rockbox/firmware/target/arm/imx233/sdmmc-imx233.c
Michael Sevakis 1654efc313 Unify storage threads into one
* Editing a bunch of drivers' thread routines in order to
implement a new feature is tedious.

* No matter the number of storage drivers, they share one thread.
No extra threads needed for CONFIG_STORAGE_MULTI.

* Each has an event callback called by the storage thread.

* A default callback is provided to fake sleeping in order to
trigger idle callbacks. It could also do other default processing.
Changes to it will be part of driver code without editing each
one.

* Drivers may sleep and wake as they please as long as they give
a low pulse on their storage bit to ask to go into sleep mode.
Idle callback is called on its behalf and driver immediately put
into sleep mode.

* Drivers may indicate they are to continue receiving events in
USB mode, otherwise they receve nothing until disconnect (they
do receive SYS_USB_DISCONNECTED no matter what).

* Rework a few things to keep the callback implementation sane
and maintainable. ata.c was dreadful with all those bools; make
it a state machine and easier to follow. Remove last_user_activity;
it has no purpose that isn't served by keeping the disk active
through last_disk_activity instead.

* Even-out stack sizes partly because of a lack of a decent place
to define them by driver or SoC or whatever; it doesn't seem too
critical to do that anyway. Many are simply too large while at
least one isn't really adequate. They may be individually
overridden if necessary (figure out where). The thread uses the
greatest size demanded. Newer file code is much more frugal with
stack space. I barely see use crack 50% after idle callbacks
(usually mid-40s). Card insert/eject doesn't demand much.

* No forcing of idle callbacks. If it isn't necessary for one or
more non-disk storage types, it really isn't any more necessary for
disk storage. Besides, it makes the whole thing easier to implement.

Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-10-26 14:35:41 -04:00

1105 lines
32 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "sd.h"
#include "mmc.h"
#include "sdmmc.h"
#include "ssp-imx233.h"
#include "pinctrl-imx233.h"
#include "partitions-imx233.h"
#include "button-target.h"
#include "disk.h"
#include "usb.h"
#include "debug.h"
#include "string.h"
#include "ata_idle_notify.h"
#include "led.h"
#include "regs/ssp.h"
/** NOTE For convenience, this drivers relies on the many similar commands
* between SD and MMC. The following assumptions are made:
* - SD_SEND_STATUS = MMC_SEND_STATUS
* - SD_SELECT_CARD = MMC_SELECT_CARD
* - SD_TRAN = MMC_TRAN
* - MMC_WRITE_MULTIPLE_BLOCK = SD_WRITE_MULTIPLE_BLOCK
* - MMC_READ_MULTIPLE_BLOCK = SD_READ_MULTIPLE_BLOCK
* - SD_STOP_TRANSMISSION = MMC_STOP_TRANSMISSION
* - SD_DESELECT_CARD = MMC_DESELECT_CARD
*/
#if SD_SEND_STATUS != MMC_SEND_STATUS || SD_SELECT_CARD != MMC_SELECT_CARD || \
SD_TRAN != MMC_TRAN || MMC_WRITE_MULTIPLE_BLOCK != SD_WRITE_MULTIPLE_BLOCK || \
MMC_READ_MULTIPLE_BLOCK != SD_READ_MULTIPLE_BLOCK || \
SD_STOP_TRANSMISSION != MMC_STOP_TRANSMISSION || \
SD_DESELECT_CARD != MMC_DESELECT_CARD
#error SD/MMC mismatch
#endif
/* static configuration */
struct sdmmc_config_t
{
const char *name; /* name(for debug) */
int flags; /* flags */
int power_pin; /* power pin */
int power_delay; /* extra power up delay */
int wp_pin; /* write protect pin */
int ssp; /* associated ssp block */
int mode; /* mode (SD vs MMC) */
};
/* flags */
#define POWER_PIN (1 << 0)
#define POWER_INVERTED (1 << 1)
#define REMOVABLE (1 << 2)
#define DETECT_INVERTED (1 << 3)
#define POWER_DELAY (1 << 4)
#define WINDOW (1 << 5)
#define WP_PIN (1 << 6)
#define WP_INVERTED (1 << 7)
#define PROBE (1 << 8)
/* modes */
#define SD_MODE 0
#define MMC_MODE 1
#define PIN(bank,pin) ((bank) << 5 | (pin))
#define PIN2BANK(v) ((v) >> 5)
#define PIN2PIN(v) ((v) & 0x1f)
const struct sdmmc_config_t sdmmc_config[] =
{
#ifdef SANSA_FUZEPLUS
/* The Fuze+ uses pin #B0P8 for power */
{
.name = "microSD",
.flags = POWER_PIN | POWER_INVERTED | REMOVABLE,
.power_pin = PIN(0, 8),
.ssp = 1,
.mode = SD_MODE,
},
/* The Fuze+ uses pin #B1P29 for power */
