rockbox/apps/codecs/libwma/wmadeci.c
Michael Giacomelli e0473717e5 Merged in ffmpeg combined MDCT reconstruction. Saves us a 16KB buffer, and gives a nice speed increase. Brings code much closer to ffmpeg's.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@13803 a1c6a512-1295-4272-9138-f99709370657
2007-07-06 01:50:24 +00:00

2119 lines
59 KiB
C

/*
* WMA compatible decoder
* Copyright (c) 2002 The FFmpeg Project.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* @file wmadec.c
* WMA compatible decoder.
*/
#include <codecs.h>
#include <codecs/lib/codeclib.h>
#include "asf.h"
#include "wmadec.h"
#include "wmafixed.c"
#ifdef CPU_ARM
static inline
void CMUL(fixed32 *x, fixed32 *y,
fixed32 a, fixed32 b,
fixed32 t, fixed32 v)
{
/* This version loses one bit of precision. Could be solved at the cost
* of 2 extra cycles if it becomes an issue. */
int x1, y1, l;
asm(
"smull %[l], %[y1], %[b], %[t] \n"
"smlal %[l], %[y1], %[a], %[v] \n"
"rsb %[b], %[b], #0 \n"
"smull %[l], %[x1], %[a], %[t] \n"
"smlal %[l], %[x1], %[b], %[v] \n"
: [l] "=&r" (l), [x1]"=&r" (x1), [y1]"=&r" (y1), [b] "+r" (b)
: [a] "r" (a), [t] "r" (t), [v] "r" (v)
: "cc"
);
*x = x1 << 1;
*y = y1 << 1;
}
#elif defined CPU_COLDFIRE
static inline
void CMUL(fixed32 *x, fixed32 *y,
fixed32 a, fixed32 b,
fixed32 t, fixed32 v)
{
asm volatile ("mac.l %[a], %[t], %%acc0;"
"msac.l %[b], %[v], %%acc0;"
"mac.l %[b], %[t], %%acc1;"
"mac.l %[a], %[v], %%acc1;"
"movclr.l %%acc0, %[a];"
"move.l %[a], (%[x]);"
"movclr.l %%acc1, %[a];"
"move.l %[a], (%[y]);"
: [a] "+&r" (a)
: [x] "a" (x), [y] "a" (y),
[b] "r" (b), [t] "r" (t), [v] "r" (v)
: "cc", "memory");
}
#else
// PJJ : reinstate macro
void CMUL(fixed32 *pre,
fixed32 *pim,
fixed32 are,
fixed32 aim,
fixed32 bre,
fixed32 bim)
{
//int64_t x,y;
fixed32 _aref = are;
fixed32 _aimf = aim;
fixed32 _bref = bre;
fixed32 _bimf = bim;
fixed32 _r1 = fixmul32b(_bref, _aref);
fixed32 _r2 = fixmul32b(_bimf, _aimf);
fixed32 _r3 = fixmul32b(_bref, _aimf);
fixed32 _r4 = fixmul32b(_bimf, _aref);
*pre = _r1 - _r2;
*pim = _r3 + _r4;
}
#endif
typedef struct CoefVLCTable
{
int n; /* total number of codes */
const uint32_t *huffcodes; /* VLC bit values */
const uint8_t *huffbits; /* VLC bit size */
const uint16_t *levels; /* table to build run/level tables */
}
CoefVLCTable;
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
int fft_calc(FFTContext *s, FFTComplex *z);
//static variables that replace malloced stuff
fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128]; //these are the MDCT reconstruction windows
fixed32 *tcosarray[5], *tsinarray[5];
fixed32 tcos0[1024], tcos1[512], tcos2[256], tcos3[128], tcos4[64]; //these are the sin and cos rotations used by the MDCT
fixed32 tsin0[1024], tsin1[512], tsin2[256], tsin3[128], tsin4[64];
FFTComplex *exparray[5]; //these are the fft lookup tables
uint16_t *revarray[5];
FFTComplex exptab0[512] IBSS_ATTR;//, exptab1[256], exptab2[128], exptab3[64], exptab4[32]; //folded these in!
uint16_t revtab0[1024], revtab1[512], revtab2[256], revtab3[128], revtab4[64];
uint16_t *runtabarray[2], *levtabarray[2]; //these are VLC lookup tables
uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336]; //these could be made smaller since only one can be 1336
//may also be too large by ~ 1KB each?
static VLC_TYPE vlcbuf1[6144][2];
static VLC_TYPE vlcbuf2[3584][2];
static VLC_TYPE vlcbuf3[1536][2] IBSS_ATTR; //small so lets try iram
#include "wmadata.h" // PJJ
/**
* The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
* done
*/
int fft_inits(FFTContext *s, int nbits, int inverse)
{
int i, j, m, n;
fixed32 c1, s1;
int s2;
s->nbits = nbits;
n = 1 << nbits;
//s->exptab = exparray[10-nbits]; //not needed
//s->exptab = av_malloc((n >> 1) * sizeof(FFTComplex));
//if (!s->exptab)
// goto fail;
s->revtab = revarray[10-nbits];
//s->revtab = av_malloc(n * sizeof(uint16_t));
//if (!s->revtab)
// goto fail;
s->inverse = inverse;
s2 = inverse ? 1 : -1;
if(nbits == 10){ //we folded all these stupid tables into the nbits==10 table, so don't make it for the others!
//should probably just remove exptab building out of this function and do it higher up for neatness
for(i=0;i<(n/2);++i)
{
//we're going to redo this in CORDIC fixed format! Hold onto your butts
/*
input to cordic is from 0 ->2pi with 0->0 and 2^32-1 ->2pi
output, which is what we'll store the variables as is
-1->-2^31 and 1->2^31-1
*/
fixed32 ifix = itofix32(i);
fixed32 nfix = itofix32(n);
fixed32 res = fixdiv32(ifix,nfix); //this is really bad here since nfix can be as large as 1024 !
//also, make this a shift, since its a fucking power of two divide
//alpha = fixmul32(TWO_M_PI_F, res);
//ct = fixcos32(alpha); //need to correct alpha for 0->2pi scale
//st = fixsin32(alpha);// * s2;
s1 = fsincos(res<<16, &c1); //does sin and cos in one pass!
