rockbox/utils/regtools/include/soc_desc.hpp
Amaury Pouly e62203aac1 regtools: add headergen_v2
This new header generator works differently from the previous one:
- it uses the new format
- the generated macro follow a different style (see below)
- the generated macro are highly documented!
- it supports SCT-style platform or RMW-style ones

Compared to the old style, the new one generate a big set of macros per
register/field/enum (loosely related to iohw.h from Embedded C spec). The user
then calls generic (names are customizable) macros to perform operations:

reg_read(REG_A)
reg_read(REG_B(3))
reg_read_field(REG_A, FIELD_X)
reg_read_field(REG_B(3), COOL_FIELD)
reg_write(REG_A, 0x42)
reg_write_field(REG_A, FIELD_X(1), FIELD_Y(3), IRQ_V(FIQ))
reg_write_fielc(REG_B(3), COOL_FIELD_V(I_AM_COOL), BLA(42))

the following use RMW or SET/CLR variants, depending on target:
reg_set_field(REG_A, FLAG_U, FLAG_V)
reg_clr_field(REG_A, FIELD_X, FIELD_Y, IRQ)
reg_clr_field(REG_B(3), COOL_FIELD, BLA)

the following does clear followed by set, on SET/CLR targets:
reg_cs(REG_A, 0xff, 0x42)
reg_cs(REG_B(3), 0xaa, 0x55)
reg_cs_field(REG_A, FIELD_X(1), FIELD_Y(3), IRQ_V(FIQ))
reg_cs_field(REG_B(3), COOL_FIELD_V(I_AM_COOL))

The generator code is pretty long but has lots of documentation and lots of
macro names can be customized.