{
.name = "eMMC",
.flags = POWER_PIN | POWER_INVERTED | WINDOW | POWER_DELAY,
.power_pin = PIN(1, 29),
.power_delay = HZ / 5, /* extra delay, to ramp up voltage? */
.ssp = 2,
.mode = MMC_MODE,
},
#elif defined(CREATIVE_ZENXFI2)
{
.name = "internal/SD",
.flags = WINDOW | PROBE,
.ssp = 2,
.mode = SD_MODE,
},
/* The Zen X-Fi2 uses pin B1P29 for power */
{
.name = "microSD",
.flags = POWER_PIN | REMOVABLE | DETECT_INVERTED,
.power_pin = PIN(1, 29),
.ssp = 1,
.mode = SD_MODE,
},
#elif defined(CREATIVE_ZENXFI3)
{
.name = "internal/SD",
.flags = WINDOW,
.ssp = 2,
.mode = SD_MODE,
},
/* The Zen X-Fi3 uses pin #B0P07 for power */
{
.name = "microSD",
.flags = POWER_PIN | POWER_INVERTED | REMOVABLE | POWER_DELAY,
.power_pin = PIN(0, 7),
.power_delay = HZ / 10, /* extra delay, to ramp up voltage? */
.ssp = 1,
.mode = SD_MODE,
},
#elif defined(CREATIVE_ZENXFI) || defined(CREATIVE_ZEN)
{
.name = "internal/SD",
.flags = WINDOW,
.ssp = 2,
.mode = SD_MODE,
},
/* The Zen X-Fi uses pin #B0P10 for power*/
{
.name = "SD",
.flags = POWER_PIN | REMOVABLE | DETECT_INVERTED | POWER_DELAY | WP_PIN,
.power_pin = PIN(0, 10),
.wp_pin = PIN(0, 11),
.power_delay = HZ / 10, /* extra delay, to ramp up voltage? */
.ssp = 1,
.mode = SD_MODE,
},
#elif defined(CREATIVE_ZENMOZAIC)
{
.name = "internal/SD",
.flags = WINDOW,
.ssp = 2,
.mode = SD_MODE,
}
#elif defined(CREATIVE_ZENXFISTYLE)
{
.name = "internal/SD",
.flags = WINDOW,
.ssp = 2,
.mode = SD_MODE
},
#elif defined(SONY_NWZE370) || defined(SONY_NWZE360)
/* The Sony NWZ-E370 uses #B1P29 for power */
{
.name = "internal/SD",
.flags = POWER_PIN | POWER_INVERTED | WINDOW,
.power_pin = PIN(1, 29),
.ssp = 2,
.mode = MMC_MODE
},
#else
#error You need to write the sd/mmc config!
#endif
};
/* drive status */
struct sdmmc_status_t
{
int bus_width; /* bus width (1, 4 or 8) */
bool hs_capable; /* HS capable device */
bool hs_enabled; /* HS enabled */
bool has_sbc; /* support SET_BLOCK_COUNT */
};
#define SDMMC_NUM_DRIVES (sizeof(sdmmc_config) / sizeof(sdmmc_config[0]))
#define SDMMC_CONF(drive) sdmmc_config[drive]
#define SDMMC_FLAGS(drive) SDMMC_CONF(drive).flags
#define SDMMC_SSP(drive) SDMMC_CONF(drive).ssp
#define SDMMC_MODE(drive) SDMMC_CONF(drive).mode
/** WARNING
* to be consistent with all our SD drivers, the .rca field of sdmmc_card_info
* in reality holds (rca << 16) because all command arguments actually require
* the RCA is the 16-bit msb. Be careful that this is not the actuall RCA ! */
/* common */
static unsigned window_start[SDMMC_NUM_DRIVES];
static unsigned window_end[SDMMC_NUM_DRIVES];
static uint8_t aligned_buffer[SDMMC_NUM_DRIVES][512] CACHEALIGN_ATTR;
static tCardInfo sdmmc_card_info[SDMMC_NUM_DRIVES];
static struct mutex mutex[SDMMC_NUM_DRIVES];
static int disk_last_activity[SDMMC_NUM_DRIVES];
static struct sdmmc_status_t sdmmc_status[SDMMC_NUM_DRIVES];
#define MIN_YIELD_PERIOD 5
#define SDMMC_INFO(drive) sdmmc_card_info[drive]
#define SDMMC_RCA(drive) SDMMC_INFO(drive).rca
#define SDMMC_STATUS(drive) sdmmc_status[drive]
/* sd only */
#if CONFIG_STORAGE & STORAGE_SD
static int sd_first_drive;
static unsigned _sd_num_drives;
static int sd_map[SDMMC_NUM_DRIVES]; /* sd->sdmmc map */
#endif
/* mmc only */
#if CONFIG_STORAGE & STORAGE_MMC
static int mmc_first_drive;
static unsigned _mmc_num_drives;
static int mmc_map[SDMMC_NUM_DRIVES]; /* mmc->sdmmc map */
#endif
static int init_drive(int drive);
/* WARNING NOTE BUG FIXME
* There are three numbering schemes involved in the driver:
* - the sdmmc indexes into sdmmc_config[]
* - the sd drive indexes
* - the mmc drive indexes
* By convention, [drive] refers to a sdmmc index whereas sd_drive/mmc_drive
* refer to sd/mmc drive indexes. We keep two maps sd->sdmmc and mmc->sdmmc
* to find the sdmmc index from the sd or mmc one */
static inline int sdmmc_removable(int drive)
{
return SDMMC_FLAGS(drive) & REMOVABLE;
}
static int sdmmc_present(int drive)
{
if(sdmmc_removable(drive))
return imx233_ssp_sdmmc_detect(SDMMC_SSP(drive));
else
return true;
}
static void sdmmc_detect_callback(int ssp)
{
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
long evid = imx233_ssp_sdmmc_detect(ssp) ?