//I really have my doubts about the correctness of the alpha to cordic mapping here, but it seems to work well enough
//double check this later!
exptab0[i].re = c1;
exptab0[i].im = s1*s2;
}
}
// s->fft_calc = fft_calc;
s->exptab1 = NULL;
/* compute bit reverse table */
for(i=0;i<n;i++)
{
m=0;
for(j=0;j<nbits;j++)
{
m |= ((i >> j) & 1) << (nbits-j-1);
}
s->revtab[i]=m;
}
return 0;
//fail:
// av_freep(&s->revtab);
// av_freep(&s->exptab);
// av_freep(&s->exptab1);
return -1;
}
/* butter fly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
{\
fixed32 ax, ay, bx, by;\
bx=pre1;\
by=pim1;\
ax=qre1;\
ay=qim1;\
pre = (bx + ax);\
pim = (by + ay);\
qre = (bx - ax);\
qim = (by - ay);\
}
int fft_calc_unscaled(FFTContext *s, FFTComplex *z)
{
int ln = s->nbits;
int j, np, np2;
int nblocks, nloops;
register FFTComplex *p, *q;
// FFTComplex *exptab = s->exptab;
int l;
fixed32 tmp_re, tmp_im;
int tabshift = 10-ln;
np = 1 << ln;
/* pass 0 */
p=&z[0];
j=(np >> 1);
do
{
BF(p[0].re, p[0].im, p[1].re, p[1].im,
p[0].re, p[0].im, p[1].re, p[1].im);
p+=2;
}
while (--j != 0);
/* pass 1 */
p=&z[0];
j=np >> 2;
if (s->inverse)
{
do
{
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, -p[3].im, p[3].re);
p+=4;
}
while (--j != 0);
}
else
{
do
{
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, p[3].im, -p[3].re);
p+=4;
}
while (--j != 0);
}
/* pass 2 .. ln-1 */
nblocks = np >> 3;
nloops = 1 << 2;
np2 = np >> 1;
do
{
p = z;
q = z + nloops;
for (j = 0; j < nblocks; ++j)
{
BF(p->re, p->im, q->re, q->im,
p->re, p->im, q->re, q->im);
p++;
q++;
for(l = nblocks; l < np2; l += nblocks)
{
CMUL(&tmp_re, &tmp_im, exptab0[(l<<tabshift)].re, exptab0[(l<<tabshift)].im, q->re, q->im);
//CMUL(&tmp_re, &tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
BF(p->re, p->im, q->re, q->im,
p->re, p->im, tmp_re, tmp_im);
p++;
q++;
}
p += nloops;
q += nloops;
}
nblocks = nblocks >> 1;
nloops = nloops << 1;
}
while (nblocks != 0);
return 0;
}
/*
//needless since we're statically allocated
void fft_end(FFTContext *s)
{
// av_freep(&s->revtab);
// av_freep(&s->exptab);
// av_freep(&s->exptab1);
}
*/
/* VLC decoding */
#define GET_VLC(code, name, gb, table, bits, max_depth)\
{\
int n, index, nb_bits;\
\
index= SHOW_UBITS(name, gb, bits);\
code = table[index][0];\
n = table[index][1];\
\
if(max_depth > 1 && n < 0){\
LAST_SKIP_BITS(name, gb, bits)\
UPDATE_CACHE(name, gb)\
\
nb_bits = -n;\
\
index= SHOW_UBITS(name, gb, nb_bits) + code;\
code = table[index][0];\
n = table[index][1];\
if(max_depth > 2 && n < 0){\
LAST_SKIP_BITS(name, gb, nb_bits)\
UPDATE_CACHE(name, gb)\
\
nb_bits = -n;\
\
index= SHOW_UBITS(name, gb, nb_bits) + code;\
code = table[index][0];\
n = table[index][1];\
}\
}\
SKIP_BITS(name, gb, n)\
}
//#define DEBUG_VLC
#define GET_DATA(v, table, i, wrap, size) \
{\
const uint8_t *ptr = (const uint8_t *)table + i * wrap;\
switch(size) {\
case 1:\
v = *(const uint8_t *)ptr;\
break;\
case 2:\
v = *(const uint16_t *)ptr;\
break;\
default:\
v = *(const uint32_t *)ptr;\
break;\
}\
}
// deprecated, dont use get_vlc for new code, use get_vlc2 instead or use GET_VLC directly
static inline int get_vlc(GetBitContext *s, VLC *vlc)
{
int code;
VLC_TYPE (*table)[2]= vlc->table;
OPEN_READER(re, s)
UPDATE_CACHE(re, s)
GET_VLC(code, re, s, table, vlc->bits, 3)
CLOSE_READER(re, s)
return code;
}
static int alloc_table(VLC *vlc, int size)
{
int index;
index = vlc->table_size;
vlc->table_size += size;
if (vlc->table_size > vlc->table_allocated)
{
// rb->splash(HZ*10, "OH CRAP, TRIED TO REALLOC A STATIC VLC TABLE!");
vlc->table_allocated += (1 << vlc->bits);
// vlc->table = av_realloc(vlc->table,
// sizeof(VLC_TYPE) * 2 * vlc->table_allocated);
if (!vlc->table)
return -1;
}
return index;
}
static int build_table(VLC *vlc, int table_nb_bits,
int nb_codes,
const void *bits, int bits_wrap, int bits_size,
const void *codes, int codes_wrap, int codes_size,
uint32_t code_prefix, int n_prefix)
{
int i, j, k, n, table_size, table_index, nb, n1, index;
uint32_t code;
VLC_TYPE (*table)[2];
table_size = 1 << table_nb_bits;
table_index = alloc_table(vlc, table_size);
if (table_index < 0)
return -1;
table = &vlc->table[table_index];
for(i=0;i<table_size;i++)
{
table[i][1] = 0; //bits
table[i][0] = -1; //codes
}
/* first pass: map codes and compute auxillary table sizes */
for(i=0;i<nb_codes;i++)
{
GET_DATA(n, bits, i, bits_wrap, bits_size);
GET_DATA(code, codes, i, codes_wrap, codes_size);
/* we accept tables with holes */
if (n <= 0)
continue;
/* if code matches the prefix, it is in the table */
n -= n_prefix;
if (n > 0 && (code >> n) == code_prefix)
{
if (n <= table_nb_bits)
{
/* no need to add another table */
j = (code << (table_nb_bits - n)) & (table_size - 1);
nb = 1 << (table_nb_bits - n);
for(k=0;k<nb;k++)
{
if (table[j][1] /*bits*/ != 0)
{
// PJJ exit(-1);
}
table[j][1] = n; //bits
table[j][0] = i; //code
j++;
}
}
else
{
n -= table_nb_bits;
j = (code >> n) & ((1 << table_nb_bits) - 1);
/* compute table size */
n1 = -table[j][1]; //bits
if (n > n1)
n1 = n;
table[j][1] = -n1; //bits
}
}
}
/* second pass : fill auxillary tables recursively */
for(i=0;i<table_size;i++)
{
n = table[i][1]; //bits
if (n < 0)
{
n = -n;
if (n > table_nb_bits)
{
n = table_nb_bits;
table[i][1] = -n; //bits
}
index = build_table(vlc, n, nb_codes,
bits, bits_wrap, bits_size,
codes, codes_wrap, codes_size,
(code_prefix << table_nb_bits) | i,
n_prefix + table_nb_bits);
if (index < 0)
return -1;
/* note: realloc has been done, so reload tables */
table = &vlc->table[table_index];
table[i][0] = index; //code
}
}
return table_index;
}
/* Build VLC decoding tables suitable for use with get_vlc().
