static array. This will let us
later do fun things like dynamic framebuffer sizes (RaaA) or
ability to use different buffers for different layers (dynamic
skin backdrops!)

Change-Id: I0a4d58a9d7b55e6c932131b929e5d4c9f9414b06
2012-02-28 11:44:59 +11:00

363 lines
10 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Rockbox driver for iPod LCDs
*
* Based on code from the ipodlinux project - http://ipodlinux.org/
* Adapted for Rockbox in November 2005
*
* Original file: linux/arch/armnommu/mach-ipod/fb.c
*
* Copyright (c) 2003-2005 Bernard Leach (leachbj@bouncycastle.org)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "system.h"
#include "hwcompat.h"
/* LCD command codes for HD66753 */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_POWER_CONTROL 0x03
#define R_CONTRAST_CONTROL 0x04
#define R_ENTRY_MODE 0x05
#define R_ROTATION 0x06
#define R_DISPLAY_CONTROL 0x07
#define R_CURSOR_CONTROL 0x08
#define R_HORIZONTAL_CURSOR_POS 0x0b
#define R_VERTICAL_CURSOR_POS 0x0c
#define R_1ST_SCR_DRV_POS 0x0d
#define R_2ND_SCR_DRV_POS 0x0e
#define R_RAM_WRITE_MASK 0x10
#define R_RAM_ADDR_SET 0x11
#define R_RAM_DATA 0x12
#ifdef HAVE_BACKLIGHT_INVERSION
/* The backlight makes the LCD appear negative on the 1st/2nd gen */
static bool lcd_inverted = false;
static bool lcd_backlit = false;
#if NUM_CORES > 1
/* invert_display() and the lcd_blit_* functions need to be corelocked */
static struct corelock cl IBSS_ATTR;
#endif
static void invert_display(void);
#endif
#if defined(IPOD_1G2G) || defined(IPOD_3G)
#define POWER_REG_H 0x1120 /* 1/7 Bias, 5x step-up @ clk/8 */
#else
#define POWER_REG_H 0x1200 /* 1/7 Bias, 6x step-up @ clk/32 */
#endif
#define CONTRAST_REG_H 0x400
#if defined(IPOD_1G2G)
#define DEFAULT_CONTRAST 45
#elif defined(IPOD_3G)
#define DEFAULT_CONTRAST 50
#elif defined(IPOD_MINI) || defined(IPOD_MINI2G)
#define DEFAULT_CONTRAST 42
#elif defined(IPOD_4G)
#define DEFAULT_CONTRAST 35
#endif
/* needed for flip */
static int addr_offset;
#if defined(IPOD_MINI) || defined(IPOD_MINI2G)
static int pix_offset;
void lcd_write_data_shifted(const fb_data* p_bytes, int count);
#endif
/* wait for LCD with timeout */
static inline void lcd_wait_write(void)
{
while (LCD1_CONTROL & LCD1_BUSY_MASK);
}
/* send LCD command */
static void lcd_prepare_cmd(unsigned cmd)
{
lcd_wait_write();
#ifdef IPOD_MINI2G
LCD1_CMD = cmd | 0x740000;
#else
LCD1_CMD = 0;
lcd_wait_write();
LCD1_CMD = cmd;
#endif
}
/* send LCD command and data */
static void lcd_cmd_and_data(unsigned cmd, unsigned data)
{
lcd_wait_write();
#ifdef IPOD_MINI2G
LCD1_CMD = cmd | 0x740000;
lcd_wait_write();
LCD1_CMD = data | 0x760000;
#else
LCD1_CMD = 0;
lcd_wait_write();
LCD1_CMD = cmd;
lcd_wait_write();
LCD1_DATA = data >> 8;
lcd_wait_write();
LCD1_DATA = data & 0xff;
#endif
}
/* LCD init */
void lcd_init_device(void)
{
#if (NUM_CORES > 1) && defined(HAVE_BACKLIGHT_INVERSION)
corelock_init(&cl);
#endif
#ifdef IPOD_MINI2G /* serial LCD hookup */
lcd_wait_write();
LCD1_CONTROL = 0x01730084; /* fastest setting */
#elif defined(IPOD_1G2G) || defined(IPOD_3G)
LCD1_CONTROL = (LCD1_CONTROL & 0x0002) | 0x0084;
/* fastest setting, keep backlight bit */
#else
LCD1_CONTROL = 0x0084; /* fastest setting */
#endif
lcd_cmd_and_data(R_DRV_WAVEFORM_CONTROL, 0x48);
/* C waveform, no EOR, 9 lines inversion */
lcd_cmd_and_data(R_POWER_CONTROL, POWER_REG_H | 0xc);
lcd_cmd_and_data(R_DISPLAY_CONTROL, 0x0019);
lcd_set_contrast(DEFAULT_CONTRAST);
#ifdef HAVE_BACKLIGHT_INVERSION
invert_display();
#endif
lcd_set_flip(false);
lcd_cmd_and_data(R_ENTRY_MODE, 0x0000);
}
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST;
}
/* Rockbox stores the contrast as 0..63 - we add 64 to it */
void lcd_set_contrast(int val)
{
if (val < 0) val = 0;
else if (val > 63) val = 63;
lcd_cmd_and_data(R_CONTRAST_CONTROL, CONTRAST_REG_H | (val + 64));
}
#ifdef HAVE_BACKLIGHT_INVERSION
static void invert_display(void)
{
static bool last_invert = false;
bool new_invert = lcd_inverted ^ lcd_backlit;
if (new_invert != last_invert)
{
int oldlevel = disable_irq_save();
#if NUM_CORES > 1
corelock_lock(&cl);
lcd_cmd_and_data(R_DISPLAY_CONTROL, new_invert? 0x0027 : 0x0019);
corelock_unlock(&cl);
#else
lcd_cmd_and_data(R_DISPLAY_CONTROL, new_invert? 0x0027 : 0x0019);
#endif