SYS_HOTSWAP_INSERTED : SYS_HOTSWAP_EXTRACTED;
/* Have to reverse lookup the ssp */
for (unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
{
if (SDMMC_SSP(drive) != ssp)
continue;
int first_drive, *map;
switch (SDMMC_MODE(drive))
{
#if (CONFIG_STORAGE & STORAGE_MMC)
case MMC_MODE:
first_drive = mmc_first_drive;
map = mmc_map;
break;
#endif
#if (CONFIG_STORAGE & STORAGE_SD)
case SD_MODE:
first_drive = sd_first_drive;
map = sd_map;
break;
#endif
default:
continue;
}
/* message requires logical drive number as data */
queue_broadcast(evid, first_drive + map[drive]);
}
imx233_ssp_sdmmc_setup_detect(ssp, true, sdmmc_detect_callback, false,
imx233_ssp_sdmmc_is_detect_inverted(ssp));
}
static void sdmmc_enable_pullups(int drive, bool pullup)
{
/* setup pins, never use alternatives pin on SSP1 because no device use it
* but this could be made a flag */
int bus_width = SDMMC_MODE(drive) == MMC_MODE ? 8 : 4;
if(SDMMC_SSP(drive) == 1)
imx233_ssp_setup_ssp1_sd_mmc_pins(pullup, bus_width, false);
else
imx233_ssp_setup_ssp2_sd_mmc_pins(pullup, bus_width);
}
static void sdmmc_power(int drive, bool on)
{
/* power chip if needed */
if(SDMMC_FLAGS(drive) & POWER_PIN)
{
int bank = PIN2BANK(SDMMC_CONF(drive).power_pin);
int pin = PIN2PIN(SDMMC_CONF(drive).power_pin);
imx233_pinctrl_acquire(bank, pin, "sdmmc_power");
imx233_pinctrl_set_function(bank, pin, PINCTRL_FUNCTION_GPIO);
imx233_pinctrl_enable_gpio(bank, pin, true);
if(SDMMC_FLAGS(drive) & POWER_INVERTED)
imx233_pinctrl_set_gpio(bank, pin, !on);
else
imx233_pinctrl_set_gpio(bank, pin, on);
}
if(SDMMC_FLAGS(drive) & POWER_DELAY)
sleep(SDMMC_CONF(drive).power_delay);
/* enable pullups for identification */
sdmmc_enable_pullups(drive, true);
}
#define MCI_NO_RESP 0
#define MCI_RESP (1<<0)
#define MCI_LONG_RESP (1<<1)
#define MCI_ACMD (1<<2) /* sd only */
#define MCI_NOCRC (1<<3)
#define MCI_BUSY (1<<4)
static bool send_cmd(int drive, uint8_t cmd, uint32_t arg, uint32_t flags, uint32_t *resp)
{
if((flags & MCI_ACMD) && !send_cmd(drive, SD_APP_CMD, SDMMC_RCA(drive), MCI_RESP, resp))
return false;
enum imx233_ssp_resp_t resp_type = (flags & MCI_LONG_RESP) ? SSP_LONG_RESP :
(flags & MCI_RESP) ? SSP_SHORT_RESP : SSP_NO_RESP;
enum imx233_ssp_error_t ret = imx233_ssp_sd_mmc_transfer(SDMMC_SSP(drive), cmd,
arg, resp_type, NULL, 0, !!(flags & MCI_BUSY), false, resp);
if(resp_type == SSP_LONG_RESP)
{
/* Our SD codes assume most significant word first, so reverse resp */
uint32_t tmp = resp[0];
resp[0] = resp[3];
resp[3] = tmp;
tmp = resp[1];
resp[1] = resp[2];
resp[2] = tmp;
}
return ret == SSP_SUCCESS;
}
static int wait_for_state(int drive, unsigned state)
{
unsigned long response;
unsigned int timeout = current_tick + 5*HZ;
int cmd_retry = 10;
int next_yield = current_tick + MIN_YIELD_PERIOD;
while (1)
{
/* NOTE: rely on SD_SEND_STATUS=MMC_SEND_STATUS */
while(!send_cmd(drive, SD_SEND_STATUS, SDMMC_RCA(drive), MCI_RESP, &response) && cmd_retry > 0)
cmd_retry--;
if(cmd_retry <= 0)
return -1;
if(((response >> 9) & 0xf) == state)
return 0;
if(TIME_AFTER(current_tick, timeout))
return -10 * ((response >> 9) & 0xf);
if(TIME_AFTER(current_tick, next_yield))
{
yield();
next_yield = current_tick + MIN_YIELD_PERIOD;
}
}
return 0;
}
#if CONFIG_STORAGE & STORAGE_SD
static int init_sd_card(int drive)
{
int ssp = SDMMC_SSP(drive);
sdmmc_power(drive, false);
sdmmc_power(drive, true);