'nb_bits' set thee decoding table size (2^nb_bits) entries. The
bigger it is, the faster is the decoding. But it should not be too
big to save memory and L1 cache. '9' is a good compromise.
'nb_codes' : number of vlcs codes
'bits' : table which gives the size (in bits) of each vlc code.
'codes' : table which gives the bit pattern of of each vlc code.
'xxx_wrap' : give the number of bytes between each entry of the
'bits' or 'codes' tables.
'xxx_size' : gives the number of bytes of each entry of the 'bits'
or 'codes' tables.
'wrap' and 'size' allows to use any memory configuration and types
(byte/word/long) to store the 'bits' and 'codes' tables.
*/
int init_vlc(VLC *vlc, int nb_bits, int nb_codes,
const void *bits, int bits_wrap, int bits_size,
const void *codes, int codes_wrap, int codes_size)
{
vlc->bits = nb_bits;
// vlc->table = NULL;
// vlc->table_allocated = 0;
vlc->table_size = 0;
if (build_table(vlc, nb_bits, nb_codes,
bits, bits_wrap, bits_size,
codes, codes_wrap, codes_size,
0, 0) < 0)
{
// av_free(vlc->table);
return -1;
}
//dump_table("Tab 1",vlc->table[0],vlc->table_size);
//dump_table("Tab 2",vlc->table[1],vlc->table_size);
return 0;
}
/**
* init MDCT or IMDCT computation.
*/
int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
{
int n, n4, i;
// fixed32 alpha;
memset(s, 0, sizeof(*s));
n = 1 << nbits; //nbits ranges from 12 to 8 inclusive
s->nbits = nbits;
s->n = n;
n4 = n >> 2;
s->tcos = tcosarray[12-nbits];
s->tsin = tsinarray[12-nbits];
//s->tcos = av_malloc(n4 * sizeof(fixed32)); //this allocates between 1024 and 64 elements
//if (!s->tcos)
// goto fail;
//s->tsin = av_malloc(n4 * sizeof(fixed32));
//if (!s->tsin)
// goto fail;
//
for(i=0;i<n4;i++)
{
//fixed32 pi2 = fixmul32(0x20000, M_PI_F);
fixed32 ip = itofix32(i) + 0x2000;
ip = ip >> nbits;
//ip = fixdiv32(ip,itofix32(n)); // PJJ optimize
//alpha = fixmul32(TWO_M_PI_F, ip);
//s->tcos[i] = -fixcos32(alpha); //alpha between 0 and pi/2
//s->tsin[i] = -fixsin32(alpha);
s->tsin[i] = - fsincos(ip<<16, &(s->tcos[i])); //I can't remember why this works, but it seems to agree for ~24 bits, maybe more!
s->tcos[i] *=-1;
}
if (fft_inits(&s->fft, s->nbits - 2, inverse) < 0)
goto fail;
return 0;
fail:
// av_freep(&s->tcos);
// av_freep(&s->tsin);
return -1;
}
/**
* Compute inverse MDCT of size N = 2^nbits
* @param output N samples
* @param input N/2 samples
* @param tmp N/2 samples
*/
void ff_imdct_calc(MDCTContext *s,
fixed32 *output,
const fixed32 *input,
FFTComplex *tmp)
{
int k, n8, n4, n2, n, j,scale;
const uint16_t *revtab = s->fft.revtab;
const fixed32 *tcos = s->tcos;
const fixed32 *tsin = s->tsin;
const fixed32 *in1, *in2;
FFTComplex *z = (FFTComplex *)tmp;
n = 1 << s->nbits;
n2 = n >> 1;
n4 = n >> 2;
n8 = n >> 3;
/* pre rotation */
in1 = input;
in2 = input + n2 - 1;
for(k = 0; k < n4; k++)
{
j=revtab[k];
CMUL(&z[j].re, &z[j].im, *in2, *in1, tcos[k], tsin[k]);
in1 += 2;
in2 -= 2;
}
for(k = 0; k < n4; k++){
z[k].re >>=1;
z[k].im >>=1;
}
//rb->splash(HZ, "in MDCT calc");
scale = fft_calc_unscaled(&s->fft, z);
// scale = fft_calc(&s->fft, z);
//rb->splash(HZ, "in MDCT calc2");
/* post rotation + reordering */
for(k = 0; k < n4; k++)
{
CMUL(&z[k].re, &z[k].im, (z[k].re), (z[k].im), tcos[k], tsin[k]);
}
for(k = 0; k < n8; k++)
{
fixed32 r1,r2,r3,r4,r1n,r2n,r3n;
r1 = z[n8 + k].im;
r1n = r1 * -1;
r2 = z[n8-1-k].re;
r2n = r2 * -1;
r3 = z[k+n8].re;
r3n = r3 * -1;
r4 = z[n8-k-1].im;
output[2*k] = r1n;
output[n2-1-2*k] = r1;
output[2*k+1] = r2;
output[n2-1-2*k-1] = r2n;
output[n2 + 2*k]= r3n;
output[n-1- 2*k]= r3n;
output[n2 + 2*k+1]= r4;
output[n-2 - 2 * k] = r4;
}
}
void ff_mdct_end(MDCTContext *s)
{
(void)s;
// av_freep(&s->tcos);
// av_freep(&s->tsin);
// fft_end(&s->fft);
}
/*
* Helper functions for wma_window.
* TODO: Optimize these to work with 1.31 format trig functions
* as was done for the MDCT rotation code
*/
static void vector_fmul_add_add(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, const fixed32 *src2, int src3, int len, int step){
int i;
for(i=0; i<len; i++)
dst[i*step] = fixmul32(src0[i], src1[i]) + src2[i] + src3;
}
static void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
int i;
src1 += len-1;
for(i=0; i<len; i++)
dst[i] = fixmul32(src0[i], src1[-i]);
}
/**
* Apply MDCT window and add into output.
*
* We ensure that when the windows overlap their squared sum
* is always 1 (MDCT reconstruction rule).
