rockbox/firmware/target/mips/ingenic_jz47xx/ata-nand-jz4740.c
Maurus Cuelenaere 62c4a2838e Onda VX747:
* Overall cleanup (still needs work)
  * Add preliminary USB support
  * Add power off support
  * Add preliminary MMU handling


git-svn-id: svn://svn.rockbox.org/rockbox/trunk@18348 a1c6a512-1295-4272-9138-f99709370657
2008-08-26 21:48:49 +00:00

309 lines
9.2 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Maurus Cuelenaere
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "jz4740.h"
#include "ata.h"
#include "nand_id.h"
#include "system.h"
#include "panic.h"
#define NAND_CMD_READ1_00 0x00
#define NAND_CMD_READ1_01 0x01
#define NAND_CMD_READ2 0x50
#define NAND_CMD_READ_ID1 0x90
#define NAND_CMD_READ_ID2 0x91
#define NAND_CMD_RESET 0xFF
#define NAND_CMD_PAGE_PROGRAM_START 0x80
#define NAND_CMD_PAGE_PROGRAM_STOP 0x10
#define NAND_CMD_BLOCK_ERASE_START 0x60
#define NAND_CMD_BLOCK_ERASE_CONFIRM 0xD0
#define NAND_CMD_READ_STATUS 0x70
#define NANDFLASH_CLE 0x00008000 //PA[15]
#define NANDFLASH_ALE 0x00010000 //PA[16]
#define NANDFLASH_BASE 0xB8000000
#define REG_NAND_DATA8 (*((volatile unsigned char *)NANDFLASH_BASE))
#define REG_NAND_DATA16 (*((volatile unsigned short *)NANDFLASH_BASE))
#define REG_NAND_DATA REG_NAND_DATA8
#define REG_NAND_CMD (*((volatile unsigned char *)(NANDFLASH_BASE + NANDFLASH_CLE)))
#define REG_NAND_ADDR (*((volatile unsigned char *)(NANDFLASH_BASE + NANDFLASH_ALE)))
#define JZ_NAND_SELECT (REG_EMC_NFCSR |= EMC_NFCSR_NFCE1 )
#define JZ_NAND_DESELECT (REG_EMC_NFCSR &= ~(EMC_NFCSR_NFCE1))
#define __nand_enable() (REG_EMC_NFCSR |= (EMC_NFCSR_NFE1 | EMC_NFCSR_NFCE1))
#define __nand_disable() (REG_EMC_NFCSR &= ~(EMC_NFCSR_NFCE1))
#define __nand_ecc_disable() (REG_EMC_NFECR &= ~EMC_NFECR_ECCE)
#define __nand_ecc_encode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_ENCF))
#define __nand_ecc_decode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_DECF))
#define __nand_ecc_rs_encoding() \
(REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_ENCODING)
#define __nand_ecc_rs_decoding() \
(REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_DECODING)
#define my__gpio_as_nand() \
do { \
REG_GPIO_PXFUNS(1) = 0x1E018000; \
REG_GPIO_PXSELC(1) = 0x1E018000; \
REG_GPIO_PXFUNS(2) = 0x30000000; \
REG_GPIO_PXSELC(2) = 0x30000000; \
REG_GPIO_PXFUNC(2) = 0x40000000; \
REG_GPIO_PXSELC(2) = 0x40000000; \
REG_GPIO_PXDIRC(2) = 0x40000000; \
REG_GPIO_PXFUNS(1) = 0x00400000; \
REG_GPIO_PXSELC(1) = 0x00400000; \
} while (0)
static struct nand_info* chip_info = NULL;
#define NAND_BLOCK_SIZE (chip_info->pages_per_block * chip_info->page_size)
#define NAND_OOB_SIZE (chip_info->page_size / 32)
struct nand_page_info_t
{
unsigned char block_status;
unsigned int reserved;
unsigned short block_addr_field;
unsigned int lifetime;
unsigned char ecc_field[50];//[NAND_OOB_SIZE - 11];
} __attribute__ ((packed));
static void nand_wait_ready(void)
{
int wait = 100;
while(REG_GPIO_PXPIN(2) & (1 << 30) && wait--);
while (!(REG_GPIO_PXPIN(2) & 0x40000000));
}
static inline void nand_read_memcpy(void *target, void *source, unsigned int len)
{
int ch = 2;
if(((unsigned int)source < 0xa0000000) && len)
dma_cache_wback_inv((unsigned long)source, len);
if(((unsigned int)target < 0xa0000000) && len)
dma_cache_wback_inv((unsigned long)target, len);
REG_DMAC_DSAR(ch) = PHYSADDR((unsigned long)source);
REG_DMAC_DTAR(ch) = PHYSADDR((unsigned long)target);
REG_DMAC_DTCR(ch) = len / 4;
REG_DMAC_DRSR(ch) = DMAC_DRSR_RS_AUTO;
REG_DMAC_DCMD(ch) = DMAC_DCMD_SAI | DMAC_DCMD_DAI | DMAC_DCMD_SWDH_8 | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_32BIT;
REG_DMAC_DCCSR(ch) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;
while ( REG_DMAC_DTCR(ch) );
}
static void rs_correct(unsigned char *buf, int idx, int mask)