imx233_ssp_start(ssp);
imx233_ssp_softreset(ssp);
imx233_ssp_set_mode(ssp, BV_SSP_CTRL1_SSP_MODE__SD_MMC);
/* SSPCLK @ 96MHz
* gives bitrate of 96000 / 240 / 1 = 400kHz */
imx233_ssp_set_timings(ssp, 240, 0, 0xffff);
imx233_ssp_sd_mmc_power_up_sequence(ssp);
imx233_ssp_set_bus_width(ssp, 1);
imx233_ssp_set_block_size(ssp, 9);
SDMMC_RCA(drive) = 0;
bool sd_v2 = false, sd_hs = false;
uint32_t resp;
long init_timeout;
/* go to idle state */
if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL))
return -1;
/* CMD8 Check for v2 sd card. Must be sent before using ACMD41
Non v2 cards will not respond to this command */
if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP, &resp))
if((resp & 0xFFF) == 0x1AA)
sd_v2 = true;
/* timeout for initialization is 1sec, from SD Specification 2.00 */
init_timeout = current_tick + HZ;
do
{
/* this timeout is the only valid error for this loop*/
if(TIME_AFTER(current_tick, init_timeout))
return -2;
/* ACMD41 For v2 cards set HCS bit[30] & send host voltage range to all */
if(!send_cmd(drive, SD_APP_OP_COND, (0x00FF8000 | (sd_v2 ? 1<<30 : 0)),
MCI_ACMD|MCI_NOCRC|MCI_RESP, &SDMMC_INFO(drive).ocr))
return -100;
} while(!(SDMMC_INFO(drive).ocr & (1<<31)));
/* CMD2 send CID */
if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP, SDMMC_INFO(drive).cid))
return -3;
/* CMD3 send RCA */
if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &SDMMC_INFO(drive).rca))
return -4;
/* CMD9 send CSD */
if(!send_cmd(drive, SD_SEND_CSD, SDMMC_RCA(drive), MCI_RESP|MCI_LONG_RESP,
SDMMC_INFO(drive).csd))
return -9;
sd_parse_csd(&SDMMC_INFO(drive));
window_start[drive] = 0;
window_end[drive] = SDMMC_INFO(drive).numblocks;
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_cmd(drive, SD_SELECT_CARD, SDMMC_RCA(drive), MCI_RESP, &resp))
return -12;
if(wait_for_state(drive, SD_TRAN))
return -13;
/* ACMD6: set bus width to 4-bit */
if(!send_cmd(drive, SD_SET_BUS_WIDTH, 2, MCI_RESP|MCI_ACMD, &resp))
return -15;
/* ACMD42: disconnect the pull-up resistor on CD/DAT3 */
if(!send_cmd(drive, SD_SET_CLR_CARD_DETECT, 0, MCI_RESP|MCI_ACMD, &resp))
return -17;
/* Switch to 4-bit */
imx233_ssp_set_bus_width(ssp, 4);
SDMMC_STATUS(drive).bus_width = 4;
/* Try to switch V2 cards to HS timings, non HS seem to ignore this */
if(sd_v2)
{
/* only transfer 64 bytes */
imx233_ssp_set_block_size(ssp, /*log2(64)*/6);
/* CMD6 switch to HS */
if(imx233_ssp_sd_mmc_transfer(ssp, SD_SWITCH_FUNC, 0x80fffff1,
SSP_SHORT_RESP, aligned_buffer[drive], 1, true, true, NULL))
return -12;
imx233_ssp_set_block_size(ssp, /*log2(512)*/9);
if((aligned_buffer[drive][16] & 0xf) == 1)
sd_hs = true;
}
/* probe for CMD23 support */
SDMMC_STATUS(drive).has_sbc = false;
/* ACMD51, only transfer 8 bytes */
imx233_ssp_set_block_size(ssp, /*log2(8)*/3);
if(send_cmd(drive, SD_APP_CMD, SDMMC_RCA(drive), MCI_RESP, &resp))
{
if(imx233_ssp_sd_mmc_transfer(ssp, SD_SEND_SCR, 0, SSP_SHORT_RESP,
aligned_buffer[drive], 1, true, true, NULL) == SSP_SUCCESS)
{
if(aligned_buffer[drive][3] & 2)
SDMMC_STATUS(drive).has_sbc = true;
}
}
imx233_ssp_set_block_size(ssp, /*log2(512)*/9);
/* SSPCLK @ 96MHz
* gives bitrate of 96 / 4 / 1 = 24MHz
* gives bitrate of 96 / 2 / 1 = 48MHz */
SDMMC_STATUS(drive).hs_capable = sd_hs;
SDMMC_STATUS(drive).hs_enabled = false;
if(/*sd_hs*/false)
imx233_ssp_set_timings(ssp, 2, 0, 0xffff);
else
imx233_ssp_set_timings(ssp, 4, 0, 0xffff);