*/
static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out)
{
//float *in = s->output;
int block_len, bsize, n;
/* left part */
if (s->block_len_bits <= s->prev_block_len_bits) {
block_len = s->block_len;
bsize = s->frame_len_bits - s->block_len_bits;
vector_fmul_add_add(out, in, s->windows[bsize],
out, 0, block_len, 1);
} else {
block_len = 1 << s->prev_block_len_bits;
n = (s->block_len - block_len) / 2;
bsize = s->frame_len_bits - s->prev_block_len_bits;
vector_fmul_add_add(out+n, in+n, s->windows[bsize],
out+n, 0, block_len, 1);
memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32));
}
out += s->block_len;
in += s->block_len;
/* right part */
if (s->block_len_bits <= s->next_block_len_bits) {
block_len = s->block_len;
bsize = s->frame_len_bits - s->block_len_bits;
vector_fmul_reverse(out, in, s->windows[bsize], block_len);
} else {
block_len = 1 << s->next_block_len_bits;
n = (s->block_len - block_len) / 2;
bsize = s->frame_len_bits - s->next_block_len_bits;
memcpy(out, in, n*sizeof(fixed32));
vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
memset(out+n+block_len, 0, n*sizeof(fixed32));
}
}
/* XXX: use same run/length optimization as mpeg decoders */
static void init_coef_vlc(VLC *vlc,
uint16_t **prun_table, uint16_t **plevel_table,
const CoefVLCTable *vlc_table, int tab)
{
int n = vlc_table->n;
const uint8_t *table_bits = vlc_table->huffbits;
const uint32_t *table_codes = vlc_table->huffcodes;
const uint16_t *levels_table = vlc_table->levels;
uint16_t *run_table, *level_table;
const uint16_t *p;
int i, l, j, level;
init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4);
run_table = runtabarray[tab];
//run_table = av_malloc(n * sizeof(uint16_t)); //max n should be 1336
level_table= levtabarray[tab];
//level_table = av_malloc(n * sizeof(uint16_t));
p = levels_table;
i = 2;
level = 1;
while (i < n)
{
l = *p++;
for(j=0;j<l;++j)
{
run_table[i] = j;
level_table[i] = level;
++i;
}
++level;
}
*prun_table = run_table;
*plevel_table = level_table;
}
int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
{
//WMADecodeContext *s = avctx->priv_data;
int i, flags1, flags2;
fixed32 *window;
uint8_t *extradata;
fixed64 bps1;
fixed32 high_freq;
fixed64 bps;
int sample_rate1;
int coef_vlc_table;
// int filehandle;
#ifdef CPU_COLDFIRE
coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
#endif
s->sample_rate = wfx->rate;
s->nb_channels = wfx->channels;
s->bit_rate = wfx->bitrate;
s->block_align = wfx->blockalign;
if (wfx->codec_id == ASF_CODEC_ID_WMAV1){
s->version = 1;
}else{
s->version = 2;
}
/* extract flag infos */
flags1 = 0;
flags2 = 0;
extradata = wfx->data;
if (s->version == 1 && wfx->datalen >= 4) {
flags1 = extradata[0] | (extradata[1] << 8);
flags2 = extradata[2] | (extradata[3] << 8);
}else if (s->version == 2 && wfx->datalen >= 6){
flags1 = extradata[0] | (extradata[1] << 8) |
(extradata[2] << 16) | (extradata[3] << 24);
flags2 = extradata[4] | (extradata[5] << 8);
}
s->use_exp_vlc = flags2 & 0x0001;
s->use_bit_reservoir = flags2 & 0x0002;
s->use_variable_block_len = flags2 & 0x0004;
/* compute MDCT block size */
if (s->sample_rate <= 16000){
s->frame_len_bits = 9;
}else if (s->sample_rate <= 22050 ||
(s->sample_rate <= 32000 && s->version == 1)){
s->frame_len_bits = 10;
}else{
s->frame_len_bits = 11;
}
s->frame_len = 1 << s->frame_len_bits;
if (s-> use_variable_block_len)
{
int nb_max, nb;
nb = ((flags2 >> 3) & 3) + 1;
if ((s->bit_rate / s->nb_channels) >= 32000)
{
nb += 2;
}
nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
if (nb > nb_max)
nb = nb_max;
s->nb_block_sizes = nb + 1;
}
else
{
s->nb_block_sizes = 1;
}
/* init rate dependant parameters */
s->use_noise_coding = 1;
high_freq = fixmul64byfixed(itofix64(s->sample_rate), 0x8000);
/* if version 2, then the rates are normalized */
sample_rate1 = s->sample_rate;
if (s->version == 2)
{
if (sample_rate1 >= 44100)
sample_rate1 = 44100;
else if (sample_rate1 >= 22050)
sample_rate1 = 22050;
else if (sample_rate1 >= 16000)
sample_rate1 = 16000;
else if (sample_rate1 >= 11025)
sample_rate1 = 11025;
else if (sample_rate1 >= 8000)
sample_rate1 = 8000;
}
fixed64 tmp = itofix64(s->bit_rate);
fixed64 tmp2 = itofix64(s->nb_channels * s->sample_rate);
bps = fixdiv64(tmp, tmp2);
fixed64 tim = fixmul64byfixed(bps, s->frame_len);
fixed64 tmpi = fixdiv64(tim,itofix64(8));
s->byte_offset_bits = av_log2(fixtoi64(tmpi)) + 2;
/* compute high frequency value and choose if noise coding should
be activated */
bps1 = bps;
if (s->nb_channels == 2)
bps1 = fixmul32(bps,0x1999a);
if (sample_rate1 == 44100)
{
if (bps1 >= 0x9c29)
s->use_noise_coding = 0;
else
high_freq = fixmul64byfixed(high_freq,0x6666);
}
else if (sample_rate1 == 22050)
{
if (bps1 >= 0x128f6)
s->use_noise_coding = 0;
else if (bps1 >= 0xb852)
high_freq = fixmul64byfixed(high_freq,0xb333);
else
high_freq = fixmul64byfixed(high_freq,0x999a);
}
else if (sample_rate1 == 16000)
{
if (bps > 0x8000)
high_freq = fixmul64byfixed(high_freq,0x8000);
else
high_freq = fixmul64byfixed(high_freq,0x4ccd);
}
else if (sample_rate1 == 11025)
{
high_freq = fixmul64byfixed(high_freq,0xb3333);
}
else if (sample_rate1 == 8000)
{
if (bps <= 0xa000)
{
high_freq = fixmul64byfixed(high_freq,0x8000);
}
else if (bps > 0xc000)
{
s->use_noise_coding = 0;
}
else
{
high_freq = fixmul64byfixed(high_freq,0xa666);
}
}
else
{
if (bps >= 0xcccd)
{
high_freq = fixmul64byfixed(high_freq,0xc000);
}
else if (bps >= 0x999a)
{
high_freq = fixmul64byfixed(high_freq,0x999a);
}
else
{
high_freq = fixmul64byfixed(high_freq,0x8000);
}
}
/* compute the scale factor band sizes for each MDCT block size */
{
int a, b, pos, lpos, k, block_len, i, j, n;
const uint8_t *table;
if (s->version == 1)
{
s->coefs_start = 3;
}
else
{
s->coefs_start = 0;
}
for(k = 0; k < s->nb_block_sizes; ++k)
{
block_len = s->frame_len >> k;
if (s->version == 1)
{
lpos = 0;
for(i=0;i<25;++i)
{
a = wma_critical_freqs[i];
b = s->sample_rate;
pos = ((block_len * 2 * a) + (b >> 1)) / b;
if (pos > block_len)
pos = block_len;
s->exponent_bands[0][i] = pos - lpos;