Change-Id: I5d6c5ec2406e58b5da11a5240c3a409a5bb5239a
2016-05-25 00:11:07 +01:00

562 lines
20 KiB
C++

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2014 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef __SOC_DESC__
#define __SOC_DESC__
#include <stdint.h>
#include <vector>
#include <list>
#include <string>
#include <map>
namespace soc_desc
{
const size_t MAJOR_VERSION = 2;
const size_t MINOR_VERSION = 0;
const size_t REVISION_VERSION = 0;
/** Typedef for SoC types: word, address and flags */
typedef uint32_t soc_addr_t;
typedef uint32_t soc_word_t;
typedef int soc_id_t;
/** Default value for IDs */
const soc_id_t DEFAULT_ID = 0xcafebabe;
/** Error class */
class error_t
{
public:
enum level_t
{
INFO,
WARNING,
FATAL
};
error_t(level_t lvl, const std::string& loc, const std::string& msg)
:m_level(lvl), m_loc(loc), m_msg(msg) {}
level_t level() const { return m_level; }
std::string location() const { return m_loc; }
std::string message() const { return m_msg; }
protected:
level_t m_level;
std::string m_loc, m_msg;
};
/** Error context to log errors */
class error_context_t
{
public:
void add(const error_t& err) { m_list.push_back(err); }
size_t count() const { return m_list.size(); }
error_t get(size_t i) const { return m_list[i]; }
protected:
std::vector< error_t > m_list;
};
/**
* Bare representation of the format
*/
/** Register access type and rules
*
* Access can be specified on registers and register variants. When left
* unspecified (aka DEFAULT), a register variant inherit the access from
* the register, and a register defaults to read-write if unspecified.
* When specified, the register variant access takes precedence over the register
* access. */
enum access_t
{
UNSPECIFIED = 0, /** Register: read-write, fields: inherit from register */
READ_ONLY, /** Read-only */
READ_WRITE, /** Read-write */
WRITE_ONLY, /** Write-only */
};
/** Enumerated value (aka named value), represents a special value for a field */
struct enum_t
{
soc_id_t id; /** ID (must be unique among field enums) */
std::string name; /** Name (must be unique among field enums) */
std::string desc; /** Optional description of the meaning of this value */
soc_word_t value; /** Value of the field */
/** Default constructor: default ID and value is 0 */
enum_t():id(DEFAULT_ID), value(0) {}
};
/** Register field information */
struct field_t
{
soc_id_t id; /** ID (must be unique among register fields) */
std::string name; /** Name (must be unique among register fields) */
std::string desc; /** Optional description of the field */
size_t pos; /** Position of the least significant bit */
size_t width; /** Width of the field in bits */
std::vector< enum_t > enum_; /** List of special values */
/** Default constructor: default ID, position is 0, width is 1 */
field_t():id(DEFAULT_ID), pos(0), width(1) {}
/** Returns the bit mask of the field within the register */
soc_word_t bitmask() const
{
// WARNING beware of the case where width is 32
if(width == 32)
return 0xffffffff;
else
return ((1 << width) - 1) << pos;
}
/** Returns the unshifted bit mask of the field */
soc_word_t unshifted_bitmask() const
{
// WARNING beware of the case where width is 32
if(width == 32)
return 0xffffffff;
else
return (1 << width) - 1;
}
/** Extract field value from register value */
soc_word_t extract(soc_word_t reg_val) const
{
return (reg_val & bitmask()) >> pos;
}
/** Replace the field value in a register value */
soc_word_t replace(soc_word_t reg_val, soc_word_t field_val) const
{
return (reg_val & ~bitmask()) | ((field_val << pos) & bitmask());
}
/** Return field value index, or -1 if none */
int find_value(soc_word_t v) const
{
for(size_t i = 0; i < enum_.size(); i++)
if(enum_[i].value == v)
return i;
return -1;
}
};
/** Register variant information
*
* A register variant provides an alternative access to the register, potentially
* with special semantics. Although there are no constraints on the type string,
* the following types have well-defined semantics:
* - alias: the same register at another address
* - set: writing to this register will set the 1s bits and ignore the 0s
* - clr: writing to this register will clear the 1s bits and ignore the 0s
* - tog: writing to this register will toggle the 1s bits and ignore the 0s
* Note that by default, variants inherit the access type of the register but
* can override it.
*/
struct variant_t
{
soc_id_t id; /** ID (must be unique among register variants) */
std::string type; /** type of the variant */
soc_addr_t offset; /** offset of the variant */
access_t access; /** Access type */
/** Default constructor: default ID, offset is 0, access is unspecified */
variant_t():id(DEFAULT_ID), offset(0), access(UNSPECIFIED) {}
};
/** Register information */
struct register_t
{
size_t width; /** Size in bits */
access_t access; /** Access type */
std::string desc; /** Optional description of the register */
std::vector< field_t > field; /** List of fields */
std::vector< variant_t > variant; /** List of variants */
/** Default constructor: width is 32 */
register_t():width(32), access(UNSPECIFIED) {}
};
/** Node address range information */
struct range_t
{
enum type_t
{
STRIDE, /** Addresses are given by a base address and a stride */
FORMULA, /** Addresses are given by a formula */
LIST, /** Addresses are given by a list */
};
type_t type; /** Range type */
size_t first; /** First index in the range */
size_t count; /** Number of indexes in the range (for STRIDE and RANGE) */
soc_word_t base; /** Base address (for STRIDE) */
soc_word_t stride; /** Stride value (for STRIDE) */
std::string formula; /** Formula (for FORMULA) */
std::string variable; /** Formula variable name (for FORMULA) */
std::vector< soc_word_t > list; /** Address list (for LIST) */
/** Default constructor: empty stride */
range_t():type(STRIDE), first(0), count(0), base(0), stride(0) {}
/** Return the number of indexes (based on count or list) */
size_t size()
{
return type == LIST ? list.size() : count;