/* deselect card */
if(!send_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL))
return -13;
/* successfully initialised */
SDMMC_INFO(drive).initialized = 1;
return 0;
}
int sd_event(long id, intptr_t data)
{
int rc = 0;
switch (id)
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:;
const int drive = sd_map[data];
/* Skip non-removable drivers */
if(!sdmmc_removable(drive))
{
rc = -1;
break;
}
mutex_lock(&mutex[drive]); /* lock-out card activity */
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
SDMMC_INFO(drive).initialized = 0;
if(id == SYS_HOTSWAP_INSERTED)
rc = init_drive(drive);
/* unlock card */
mutex_unlock(&mutex[drive]);
/* Access is now safe */
break;
#endif /* HAVE_HOTSWAP */
default:
rc = storage_event_default_handler(id, data, sd_last_disk_activity(),
STORAGE_SD);
break;
}
return rc;
}
#endif /* CONFIG_STORAGE & STORAGE_SD */
#if CONFIG_STORAGE & STORAGE_MMC
static int init_mmc_drive(int drive)
{
int ssp = SDMMC_SSP(drive);
/* we can choose the RCA of mmc cards: pick drive. Following our convention,
* .rca is actually RCA << 16 */
SDMMC_RCA(drive) = drive << 16;
sdmmc_power(drive, false);
sdmmc_power(drive, true);
imx233_ssp_start(ssp);
imx233_ssp_softreset(ssp);
imx233_ssp_set_mode(ssp, BV_SSP_CTRL1_SSP_MODE__SD_MMC);
/* SSPCLK @ 96MHz
* gives bitrate of 96000 / 240 / 1 = 400kHz */
imx233_ssp_set_timings(ssp, 240, 0, 0xffff);
imx233_ssp_sd_mmc_power_up_sequence(ssp);
imx233_ssp_set_bus_width(ssp, 1);
imx233_ssp_set_block_size(ssp, 9);
/* go to idle state */
if(!send_cmd(drive, MMC_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL))
return -1;
/* send op cond until the card respond with busy bit set; it must complete within 1sec */
unsigned timeout = current_tick + HZ;
bool ret = false;
do
{
uint32_t ocr;
ret = send_cmd(drive, MMC_SEND_OP_COND, 0x40ff8000, MCI_RESP, &ocr);
if(ret && ocr & (1 << 31))
break;
}while(!TIME_AFTER(current_tick, timeout));
if(!ret)
return -2;
/* get CID */
uint32_t cid[4];
if(!send_cmd(drive, MMC_ALL_SEND_CID, 0, MCI_LONG_RESP, cid))
return -3;
/* Set RCA */
uint32_t status;
if(!send_cmd(drive, MMC_SET_RELATIVE_ADDR, SDMMC_RCA(drive), MCI_RESP, &status))
return -4;
/* Select card */
if(!send_cmd(drive, MMC_SELECT_CARD, SDMMC_RCA(drive), MCI_RESP, &status))
return -5;
/* Check TRAN state */
if(wait_for_state(drive, MMC_TRAN))
return -6;
/* Switch to 8-bit bus */
if(!send_cmd(drive, MMC_SWITCH, 0x3b70200, MCI_RESP|MCI_BUSY, &status))
return -8;
/* switch error ? */
if(status & 0x80)
return -9;
imx233_ssp_set_bus_width(ssp, 8);
/* Switch to high speed mode */
if(!send_cmd(drive, MMC_SWITCH, 0x3b90100, MCI_RESP|MCI_BUSY, &status))
return -10;
/* switch error ?*/
if(status & 0x80)
return -11;
/* SSPCLK @ 96MHz
* gives bitrate of 96 / 2 / 1 = 48MHz */
imx233_ssp_set_timings(ssp, 2, 0, 0xffff);
SDMMC_STATUS(drive).bus_width = 8;
SDMMC_STATUS(drive).hs_capable = true;
SDMMC_STATUS(drive).hs_enabled = true;
/* read extended CSD */
{
uint8_t *ext_csd = aligned_buffer[drive];
if(imx233_ssp_sd_mmc_transfer(ssp, 8, 0, SSP_SHORT_RESP, aligned_buffer[drive], 1, true, true, &status))
return -12;
uint32_t *sec_count = (void *)&ext_csd[212];
window_start[drive] = 0;
window_end[drive] = *sec_count;
}
/* deselect card */
if(!send_cmd(drive, MMC_DESELECT_CARD, 0, MCI_NO_RESP, NULL))
return -13;
/* MMC always support CMD23 */
SDMMC_STATUS(drive).has_sbc = true;