if (pos >= block_len)
{
++i;
break;
}
lpos = pos;
}
s->exponent_sizes[0] = i;
}
else
{
/* hardcoded tables */
table = NULL;
a = s->frame_len_bits - BLOCK_MIN_BITS - k;
if (a < 3)
{
if (s->sample_rate >= 44100)
table = exponent_band_44100[a];
else if (s->sample_rate >= 32000)
table = exponent_band_32000[a];
else if (s->sample_rate >= 22050)
table = exponent_band_22050[a];
}
if (table)
{
n = *table++;
for(i=0;i<n;++i)
s->exponent_bands[k][i] = table[i];
s->exponent_sizes[k] = n;
}
else
{
j = 0;
lpos = 0;
for(i=0;i<25;++i)
{
a = wma_critical_freqs[i];
b = s->sample_rate;
pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
pos <<= 2;
if (pos > block_len)
pos = block_len;
if (pos > lpos)
s->exponent_bands[k][j++] = pos - lpos;
if (pos >= block_len)
break;
lpos = pos;
}
s->exponent_sizes[k] = j;
}
}
/* max number of coefs */
s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
/* high freq computation */
fixed64 tmp = itofix64(block_len<<2);
tmp = fixmul64byfixed(tmp,high_freq);
fixed64 tmp2 = itofix64(s->sample_rate);
tmp2 += 0x8000;
s->high_band_start[k] = fixtoi64(fixdiv64(tmp,tmp2));
/*
s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
s->sample_rate + 0.5);*/
n = s->exponent_sizes[k];
j = 0;
pos = 0;
for(i=0;i<n;++i)
{
int start, end;
start = pos;
pos += s->exponent_bands[k][i];
end = pos;
if (start < s->high_band_start[k])
start = s->high_band_start[k];
if (end > s->coefs_end[k])
end = s->coefs_end[k];
if (end > start)
s->exponent_high_bands[k][j++] = end - start;
}
s->exponent_high_sizes[k] = j;
}
}
/* init MDCT */
tcosarray[0] = tcos0; tcosarray[1] = tcos1; tcosarray[2] = tcos2; tcosarray[3] = tcos3;tcosarray[4] = tcos4;
tsinarray[0] = tsin0; tsinarray[1] = tsin1; tsinarray[2] = tsin2; tsinarray[3] = tsin3;tsinarray[4] = tsin4;
exparray[0] = exptab0; //exparray[1] = exptab1; exparray[2] = exptab2; exparray[3] = exptab3; exparray[4] = exptab4;
revarray[0]=revtab0; revarray[1]=revtab1; revarray[2]=revtab2; revarray[3]=revtab3; revarray[4]=revtab4;
for(i = 0; i < s->nb_block_sizes; ++i)
{
ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
}
/*ffmpeg uses malloc to only allocate as many window sizes as needed. However, we're really only interested in the worst case memory usage.
* In the worst case you can have 5 window sizes, 128 doubling up 2048
* Smaller windows are handled differently.
* Since we don't have malloc, just statically allocate this
*/
fixed32 *temp[5];
temp[0] = stat0;
temp[1] = stat1;
temp[2] = stat2;
temp[3] = stat3;
temp[4] = stat4;
/* init MDCT windows : simple sinus window */
for(i = 0; i < s->nb_block_sizes; i++)
{
int n, j;
fixed32 alpha;
n = 1 << (s->frame_len_bits - i);
//window = av_malloc(sizeof(fixed32) * n);
window = temp[i];
//fixed32 n2 = itofix32(n<<1); //2x the window length
//alpha = fixdiv32(M_PI_F, n2); //PI / (2x Window length) == PI<<(s->frame_len_bits - i+1)
//printf("two values of alpha %16.10lf %16.10lf\n", fixtof64(alpha), fixtof64(M_PI_F>>(s->frame_len_bits - i+1)));
alpha = M_PI_F>>(s->frame_len_bits - i+1);
for(j=0;j<n;++j)
{
fixed32 j2 = itofix32(j) + 0x8000;
window[j] = fixsin32(fixmul32(j2,alpha)); //alpha between 0 and pi/2
}
//printf("created window\n");
s->windows[i] = window;
//printf("assigned window\n");
}
s->reset_block_lengths = 1;
if (s->use_noise_coding)
{
/* init the noise generator */
if (s->use_exp_vlc)
{
s->noise_mult = 0x51f;
}
else
{
s->noise_mult = 0xa3d;
}
{
unsigned int seed;
fixed32 norm;
seed = 1;
norm = 0; // PJJ: near as makes any diff to 0!
for (i=0;i<NOISE_TAB_SIZE;++i)
{
seed = seed * 314159 + 1;
s->noise_table[i] = itofix32((int)seed) * norm;
}
}
init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits),
hgain_huffbits, 1, 1,
hgain_huffcodes, 2, 2);
}
if (s->use_exp_vlc)
{
s->exp_vlc.table = vlcbuf3;
s->exp_vlc.table_allocated = 1536;
init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits),
scale_huffbits, 1, 1,
scale_huffcodes, 4, 4);
}
else
{
wma_lsp_to_curve_init(s, s->frame_len);
}
/* choose the VLC tables for the coefficients */
coef_vlc_table = 2;
if (s->sample_rate >= 32000)
{
if (bps1 < 0xb852)
coef_vlc_table = 0;
else if (bps1 < 0x128f6)
coef_vlc_table = 1;
}
runtabarray[0] = runtab0; runtabarray[1] = runtab1;
levtabarray[0] = levtab0; levtabarray[1] = levtab1;
s->coef_vlc[0].table = vlcbuf1;
s->coef_vlc[0].table_allocated = 24576/4;
s->coef_vlc[1].table = vlcbuf2;
s->coef_vlc[1].table_allocated = 14336/4;
init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
&coef_vlcs[coef_vlc_table * 2], 0);
init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
&coef_vlcs[coef_vlc_table * 2 + 1], 1);
return 0;
}
/* interpolate values for a bigger or smaller block. The block must
have multiple sizes */
static void interpolate_array(fixed32 *scale, int old_size, int new_size)
{
int i, j, jincr, k;
fixed32 v;
if (new_size > old_size)
{
jincr = new_size / old_size;
j = new_size;
for(i = old_size - 1; i >=0; --i)
{
v = scale[i];
k = jincr;
do
{
scale[--j] = v;
}
while (--k);
}
}
else if (new_size < old_size)
{
j = 0;
jincr = old_size / new_size;
for(i = 0; i < new_size; ++i)
{
scale[i] = scale[j];
j += jincr;
}
}
}
/* compute x^-0.25 with an exponent and mantissa table. We use linear
interpolation to reduce the mantissa table size at a small speed
expense (linear interpolation approximately doubles the number of
bits of precision). */
static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
{
union {
fixed64 f;
unsigned int v;
} u, t;
unsigned int e, m;
fixed64 a, b;
u.f = x;
e = u.v >> 23;
m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
/* build interpolation scale: 1 <= t < 2. */
t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
a = s->lsp_pow_m_table1[m];
b = s->lsp_pow_m_table2[m];
return lsp_pow_e_table[e] * (a + b * t.f);
}
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
{
fixed32 wdel, a, b;
int i, m;
wdel = fixdiv32(M_PI_F, itofix32(frame_len));
for (i=0; i<frame_len; ++i)
{
s->lsp_cos_table[i] = 0x20000 * fixcos32(wdel * i); //wdel*i between 0 and pi
}