}
};
/** Node instance information */
struct instance_t
{
enum type_t
{
SINGLE, /** There is a single instance at a specified address */
RANGE /** There are multiple addresses forming a range */
};
soc_id_t id; /** ID (must be unique among node instances) */
std::string name; /** Name (must be unique among node instances) */
std::string title; /** Optional instance human name */
std::string desc; /** Optional description of the instance */
type_t type; /** Instance type */
soc_word_t addr; /** Address (for SINGLE) */
range_t range; /** Range (for RANGE) */
/** Default constructor: single instance at 0 */
instance_t():id(DEFAULT_ID), type(SINGLE), addr(0) {}
};
/** Node information */
struct node_t
{
soc_id_t id; /** ID (must be unique among nodes) */
std::string name; /** Name (must be unique for the among nodes) */
std::string title; /** Optional node human name */
std::string desc; /** Optional description of the node */
std::vector< register_t> register_; /** Optional register */
std::vector< instance_t> instance; /** List of instances */
std::vector< node_t > node; /** List of sub-nodes */
/** Default constructor: default ID */
node_t():id(DEFAULT_ID) {}
};
/** System-on-chip information */
struct soc_t
{
std::string name; /** Codename of the SoC */
std::string title; /** Human name of the SoC */
std::string desc; /** Optional description of the SoC */
std::string isa; /** Instruction Set Assembly */
std::string version; /** Description version */
std::vector< std::string > author; /** List of authors of the description */
std::vector< node_t > node; /** List of nodes */
};
/** Parse a SoC description from a XML file, put it into <soc>. */
bool parse_xml(const std::string& filename, soc_t& soc, error_context_t& error_ctx);
/** Write a SoC description to a XML file, overwriting it. A file can contain
* multiple Soc descriptions */
bool produce_xml(const std::string& filename, const soc_t& soc, error_context_t& error_ctx);
/** Normalise a soc description by reordering elements so that:
* - nodes are sorted by lowest address of an instance
* - instances are sorted by lowest address
* - fields are sorted by last bit
* - enum are sorted by value */
void normalize(soc_t& soc);
/** Formula parser: try to parse and evaluate a formula with some variables */
bool evaluate_formula(const std::string& formula,
const std::map< std::string, soc_word_t>& var, soc_word_t& result,
const std::string& loc, error_context_t& error_ctx);
/**
* Convenience API to manipulate the format
*
* The idea is that *_ref_t objects are stable pointers: they stay valid even
* when the underlying soc changes. In particular:
* - modifying any structure data (except id fields) preserves all references
* - removing a structure invalidates all references pointing to this structure
* and its children
* - adding any structure preserves all references
* These references can be used to get pointers to the actual data
* of the representation when it needs to be read or write.
*/
class soc_ref_t;
class node_ref_t;
class register_ref_t;
class field_ref_t;
class enum_ref_t;
class variant_ref_t;
class node_inst_t;
/** SoC reference */
class soc_ref_t
{
soc_t *m_soc; /* pointer to the soc */
public:
/** Builds an invalid reference */
soc_ref_t();
/** Builds a reference to a soc */
soc_ref_t(soc_t *soc);
/** Checks whether this reference is valid */
bool valid() const;
/** Returns a pointer to the soc */
soc_t *get() const;
/** Returns a reference to the root node */
node_ref_t root() const;
/** Returns a reference to the root node instance */
node_inst_t root_inst() const;
/** Compare this reference to another */
bool operator==(const soc_ref_t& r) const;
inline bool operator!=(const soc_ref_t& r) const { return !operator==(r); }
bool operator<(const soc_ref_t& r) const { return m_soc < r.m_soc; }
/** Make this reference invalid */
void reset();
};
/** SoC node reference
* NOTE: the root soc node is presented as a node with empty path */
class node_ref_t
{
friend class soc_ref_t;
friend class node_inst_t;
soc_ref_t m_soc; /* reference to the soc */
std::vector< soc_id_t > m_path; /* path from the root */
node_ref_t(soc_ref_t soc);
node_ref_t(soc_ref_t soc, const std::vector< soc_id_t >& path);
public:
/** Builds an invalid reference */
node_ref_t();
/** Check whether this reference is valid */
bool valid() const;
/** Check whether this reference is the root node */
bool is_root() const;
/** Returns a pointer to the node, or 0 if invalid or root */
node_t *get() const;
/** Returns a reference to the soc */
soc_ref_t soc() const;
/** Returns a reference to the n-th parent node, 0-th is itself, 1-th is parent */
node_ref_t parent(unsigned level = 1) const;
/** Returns reference depth, root is 0, below root is 1 and so on */
unsigned depth() const;
/** Returns a reference to the register (which may be on a parent node) */
register_ref_t reg() const;
/** Returns a list of references to the sub-nodes */
std::vector< node_ref_t > children() const;
/** Returns a reference to a specific child */
node_ref_t child(const std::string& name) const;
/** Returns the path of the node, as the list of node names from the root */
std::vector< std::string > path() const;
/** Returns the name of the node */
std::string name() const;
/** Compare this reference to another */
bool operator==(const node_ref_t& r) const;
inline bool operator!=(const node_ref_t& r) const { return !operator==(r); }
/** Delete the node (and children) pointed by the reference, invalidating it
* NOTE: if reference points to the root node, deletes all nodes
* NOTE: does nothing if the reference is not valid */
void remove();
/** Create a new child node and returns a reference to it */
node_ref_t create() const;
/** Create a register and returns a reference to it */
register_ref_t create_reg(size_t width = 32) const;
/** Make this reference invalid */
void reset();
};
/** SoC register reference */
class register_ref_t
{
friend class node_ref_t;