{
int i, j;
unsigned short d, d1, dm;
i = (idx * 9) >> 3;
j = (idx * 9) & 0x7;
i = (j == 0) ? (i - 1) : i;
j = (j == 0) ? 7 : (j - 1);
if(i >= 512)
return;
d = (buf[i] << 8) | buf[i - 1];
d1 = (d >> j) & 0x1ff;
d1 ^= mask;
dm = ~(0x1ff << j);
d = (d & dm) | (d1 << j);
buf[i - 1] = d & 0xff;
buf[i] = (d >> 8) & 0xff;
}
static inline int nand_rs_correct(unsigned char *data)
{
unsigned int stat = REG_EMC_NFINTS;
if (stat & EMC_NFINTS_ERR) {
if (stat & EMC_NFINTS_UNCOR)
{
panicf("Uncorrectable ECC error occurred!\n stat = 0x%x", stat);
return -1;
}
else
{
unsigned int errcnt = (stat & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
switch (errcnt)
{
case 4:
rs_correct(data, (REG_EMC_NFERR3 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR3 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
break;
case 3:
rs_correct(data, (REG_EMC_NFERR2 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR2 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
break;
case 2:
rs_correct(data, (REG_EMC_NFERR1 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR1 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
break;
case 1:
rs_correct(data, (REG_EMC_NFERR0 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR0 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
break;
}
}
}
return 0;
}
static inline void nand_send_readaddr(unsigned int pageaddr, unsigned int offset)
{
int i;
/* Read command */
REG_NAND_CMD = 0x00;
/* Write column address */
for (i = 0; i < chip_info->col_cycles; i++)
{
REG_NAND_ADDR = offset & 0xFF;
offset = offset >> 8;
}
/* Write row address */
for (i = 0; i < chip_info->row_cycles; i++)
{
REG_NAND_ADDR = pageaddr & 0xFF;
pageaddr = pageaddr >> 8;
}
}
static inline void nand_send_readcacheaddr(unsigned short offset)
{
REG_NAND_CMD = 0x05;
REG_NAND_ADDR = (unsigned char)((offset & 0x000000FF) >> 0);
REG_NAND_ADDR = (unsigned char)((offset & 0x0000FF00) >> 8);
REG_NAND_CMD = 0xe0;
}
static inline int nand_read_oob(int page, unsigned char *data)
{
unsigned short i;
nand_send_readaddr(page, chip_info->page_size);
REG_NAND_CMD = 0x30;
nand_wait_ready();
for ( i = 0; i < NAND_OOB_SIZE; i++)
*data++ = REG_NAND_ADDR;
return 0;
}
static int nand_read_page_info(int page, struct nand_page_info_t *info)
{
int ret;
JZ_NAND_SELECT;
ret = nand_read_oob(page, (unsigned char*)info);
JZ_NAND_DESELECT;
return ret;
}
static struct nand_page_info_t page_info;
int jz_nand_read_page (int page, unsigned char *data)
{
int ret, i;
JZ_NAND_SELECT;
ret = nand_read_oob(page, &page_info);
nand_send_readcacheaddr(0);
/* TODO: use information from page_info */
for ( i = 0; i < chip_info->page_size; i++)
*data++ = REG_NAND_ADDR;
JZ_NAND_DESELECT;
return ret;
}
int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int count, void* buf)
{
(void)start;
(void)count;
(void)buf;
return 0;
}
int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf)
{
(void)start;
(void)count;
(void)buf;
return 0;
}
int ata_init(void)
{
/* Read/Write timings */
#define SET_STANDARD_TIMING(x) x = (((x) & ~0xFF) | 0x4621200)
SET_STANDARD_TIMING(REG_EMC_SMCR1);
SET_STANDARD_TIMING(REG_EMC_SMCR2);
SET_STANDARD_TIMING(REG_EMC_SMCR3);
SET_STANDARD_TIMING(REG_EMC_SMCR4);
/* Set NFE bit */
REG_EMC_NFCSR = EMC_NFCSR_NFE1;
__nand_ecc_disable();
unsigned char cData[5];
JZ_NAND_SELECT;
REG_NAND_CMD = NAND_CMD_READ_ID1;
REG_NAND_ADDR = NAND_CMD_READ1_00;
cData[0] = REG_NAND_DATA;
cData[1] = REG_NAND_DATA;
cData[2] = REG_NAND_DATA;
cData[3] = REG_NAND_DATA;
cData[4] = REG_NAND_DATA;
JZ_NAND_DESELECT;
chip_info = nand_identify(cData);
if(chip_info == NULL)
{
panicf("Unknown NAND flash chip: 0x%x 0x%x 0x%x 0x%x 0x%x", cData[0],
cData[1], cData[2], cData[3], cData[4]);
return -1;
}
/* Set timings */
return 0;
}