/* NOTE: these two tables are needed to avoid two operations in
pow_m1_4 */
b = itofix32(1);
int ix = 0;
for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
{
m = (1 << LSP_POW_BITS) + i;
a = m * (0x8000 / (1 << LSP_POW_BITS)); //PJJ
a = pow_a_table[ix++]; // PJJ : further refinement
s->lsp_pow_m_table1[i] = 2 * a - b;
s->lsp_pow_m_table2[i] = b - a;
b = a;
}
}
/* NOTE: We use the same code as Vorbis here */
/* XXX: optimize it further with SSE/3Dnow */
static void wma_lsp_to_curve(WMADecodeContext *s,
fixed32 *out,
fixed32 *val_max_ptr,
int n,
fixed32 *lsp)
{
int i, j;
fixed32 p, q, w, v, val_max;
val_max = 0;
for(i=0;i<n;++i)
{
p = 0x8000;
q = 0x8000;
w = s->lsp_cos_table[i];
for (j=1;j<NB_LSP_COEFS;j+=2)
{
q *= w - lsp[j - 1];
p *= w - lsp[j];
}
p *= p * (0x20000 - w);
q *= q * (0x20000 + w);
v = p + q;
v = pow_m1_4(s, v); // PJJ
if (v > val_max)
val_max = v;
out[i] = v;
}
*val_max_ptr = val_max;
}
/* decode exponents coded with LSP coefficients (same idea as Vorbis) */
static void decode_exp_lsp(WMADecodeContext *s, int ch)
{
fixed32 lsp_coefs[NB_LSP_COEFS];
int val, i;
for (i = 0; i < NB_LSP_COEFS; ++i)
{
if (i == 0 || i >= 8)
val = get_bits(&s->gb, 3);
else
val = get_bits(&s->gb, 4);
lsp_coefs[i] = lsp_codebook[i][val];
}
wma_lsp_to_curve(s,
s->exponents[ch],
&s->max_exponent[ch],
s->block_len,
lsp_coefs);
}
/* decode exponents coded with VLC codes */
static int decode_exp_vlc(WMADecodeContext *s, int ch)
{
int last_exp, n, code;
const uint16_t *ptr, *band_ptr;
fixed32 v, max_scale;
fixed32 *q,*q_end;
band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
ptr = band_ptr;
q = s->exponents[ch];
q_end = q + s->block_len;
max_scale = 0;
if (s->version == 1) //wmav1 only
{
last_exp = get_bits(&s->gb, 5) + 10;
/* XXX: use a table */
v = pow_10_to_yover16[last_exp];
max_scale = v;
n = *ptr++;
do
{
*q++ = v;
}
while (--n);
}
last_exp = 36;
while (q < q_end)
{
code = get_vlc(&s->gb, &s->exp_vlc);
if (code < 0)
{
return -1;
}
/* NOTE: this offset is the same as MPEG4 AAC ! */
last_exp += code - 60;
/* XXX: use a table */
v = pow_10_to_yover16[last_exp];
if (v > max_scale)
{
max_scale = v;
}
n = *ptr++;
do
{
*q++ = v;
}
while (--n);
}
s->max_exponent[ch] = max_scale;
return 0;
}
/* return 0 if OK. return 1 if last block of frame. return -1 if
unrecorrable error. */
static int wma_decode_block(WMADecodeContext *s)
{
int n, v, a, ch, code, bsize;
int coef_nb_bits, total_gain, parse_exponents;
//static fixed32 window[BLOCK_MAX_SIZE * 2]; //crap can't do this locally on the device! its big as the whole stack
int nb_coefs[MAX_CHANNELS];
fixed32 mdct_norm;
// printf("***decode_block: %d:%d (%d)\n", s->frame_count - 1, s->block_num, s->block_len);
/* compute current block length */
if (s->use_variable_block_len)
{
n = av_log2(s->nb_block_sizes - 1) + 1;
if (s->reset_block_lengths)
{
s->reset_block_lengths = 0;
v = get_bits(&s->gb, n);
if (v >= s->nb_block_sizes)
{
return -2;
}
s->prev_block_len_bits = s->frame_len_bits - v;
v = get_bits(&s->gb, n);
if (v >= s->nb_block_sizes)
{
return -3;
}
s->block_len_bits = s->frame_len_bits - v;
}
else
{
/* update block lengths */
s->prev_block_len_bits = s->block_len_bits;
s->block_len_bits = s->next_block_len_bits;
}
v = get_bits(&s->gb, n);
//rb->fdprintf(filehandle,"v %d \n prev_block_len_bits %d\n block_len_bits %d\n", v, s->prev_block_len_bits, s->block_len_bits);
//rb->close(filehandle);
LOGF("v was %d", v);
if (v >= s->nb_block_sizes)
{
// rb->splash(HZ*4, "v was %d", v); //5, 7
return -4; //this is it
}
else{
//rb->splash(HZ, "passed v block (%d)!", v);
}
s->next_block_len_bits = s->frame_len_bits - v;
}
else
{
/* fixed block len */
s->next_block_len_bits = s->frame_len_bits;
s->prev_block_len_bits = s->frame_len_bits;
s->block_len_bits = s->frame_len_bits;
}
/* now check if the block length is coherent with the frame length */
s->block_len = 1 << s->block_len_bits;
if ((s->block_pos + s->block_len) > s->frame_len)
{
return -5;
}
if (s->nb_channels == 2)
{
s->ms_stereo = get_bits(&s->gb, 1);
}
v = 0;
for (ch = 0; ch < s->nb_channels; ++ch)
{
a = get_bits(&s->gb, 1);
s->channel_coded[ch] = a;
v |= a;
}
/* if no channel coded, no need to go further */
/* XXX: fix potential framing problems */
if (!v)
{
goto next;
}
bsize = s->frame_len_bits - s->block_len_bits;
/* read total gain and extract corresponding number of bits for
coef escape coding */
total_gain = 1;
for(;;)
{
a = get_bits(&s->gb, 7);
total_gain += a;
if (a != 127)
{
break;
}
}
if (total_gain < 15)
coef_nb_bits = 13;
else if (total_gain < 32)
coef_nb_bits = 12;
else if (total_gain < 40)
coef_nb_bits = 11;
else if (total_gain < 45)
coef_nb_bits = 10;
else
coef_nb_bits = 9;
/* compute number of coefficients */
n = s->coefs_end[bsize] - s->coefs_start;
for(ch = 0; ch < s->nb_channels; ++ch)
{
nb_coefs[ch] = n;
}
/* complex coding */
if (s->use_noise_coding)
{
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
int i, n, a;
n = s->exponent_high_sizes[bsize];
for(i=0;i<n;++i)
{
a = get_bits(&s->gb, 1);
s->high_band_coded[ch][i] = a;
/* if noise coding, the coefficients are not transmitted */
if (a)
nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
}
}
}
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
int i, n, val, code;
n = s->exponent_high_sizes[bsize];
val = (int)0x80000000;
for(i=0;i<n;++i)
{
if (s->high_band_coded[ch][i])
{
if (val == (int)0x80000000)
{
val = get_bits(&s->gb, 7) - 19;
}
else
{
code = get_vlc(&s->gb, &s->hgain_vlc);
if (code < 0)
{
return -6;
}
val += code - 18;
}
s->high_band_values[ch][i] = val;
}
}
}
}
}
/* exposant can be interpolated in short blocks. */
parse_exponents = 1;
if (s->block_len_bits != s->frame_len_bits)
{
parse_exponents = get_bits(&s->gb, 1);
}
if (parse_exponents)
{
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
if (s->use_exp_vlc)
{
if (decode_exp_vlc(s, ch) < 0)
{
return -7;
}
}
else
{
decode_exp_lsp(s, ch);
}
}
}
}
else
{
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
interpolate_array(s->exponents[ch],
1 << s->prev_block_len_bits,
s->block_len);
}
}
}
//ok up to here!