SDMMC_INFO(drive).initialized = 1;
return 0;
}
int mmc_event(long id, intptr_t data)
{
return storage_event_default_handler(id, data, mmc_last_disk_activity(),
STORAGE_MMC);
}
#endif /* CONFIG_STORAGE & STORAGE_MMC */
/* low-level function, don't call directly! */
static int __xfer_sectors(int drive, unsigned long start, int count, void *buf, bool read)
{
uint32_t resp;
int ret = 0;
while(count != 0)
{
int this_count = MIN(count, IMX233_MAX_SINGLE_DMA_XFER_SIZE / 512);
bool need_stop = true;
if(SDMMC_STATUS(drive).has_sbc && send_cmd(drive, 23, this_count, MCI_RESP, &resp))
need_stop = false;
/* Set bank_start to the correct unit (blocks or bytes).
* MMC drives use block addressing, SD cards bytes or blocks */
int bank_start = start;
if(SDMMC_MODE(drive) == SD_MODE && !(SDMMC_INFO(drive).ocr & (1<<30))) /* not SDHC */
bank_start *= SD_BLOCK_SIZE;
/* issue read/write
* NOTE: rely on SD_{READ,WRITE}_MULTIPLE_BLOCK=MMC_{READ,WRITE}_MULTIPLE_BLOCK */
ret = imx233_ssp_sd_mmc_transfer(SDMMC_SSP(drive),
read ? SD_READ_MULTIPLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK,
bank_start, SSP_SHORT_RESP, buf, this_count, false, read, &resp);
if(ret != SSP_SUCCESS)
need_stop = true;
/* stop transmission
* NOTE: rely on SD_STOP_TRANSMISSION=MMC_STOP_TRANSMISSION */
if(need_stop && !send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_RESP|MCI_BUSY, &resp))
{
ret = -15;
break;
}
if(ret != 0)
return ret;
count -= this_count;
start += this_count;
buf += this_count * 512;
}
return ret;
}
static int transfer_sectors(int drive, unsigned long start, int count, void *buf, bool read)
{
int ret = 0;
/* the function doesn't work when count is 0 */
if(count == 0)
return ret;
/* update disk activity */
disk_last_activity[drive] = current_tick;
/* lock per-drive mutex */
mutex_lock(&mutex[drive]);
/* update led status */
led(true);
/* for SD cards, init if necessary */
#if CONFIG_STORAGE & STORAGE_SD
if(SDMMC_MODE(drive) == SD_MODE && SDMMC_INFO(drive).initialized <= 0)
{
ret = init_drive(drive);
if(SDMMC_INFO(drive).initialized <= 0)
goto Lend;
}
#endif
/* check window */
start += window_start[drive];
if((start + count) > window_end[drive])
{
ret = -201;
goto Lend;
}
/* select card.
* NOTE: rely on SD_SELECT_CARD=MMC_SELECT_CARD */
if(!send_cmd(drive, SD_SELECT_CARD, SDMMC_RCA(drive), MCI_NO_RESP, NULL))
{
ret = -20;
goto Lend;
}
/* wait for TRAN state */
/* NOTE: rely on SD_TRAN=MMC_TRAN */
ret = wait_for_state(drive, SD_TRAN);
if(ret < 0)
goto Ldeselect;
/**
* NOTE: we need to make sure dma transfers are aligned. This is handled
* differently for read and write transfers. We do not repeat it each
* time but it should be noted that all transfers are limited by
* IMX233_MAX_SINGLE_DMA_XFER_SIZE and thus need to be split if needed.
*
* Read transfers:
* If the buffer is already aligned, transfer everything at once.
* Otherwise, transfer all sectors but one to the sub-buffer starting
* on the next cache line and then move the data. Then transfer the
* last sector to the aligned_buffer and then copy to the buffer.
*
* Write transfers:
* If the buffer is already aligned, transfer everything at once.
* Otherwise, copy the first sector to the aligned_buffer and transfer.
* Then move all other sectors within the buffer to make it cache
* aligned and transfer it. Then move data to pretend the buffer was
* never modified.