node_ref_t m_node; /* reference to the node owning the register */
register_ref_t(node_ref_t node);
public:
/** Builds an invalid reference */
register_ref_t();
/** Check whether this reference is valid/exists */
bool valid() const;
/** Returns a pointer to the register, or 0 */
register_t *get() const;
/** Returns a reference to the node containing the register */
node_ref_t node() const;
/** Returns a list of references to the fields of the register */
std::vector< field_ref_t > fields() const;
/** Returns a list of references to the variants of the register */
std::vector< variant_ref_t > variants() const;
/** Returns a reference to a particular field */
field_ref_t field(const std::string& name) const;
/** Returns a reference to a particular variant */
variant_ref_t variant(const std::string& type) const;
/** Compare this reference to another */
bool operator==(const register_ref_t& r) const;
inline bool operator!=(const register_ref_t& r) const { return !operator==(r); }
/** Delete the register pointed by the reference, invalidating it
* NOTE: does nothing if the reference is not valid */
void remove();
/** Create a new field and returns a reference to it */
field_ref_t create_field() const;
/** Create a new variant and returns a reference to it */
variant_ref_t create_variant() const;
/** Make this reference invalid */
void reset();
};
/** SoC register field reference */
class field_ref_t
{
friend class register_ref_t;
register_ref_t m_reg; /* reference to the register */
soc_id_t m_id; /* field id */
field_ref_t(register_ref_t reg, soc_id_t id);
public:
/** Builds an invalid reference */
field_ref_t();
/** Check whether this reference is valid/exists */
bool valid() const;
/** Returns a pointer to the field, or 0 */
field_t *get() const;
/** Returns a reference to the register containing the field */
register_ref_t reg() const;
/** Returns a list of references to the enums of the field */
std::vector< enum_ref_t > enums() const;
/** Compare this reference to another */
bool operator==(const field_ref_t& r) const;
inline bool operator!=(const field_ref_t& r) const { return !operator==(r); }
/** Make this reference invalid */
void reset();
/** Create a new enum and returns a reference to it */
enum_ref_t create_enum() const;
};
/** SoC register field enum reference */
class enum_ref_t
{
friend class field_ref_t;
field_ref_t m_field; /* reference to the field */
soc_id_t m_id; /* enum id */
enum_ref_t(field_ref_t reg, soc_id_t id);
public:
/** Builds an invalid reference */
enum_ref_t();
/** Check whether this reference is valid/exists */
bool valid() const;
/** Returns a pointer to the enum, or 0 */
enum_t *get() const;
/** Returns a reference to the field containing the enum */
field_ref_t field() const;
/** Compare this reference to another */
bool operator==(const field_ref_t& r) const;
inline bool operator!=(const field_ref_t& r) const { return !operator==(r); }
/** Make this reference invalid */
void reset();
};
/** SoC register variant reference */
class variant_ref_t
{
friend class register_ref_t;
register_ref_t m_reg; /* reference to the register */
soc_id_t m_id; /* variant name */
variant_ref_t(register_ref_t reg, soc_id_t id);
public:
/** Builds an invalid reference */
variant_ref_t();
/** Check whether this reference is valid/exists */
bool valid() const;
/** Returns a pointer to the variant, or 0 */
variant_t *get() const;
/** Returns a reference to the register containing the field */
register_ref_t reg() const;
/** Returns variant type */
std::string type() const;
/** Returns variant offset */
soc_word_t offset() const;
/** Compare this reference to another */
bool operator==(const variant_ref_t& r) const;
inline bool operator!=(const variant_ref_t& r) const { return !operator==(r); }
/** Make this reference invalid */
void reset();
};
/** SoC node instance
* NOTE: the root soc node is presented as a node with a single instance at 0 */
class node_inst_t
{
friend class node_ref_t;
friend class soc_ref_t;
node_ref_t m_node; /* reference to the node */
std::vector< soc_id_t > m_id_path; /* list of instance IDs */
std::vector< size_t > m_index_path; /* list of instance indexes */
node_inst_t(soc_ref_t soc);
node_inst_t(node_ref_t soc, const std::vector< soc_id_t >& path,
const std::vector< size_t >& indexes);
public:
/** Builds an invalid reference */
node_inst_t();
/** Check whether this instance is valid/exists */
bool valid() const;
/** Returns a reference to the soc */
soc_ref_t soc() const;
/** Returns a reference to the node */
node_ref_t node() const;
/** Check whether this reference is the root node instance */
bool is_root() const;
/** Returns a reference to the n-th parent instance, 0-th is itself, and so on */
node_inst_t parent(unsigned level = 1) const;
/** Returns reference depth, 0 is root, and so on */
unsigned depth() const;
/** Returns a pointer to the instance of the node, or 0 */
instance_t *get() const;
/** Returns the address of this instance */
soc_addr_t addr() const;
/** Returns an instance to a child of this node's instance. If the subnode
* instance is a range, the returned reference is invalid */
node_inst_t child(const std::string& name) const;
/** Returns an instance to a child of this node's instance with a range index.
* If the subnode is not not a range or if the index is out of bounds,
* the returned reference is invalid */
node_inst_t child(const std::string& name, size_t index) const;
/** Returns a list of all instances of subnodes of this node's instance */
std::vector< node_inst_t > children() const;
/** Returns the name of the instance */
std::string name() const;
/** Checks whether this instance is indexed */
bool is_indexed() const;
/** Returns the index of the instance */
size_t index() const;
/** Compare this reference to another */
bool operator==(const node_inst_t& r) const;
inline bool operator!=(const node_inst_t& r) const { return !operator==(r); }
/** Make this reference invalid */
void reset();
};
} // soc_desc
#endif /* __SOC_DESC__ */