//printf("got here!\n");
//rb->splash(HZ, "in wma_decode_block 2");
/* parse spectral coefficients : just RLE encoding */
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
VLC *coef_vlc;
int level, run, sign, tindex;
int16_t *ptr, *eptr;
const int16_t *level_table, *run_table;
/* special VLC tables are used for ms stereo because
there is potentially less energy there */
tindex = (ch == 1 && s->ms_stereo);
coef_vlc = &s->coef_vlc[tindex];
run_table = s->run_table[tindex];
level_table = s->level_table[tindex];
/* XXX: optimize */
ptr = &s->coefs1[ch][0];
eptr = ptr + nb_coefs[ch];
memset(ptr, 0, s->block_len * sizeof(int16_t));
for(;;)
{
code = get_vlc(&s->gb, coef_vlc);
if (code < 0)
{
return -8;
}
if (code == 1)
{
/* EOB */
break;
}
else if (code == 0)
{
/* escape */
level = get_bits(&s->gb, coef_nb_bits);
/* NOTE: this is rather suboptimal. reading
block_len_bits would be better */
run = get_bits(&s->gb, s->frame_len_bits);
}
else
{
/* normal code */
run = run_table[code];
level = level_table[code];
}
sign = get_bits(&s->gb, 1);
if (!sign)
level = -level;
ptr += run;
if (ptr >= eptr)
{
return -9;
}
*ptr++ = level;
/* NOTE: EOB can be omitted */
if (ptr >= eptr)
break;
}
}
if (s->version == 1 && s->nb_channels >= 2)
{
align_get_bits(&s->gb);
}
}
{
int n4 = s->block_len >> 1;
//mdct_norm = 0x10000;
//mdct_norm = fixdiv32(mdct_norm,itofix32(n4));
mdct_norm = 0x10000>>(s->block_len_bits-1); //theres no reason to do a divide by two in fixed precision ...
if (s->version == 1)
{
fixed32 tmp = fixsqrt32(itofix32(n4));
mdct_norm *= tmp; // PJJ : exercise this path
}
}
//rb->splash(HZ, "in wma_decode_block 3");
/* finally compute the MDCT coefficients */
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
int16_t *coefs1;
fixed32 *exponents, *exp_ptr;
fixed32 *coefs, atemp;
fixed64 mult;
fixed64 mult1;
fixed32 noise;
int i, j, n, n1, last_high_band;
fixed32 exp_power[HIGH_BAND_MAX_SIZE];
//double test, mul;
//total_gain, coefs1, mdctnorm are lossless
coefs1 = s->coefs1[ch];
exponents = s->exponents[ch];
mult = fixdiv64(pow_table[total_gain],Fixed32To64(s->max_exponent[ch]));
// mul = fixtof64(pow_table[total_gain])/(s->block_len/2)/fixtof64(s->max_exponent[ch]);
mult = fixmul64byfixed(mult, mdct_norm); //what the hell? This is actually fixed64*2^16!
coefs = s->coefs[ch]; //VLC exponenents are used to get MDCT coef here!
n=0;
if (s->use_noise_coding)
{
mult1 = mult;
/* very low freqs : noise */
for(i = 0;i < s->coefs_start; ++i)
{
*coefs++ = fixmul32(fixmul32(s->noise_table[s->noise_index],(*exponents++)),Fixed32From64(mult1));
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
}
n1 = s->exponent_high_sizes[bsize];
/* compute power of high bands */
exp_ptr = exponents +
s->high_band_start[bsize] -
s->coefs_start;
last_high_band = 0; /* avoid warning */
for (j=0;j<n1;++j)
{
n = s->exponent_high_bands[s->frame_len_bits -
s->block_len_bits][j];
if (s->high_band_coded[ch][j])
{
fixed32 e2, v;
e2 = 0;
for(i = 0;i < n; ++i)
{
v = exp_ptr[i];
e2 += v * v;
}
exp_power[j] = fixdiv32(e2,n);
last_high_band = j;
}
exp_ptr += n;
}
/* main freqs and high freqs */
for(j=-1;j<n1;++j)
{
if (j < 0)
{
n = s->high_band_start[bsize] -
s->coefs_start;
}
else
{
n = s->exponent_high_bands[s->frame_len_bits -
s->block_len_bits][j];
}
if (j >= 0 && s->high_band_coded[ch][j])
{
/* use noise with specified power */
fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
mult1 = (fixed64)fixsqrt32(tmp);
/* XXX: use a table */
mult1 = mult1 * pow_table[s->high_band_values[ch][j]];
mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
mult1 = fixmul64byfixed(mult1,mdct_norm);
for(i = 0;i < n; ++i)
{
noise = s->noise_table[s->noise_index];
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
*coefs++ = fixmul32(fixmul32(*exponents,noise),Fixed32From64(mult1));
++exponents;
}
}
else
{
/* coded values + small noise */
for(i = 0;i < n; ++i)
{
// PJJ: check code path
noise = s->noise_table[s->noise_index];
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
*coefs++ = fixmul32(fixmul32(((*coefs1++) + noise),*exponents),mult);
++exponents;
}
}
}
/* very high freqs : noise */
n = s->block_len - s->coefs_end[bsize];
mult1 = fixmul32(mult,exponents[-1]);
for (i = 0; i < n; ++i)
{
*coefs++ = fixmul32(s->noise_table[s->noise_index],Fixed32From64(mult1));
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
}
}
else
{
/* XXX: optimize more */
for(i = 0;i < s->coefs_start; ++i)
*coefs++ = 0; //why do we do this step?!
n = nb_coefs[ch];
for(i = 0;i < n; ++i)
{
atemp = (fixed32)(coefs1[i]*mult>>16);
//atemp= ftofix32(coefs1[i] * fixtof64(exponents[i]) * fixtof64(mult>>16)); //this "works" in the sense that the mdcts converge
*coefs++=fixmul32(atemp,exponents[i]); //this does not work
//atemp = ftofix32( coefs1[i]*mul* fixtof64(exponents[i]) ); //this doesn't seem to help any at all.