*/
if(read)
{
void *ptr = CACHEALIGN_UP(buf);
if(buf != ptr)
{
/* copy count-1 sector and then move within the buffer */
ret = __xfer_sectors(drive, start, count - 1, ptr, read);
memmove(buf, ptr, 512 * (count - 1));
if(ret >= 0)
{
/* transfer the last sector the aligned_buffer and copy */
ret = __xfer_sectors(drive, start + count - 1, 1,
aligned_buffer[drive], read);
memcpy(buf + 512 * (count - 1), aligned_buffer[drive], 512);
}
}
else
ret = __xfer_sectors(drive, start, count, buf, read);
}
else
{
void *ptr = CACHEALIGN_UP(buf);
if(buf != ptr)
{
/* transfer the first sector to aligned_buffer and copy */
memcpy(aligned_buffer[drive], buf, 512);
ret = __xfer_sectors(drive, start, 1, aligned_buffer[drive], read);
if(ret >= 0)
{
/* move within the buffer and transfer */
memmove(ptr, buf + 512, 512 * (count - 1));
ret = __xfer_sectors(drive, start + 1, count - 1, ptr, read);
/* move back */
memmove(buf + 512, ptr, 512 * (count - 1));
memcpy(buf, aligned_buffer[drive], 512);
}
}
else
ret = __xfer_sectors(drive, start, count, buf, read);
}
/* deselect card */
Ldeselect:
/* CMD7 w/rca =0 : deselects card & puts it in STBY state
* NOTE: rely on SD_DESELECT_CARD=MMC_DESELECT_CARD */
if(!send_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL))
ret = -23;
Lend:
/* update led status */
led(false);
/* release per-drive mutex */
mutex_unlock(&mutex[drive]);
return ret;
}
/* user specifies the sdmmc drive */
static int part_read_fn(intptr_t user, unsigned long start, int count, void* buf)
{
return transfer_sectors(user, start, count, buf, true);
}
static int init_drive(int drive)
{
int ret;
switch(SDMMC_MODE(drive))
{
#if CONFIG_STORAGE & STORAGE_SD
case SD_MODE: ret = init_sd_card(drive); break;
#endif
#if CONFIG_STORAGE & STORAGE_MMC
case MMC_MODE: ret = init_mmc_drive(drive); break;
#endif
default: ret = 0;
}
if(ret < 0)
return ret;
/* compute window */
if((SDMMC_FLAGS(drive) & WINDOW) && imx233_partitions_is_window_enabled())
{
/* NOTE: at this point the window shows the whole disk so raw disk
* accesses can be made to lookup partitions */
ret = imx233_partitions_compute_window(IF_MD_DRV(drive), part_read_fn,
IMX233_PART_USER, &window_start[drive], &window_end[drive]);
if(ret)
panicf("cannot compute partitions window: %d", ret);
SDMMC_INFO(drive).numblocks = window_end[drive] - window_start[drive];
}
return 0;
}
static int sdmmc_init(void)
{
static int is_initialized = false;
if(is_initialized)
return 0;
is_initialized = true;
for(unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
mutex_init(&mutex[drive]);
for(unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
{
if(sdmmc_removable(drive))
imx233_ssp_sdmmc_setup_detect(SDMMC_SSP(drive), true, sdmmc_detect_callback,
false, SDMMC_FLAGS(drive) & DETECT_INVERTED);
}
return 0;
}
#if CONFIG_STORAGE & STORAGE_SD
int sd_init(void)
{
int ret = sdmmc_init();
if(ret < 0) return ret;
_sd_num_drives = 0;
for(unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
if(SDMMC_MODE(drive) == SD_MODE)
{
/* if asked to probe, try to init it and ignore it if it fails */
if(SDMMC_FLAGS(drive) & PROBE)
{
int ret = init_drive(drive);
if(ret < 0)
continue;
}
sd_map[_sd_num_drives++] = drive;
}
return 0;
}
tCardInfo *card_get_info_target(int sd_card_no)
{
return &SDMMC_INFO(sd_map[sd_card_no]);
}
int sd_num_drives(int first_drive)
{
sd_first_drive = first_drive;
return _sd_num_drives;
}
bool sd_present(IF_MD_NONVOID(int sd_drive))
{
return sdmmc_present(sd_map[IF_MD_DRV(sd_drive)]);
}
bool sd_removable(IF_MD_NONVOID(int sd_drive))
{
return sdmmc_removable(sd_map[IF_MD_DRV(sd_drive)]);
}
long sd_last_disk_activity(void)
{
long last = 0;
for(unsigned i = 0; i < _sd_num_drives; i++)
last = MAX(last, disk_last_activity[sd_map[i]]);
return last;
}
void sd_enable(bool on)
{
(void) on;
}
int sd_read_sectors(IF_MD(int sd_drive,) unsigned long start, int count, void *buf)
{
#ifndef HAVE_MULTIDRIVE
int sd_drive = 0;