restore_irq(oldlevel);
last_invert = new_invert;
}
}
void lcd_set_invert_display(bool yesno)
{
lcd_inverted = yesno;
invert_display();
}
void lcd_set_backlight_inversion(bool yesno)
{
lcd_backlit = yesno;
invert_display();
}
#else
void lcd_set_invert_display(bool yesno)
{
lcd_cmd_and_data(R_DISPLAY_CONTROL, yesno ? 0x0027 : 0x0019);
}
#endif
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
#if defined(IPOD_MINI) || defined(IPOD_MINI2G)
if (yesno)
{ /* 168x112, inverse COM order */
lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x020d);
lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x8316); /* 22..131 */
addr_offset = (22 << 5) | (20 - 4);
pix_offset = -2;
}
else
{ /* 168x112, inverse SEG order */
lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x010d);
lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x6d00); /* 0..109 */
addr_offset = 20;
pix_offset = 0;
}
#else
if (yesno)
{ /* 168x128, inverse SEG & COM order */
lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x030f);
lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x8304); /* 4..131 */
addr_offset = (4 << 5) | (20 - 1);
}
else
{ /* 168x128 */
lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x000f);
lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x7f00); /* 0..127 */
addr_offset = 20;
}
#endif
}
#ifdef HAVE_LCD_ENABLE
void lcd_enable(bool on)
{
if (on)
{
lcd_cmd_and_data(R_START_OSC, 1); /* start oscillation */
sleep(HZ/10); /* wait 10ms */
lcd_cmd_and_data(R_POWER_CONTROL, POWER_REG_H); /*clear standby mode */
lcd_cmd_and_data(R_POWER_CONTROL, POWER_REG_H | 0xc);
/* enable opamp & booster */
}
else
{
lcd_cmd_and_data(R_POWER_CONTROL, POWER_REG_H);
/* switch off opamp & booster */
lcd_cmd_and_data(R_POWER_CONTROL, POWER_REG_H | 0x1);
/* enter standby mode */
}
}
#endif /* HAVE_LCD_ENABLE */
/*** update functions ***/
/* Helper function. */
void lcd_mono_data(const unsigned char *data, int count);
/* Performance function that works with an external buffer
note that x, bwidtht and stride are in 8-pixel units! */
void lcd_blit_mono(const unsigned char *data, int bx, int y, int bwidth,
int height, int stride)
{
#if (NUM_CORES > 1) && defined(HAVE_BACKLIGHT_INVERSION)
corelock_lock(&cl);
#endif
while (height--)
{
lcd_cmd_and_data(R_RAM_ADDR_SET, (y++ << 5) + addr_offset - bx);
lcd_prepare_cmd(R_RAM_DATA);
lcd_mono_data(data, bwidth);
data += stride;
}
#if (NUM_CORES > 1) && defined(HAVE_BACKLIGHT_INVERSION)
corelock_unlock(&cl);
#endif
}
/* Helper function for lcd_grey_phase_blit(). */
void lcd_grey_data(unsigned char *values, unsigned char *phases, int count);
/* Performance function that works with an external buffer
note that bx and bwidth are in 8-pixel units! */
void lcd_blit_grey_phase(unsigned char *values, unsigned char *phases,
int bx, int y, int bwidth, int height, int stride)
{
#if (NUM_CORES > 1) && defined(HAVE_BACKLIGHT_INVERSION)
corelock_lock(&cl);
#endif
while (height--)
{
lcd_cmd_and_data(R_RAM_ADDR_SET, (y++ << 5) + addr_offset - bx);
lcd_prepare_cmd(R_RAM_DATA);
lcd_grey_data(values, phases, bwidth);
values += stride;
phases += stride;
}
#if (NUM_CORES > 1) && defined(HAVE_BACKLIGHT_INVERSION)
corelock_unlock(&cl);
#endif
}
void lcd_update_rect(int x, int y, int width, int height)
{
int xmax, ymax;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x;
if (width <= 0)
return;
ymax = y + height - 1;
if (ymax >= LCD_HEIGHT)
ymax = LCD_HEIGHT - 1;
#if defined(IPOD_MINI) || defined(IPOD_MINI2G)
x += pix_offset;
#endif
/* writing is done in 16-bit units (8 pixels) */
xmax = (x + width - 1) >> 3;
x >>= 3;
width = xmax - x + 1;
for (; y <= ymax; y++)
{
lcd_cmd_and_data(R_RAM_ADDR_SET, (y << 5) + addr_offset - x);
lcd_prepare_cmd(R_RAM_DATA);
#if defined(IPOD_MINI) || defined(IPOD_MINI2G)
if (pix_offset == -2)
lcd_write_data_shifted(FBADDR(2*x, y), width);
else
#endif
lcd_write_data(FBADDR(2*x, y), width);
}
}
/* Update the display. */
void lcd_update(void)
{
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}
#ifdef HAVE_LCD_SHUTDOWN
/* LCD powerdown */
void lcd_shutdown(void)
{
lcd_cmd_and_data(R_POWER_CONTROL, POWER_REG_H | 0x00); /* Turn off op amp power */
lcd_cmd_and_data(R_POWER_CONTROL, POWER_REG_H | 0x02); /* Put LCD driver in standby */
}
#endif