// *coefs++=atemp;
} //coefs1 could underflow?
n = s->block_len - s->coefs_end[bsize];
for(i = 0;i < n; ++i)
*coefs++ = 0;
}
}
}
if (s->ms_stereo && s->channel_coded[1])
{
fixed32 a, b;
int i;
/* nominal case for ms stereo: we do it before mdct */
/* no need to optimize this case because it should almost
never happen */
if (!s->channel_coded[0])
{
memset(s->coefs[0], 0, sizeof(fixed32) * s->block_len);
s->channel_coded[0] = 1;
}
for(i = 0; i < s->block_len; ++i)
{
a = s->coefs[0][i];
b = s->coefs[1][i];
s->coefs[0][i] = a + b;
s->coefs[1][i] = a - b;
}
}
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
static fixed32 output[BLOCK_MAX_SIZE * 2];
int n4, index, n;
n = s->block_len;
n4 = s->block_len >>1;
ff_imdct_calc(&s->mdct_ctx[bsize],
output,
s->coefs[ch],
s->mdct_tmp);
/* add in the frame */
index = (s->frame_len / 2) + s->block_pos - n4;
wma_window(s, output, &s->frame_out[ch][index]);
/* specific fast case for ms-stereo : add to second
channel if it is not coded */
if (s->ms_stereo && !s->channel_coded[1])
{
wma_window(s, output, &s->frame_out[1][index]);
}
}
}
next:
/* update block number */
++s->block_num;
s->block_pos += s->block_len;
if (s->block_pos >= s->frame_len)
{
return 1;
}
else
{
return 0;
}
}
/* decode a frame of frame_len samples */
static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
{
int ret, i, n, a, ch, incr;
int16_t *ptr;
fixed32 *iptr;
// rb->splash(HZ, "in wma_decode_frame");
/* read each block */
s->block_num = 0;
s->block_pos = 0;
for(;;)
{
ret = wma_decode_block(s);
if (ret < 0)
{
LOGF("wma_decode_block: %d",ret);
//rb->splash(HZ*4, "wma_decode_block failed with ret %d", ret);
return -1;
}
if (ret)
{
break;
}
}
/* convert frame to integer */
n = s->frame_len;
incr = s->nb_channels;
for(ch = 0; ch < s->nb_channels; ++ch)
{
ptr = samples + ch;
iptr = s->frame_out[ch];
for (i=0;i<n;++i)
{
a = fixtoi32(*iptr++)<<1; //ugly but good enough for now
if (a > 32767)
{
a = 32767;
}
else if (a < -32768)
{
a = -32768;
}
*ptr = a;
ptr += incr;
}
/* prepare for next block */
memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
s->frame_len * sizeof(fixed32));
}
return 0;
}
int wma_decode_superframe(WMADecodeContext* s,
void *data,
int *data_size,
uint8_t *buf,
int buf_size)
{
//WMADecodeContext *s = avctx->priv_data;
int nb_frames, bit_offset, i, pos, len;
uint8_t *q;
int16_t *samples;
if (buf_size==0)
{
s->last_superframe_len = 0;
return 0;
}
samples = data;
init_get_bits(&s->gb, buf, buf_size*8);
if (s->use_bit_reservoir)
{
/* read super frame header */
get_bits(&s->gb, 4); /* super frame index */
nb_frames = get_bits(&s->gb, 4) - 1;
bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
if (s->last_superframe_len > 0)
{
/* add bit_offset bits to last frame */
if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
MAX_CODED_SUPERFRAME_SIZE)
{
goto fail;
}
q = s->last_superframe + s->last_superframe_len;
len = bit_offset;
while (len > 0)
{
*q++ = (get_bits)(&s->gb, 8);
len -= 8;
}
if (len > 0)
{
*q++ = (get_bits)(&s->gb, len) << (8 - len);
}
/* XXX: bit_offset bits into last frame */
init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
/* skip unused bits */
if (s->last_bitoffset > 0)
skip_bits(&s->gb, s->last_bitoffset);
/* this frame is stored in the last superframe and in the
current one */
if (wma_decode_frame(s, samples) < 0)
{
goto fail;
}
samples += s->nb_channels * s->frame_len;
}
/* read each frame starting from bit_offset */
pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
len = pos & 7;
if (len > 0)
skip_bits(&s->gb, len);
s->reset_block_lengths = 1;
for(i=0;i<nb_frames;++i)
{
if (wma_decode_frame(s, samples) < 0)
{
goto fail;
}
samples += s->nb_channels * s->frame_len;
}
/* we copy the end of the frame in the last frame buffer */
pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
s->last_bitoffset = pos & 7;
pos >>= 3;
len = buf_size - pos;
if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
{
goto fail;
}
s->last_superframe_len = len;
memcpy(s->last_superframe, buf + pos, len);
}
else
{
/* single frame decode */
if (wma_decode_frame(s, samples) < 0)
{
goto fail;
}
samples += s->nb_channels * s->frame_len;
}
*data_size = (int8_t *)samples - (int8_t *)data;
return s->block_align;
fail:
/* when error, we reset the bit reservoir */
s->last_superframe_len = 0;
return -1;
}
/*void free_vlc(VLC *vlc)
{
//av_free(vlc->table);
}
*/
int wma_decode_end(WMADecodeContext *s)
{
(void)s;
/* WMADecodeContext *s = avctx->priv_data;
int i;
for(i = 0; i < s->nb_block_sizes; ++i)
ff_mdct_end(&s->mdct_ctx[i]);
// for(i = 0; i < s->nb_block_sizes; ++i) //now statically allocated
// av_free(s->windows[i]);
if (s->use_exp_vlc)
{
free_vlc(&s->exp_vlc);
}
if (s->use_noise_coding)
{
free_vlc(&s->hgain_vlc);
}
for(i = 0;i < 2; ++i)
{
// free_vlc(&s->coef_vlc[i]);
// av_free(s->run_table[i]);
// av_free(s->level_table[i]);
}
*/
return 0;
}