#endif
return transfer_sectors(sd_map[sd_drive], start, count, buf, true);
}
int sd_write_sectors(IF_MD(int sd_drive,) unsigned long start, int count, const void* buf)
{
#ifndef HAVE_MULTIDRIVE
int sd_drive = 0;
#endif
return transfer_sectors(sd_map[sd_drive], start, count, (void *)buf, false);
}
#endif
#if CONFIG_STORAGE & STORAGE_MMC
int mmc_init(void)
{
int ret = sdmmc_init();
if(ret < 0) return ret;
_mmc_num_drives = 0;
for(unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
if(SDMMC_MODE(drive) == MMC_MODE)
{
/* try to init drive, panic on failure or skip if probing */
int ret = init_drive(drive);
if(ret < 0)
{
if(SDMMC_FLAGS(drive) & PROBE)
continue;
else
panicf("init_drive(%d) failed: %d (mmc)", drive, ret);
}
mmc_map[_mmc_num_drives++] = drive;
}
return 0;
}
void mmc_get_info(IF_MD(int mmc_drive,) struct storage_info *info)
{
#ifndef HAVE_MULTIDRIVE
int mmc_drive = 0;
#endif
int drive = mmc_map[mmc_drive];
info->sector_size = 512;
info->num_sectors = window_end[drive] - window_start[drive];
info->vendor = "Rockbox";
info->product = "Internal Storage";
info->revision = "0.00";
}
int mmc_num_drives(int first_drive)
{
mmc_first_drive = first_drive;
return _mmc_num_drives;
}
bool mmc_present(IF_MD_NONVOID(int mmc_drive))
{
return sdmmc_present(mmc_map[IF_MD_DRV(mmc_drive)]);
}
bool mmc_removable(IF_MD_NONVOID(int mmc_drive))
{
return sdmmc_removable(mmc_map[IF_MD_DRV(mmc_drive)]);
}
long mmc_last_disk_activity(void)
{
long last = 0;
for(unsigned i = 0; i < _mmc_num_drives; i++)
last = MAX(last, disk_last_activity[mmc_map[i]]);
return last;
}
void mmc_enable(bool on)
{
(void) on;
}
void mmc_sleepnow(void)
{
}
bool mmc_disk_is_active(void)
{
return false;
}
bool mmc_usb_active(int delayticks)
{
(void) delayticks;
return mmc_disk_is_active();
}
int mmc_soft_reset(void)
{
return 0;
}
int mmc_flush(void)
{
return 0;
}
void mmc_spin(void)
{
}
void mmc_spindown(int seconds)
{
(void) seconds;
}
int mmc_spinup_time(void)
{
return 0;
}
int mmc_read_sectors(IF_MD(int mmc_drive,) unsigned long start, int count, void *buf)
{
#ifndef HAVE_MULTIDRIVE
int mmc_drive = 0;
#endif
return transfer_sectors(mmc_map[mmc_drive], start, count, buf, true);
}
int mmc_write_sectors(IF_MD(int mmc_drive,) unsigned long start, int count, const void* buf)
{
#ifndef HAVE_MULTIDRIVE
int mmc_drive = 0;
#endif
return transfer_sectors(mmc_map[mmc_drive], start, count, (void *)buf, false);
}
tCardInfo *mmc_card_info(int card_no)
{
return &SDMMC_INFO(mmc_map[card_no]);
}
#endif
/** Information about SD/MMC slot */
struct sdmmc_info_t
{
int drive; /* drive number (for queries like storage_removable(drive) */
const char *slot_name; /* name of the slot: 'internal' or 'microsd' */
bool window; /* is window enabled for this slot? */
int bus_width; /* current bus width */
bool hs_capable; /* is device high-speed capable? */
bool hs_enabled; /* is high-speed enabled? */
bool has_sbc; /* device support SET_BLOCK_COUNT */
};
struct sdmmc_info_t imx233_sdmmc_get_info(int drive, int storage_drive)
{
struct sdmmc_info_t info;
memset(&info, 0, sizeof(info));
info.drive = storage_drive;
info.slot_name = SDMMC_CONF(drive).name;
info.window = !!(SDMMC_CONF(drive).flags & WINDOW);
info.bus_width = SDMMC_STATUS(drive).bus_width;
info.hs_capable = SDMMC_STATUS(drive).hs_capable;
info.hs_enabled = SDMMC_STATUS(drive).hs_enabled;
info.has_sbc = SDMMC_STATUS(drive).has_sbc;
return info;
}
#if CONFIG_STORAGE & STORAGE_SD
/* return information about a particular sd device (use regular drive number) */
struct sdmmc_info_t imx233_sd_get_info(int card_no)
{
return imx233_sdmmc_get_info(sd_map[card_no], sd_first_drive + card_no);
}
#endif
#if CONFIG_STORAGE & STORAGE_MMC
/* return information about a particular mmc device (use regular drive number) */
struct sdmmc_info_t imx233_mmc_get_info(int card_no)
{
return imx233_sdmmc_get_info(mmc_map[card_no], mmc_first_drive + card_no);
}
#endif