abd9f83e92
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@7644 a1c6a512-1295-4272-9138-f99709370657
755 lines
20 KiB
C
755 lines
20 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2005 Miika Pekkarinen
|
|
*
|
|
* All files in this archive are subject to the GNU General Public License.
|
|
* See the file COPYING in the source tree root for full license agreement.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include "dsp.h"
|
|
#include "kernel.h"
|
|
#include "playback.h"
|
|
#include "system.h"
|
|
#include "settings.h"
|
|
#include "replaygain.h"
|
|
#include "debug.h"
|
|
|
|
/* The "dither" code to convert the 24-bit samples produced by libmad was
|
|
* taken from the coolplayer project - coolplayer.sourceforge.net
|
|
*/
|
|
|
|
/* 16-bit samples are scaled based on these constants. The shift should be
|
|
* no more than 15.
|
|
*/
|
|
#define WORD_SHIFT 12
|
|
#define WORD_FRACBITS 27
|
|
|
|
#define NATIVE_DEPTH 16
|
|
#define SAMPLE_BUF_SIZE 256
|
|
#define RESAMPLE_BUF_SIZE (256 * 4) /* Enough for 11,025 Hz -> 44,100 Hz*/
|
|
#define DEFAULT_REPLAYGAIN 0x01000000
|
|
|
|
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
|
|
|
|
/* Multiply two S.31 fractional integers and return the sign bit and the
|
|
* 31 most significant bits of the result.
|
|
*/
|
|
#define FRACMUL(x, y) \
|
|
({ \
|
|
long t; \
|
|
asm volatile ("mac.l %[a], %[b], %%acc0\n\t" \
|
|
"movclr.l %%acc0, %[t]\n\t" \
|
|
: [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
|
|
t; \
|
|
})
|
|
|
|
/* Multiply one S.31-bit and one S8.23 fractional integer and return the
|
|
* sign bit and the 31 most significant bits of the result.
|
|
*/
|
|
#define FRACMUL_8(x, y) \
|
|
({ \
|
|
long t; \
|
|
long u; \
|
|
asm volatile ("mac.l %[a], %[b], %%acc0\n\t" \
|
|
"move.l %%accext01, %[u]\n\t" \
|
|
"movclr.l %%acc0, %[t]\n\t" \
|
|
: [t] "=r" (t), [u] "=r" (u) : [a] "r" (x), [b] "r" (y)); \
|
|
(t << 8) | (u & 0xff); \
|
|
})
|
|
|
|
/* Multiply one S.31-bit and one S8.23 fractional integer and return the
|
|
* sign bit and the 31 most significant bits of the result. Load next value
|
|
* to multiply with into x from s (and increase s); x must contain the
|
|
* initial value.
|
|
*/
|
|
#define FRACMUL_8_LOOP(x, y, s) \
|
|
({ \
|
|
long t; \
|
|
long u; \
|
|
asm volatile ("mac.l %[a], %[b], (%[c])+, %[a], %%acc0\n\t" \
|
|
"move.l %%accext01, %[u]\n\t" \
|
|
"movclr.l %%acc0, %[t]\n\t" \
|
|
: [a] "+r" (x), [c] "+a" (s), [t] "=r" (t), [u] "=r" (u) \
|
|
: [b] "r" (y)); \
|
|
(t << 8) | (u & 0xff); \
|
|
})
|
|
|
|
#else
|
|
|
|
#define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31))
|
|
#define FRACMUL_8(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 23))
|
|
#define FRACMUL_8_LOOP(x, y, s) \
|
|
({ \
|
|
long t = x; \
|
|
x = *(s)++; \
|
|
(long) (((((long long) (t)) * ((long long) (y))) >> 23)); \
|
|
})
|
|
|
|
#endif
|
|
|
|
struct dsp_config
|
|
{
|
|
long frequency;
|
|
long clip_min;
|
|
long clip_max;
|
|
long track_gain;
|
|
long album_gain;
|
|
long track_peak;
|
|
long album_peak;
|
|
long replaygain; /* Note that this is in S8.23 format. */
|
|
int sample_depth;
|
|
int sample_bytes;
|
|
int stereo_mode;
|
|
int frac_bits;
|
|
bool dither_enabled;
|
|
bool new_gain;
|
|
};
|
|
|
|
struct resample_data
|
|
{
|
|
long last_sample;
|
|
long phase;
|
|
long delta;
|
|
};
|
|
|
|
struct dither_data
|
|
{
|
|
long error[3];
|
|
long random;
|
|
};
|
|
|
|
static struct dsp_config dsp_conf[2] IBSS_ATTR;
|
|
static struct dither_data dither_data[2] IBSS_ATTR;
|
|
static struct resample_data resample_data[2][2] IBSS_ATTR;
|
|
|
|
extern int current_codec;
|
|
struct dsp_config *dsp;
|
|
|
|
/* The internal format is 32-bit samples, non-interleaved, stereo. This
|
|
* format is similar to the raw output from several codecs, so the amount
|
|
* of copying needed is minimized for that case.
|
|
*/
|
|
|
|
static long sample_buf[SAMPLE_BUF_SIZE] IBSS_ATTR;
|
|
static long resample_buf[RESAMPLE_BUF_SIZE] IBSS_ATTR;
|
|
|
|
|
|
/* Convert at most count samples to the internal format, if needed. Returns
|
|
* number of samples ready for further processing. Updates src to point
|
|
* past the samples "consumed" and dst is set to point to the samples to
|
|
* consume. Note that for mono, dst[0] equals dst[1], as there is no point
|
|
* in processing the same data twice.
|
|
*/
|
|
static int convert_to_internal(char* src[], int count, long* dst[])
|
|
{
|
|
count = MIN(SAMPLE_BUF_SIZE / 2, count);
|
|
|
|
if ((dsp->sample_depth <= NATIVE_DEPTH)
|
|
|| (dsp->stereo_mode == STEREO_INTERLEAVED))
|
|
{
|
|
dst[0] = &sample_buf[0];
|
|
dst[1] = (dsp->stereo_mode == STEREO_MONO)
|
|
? dst[0] : &sample_buf[SAMPLE_BUF_SIZE / 2];
|
|
}
|
|
else
|
|
{
|
|
dst[0] = (long*) src[0];
|
|
dst[1] = (long*) ((dsp->stereo_mode == STEREO_MONO) ? src[0] : src[1]);
|
|
}
|
|
|
|
if (dsp->sample_depth <= NATIVE_DEPTH)
|
|
{
|
|
short* s0 = (short*) src[0];
|
|
long* d0 = dst[0];
|
|
long* d1 = dst[1];
|
|
int scale = WORD_SHIFT;
|
|
int i;
|
|
|
|
if (dsp->stereo_mode == STEREO_INTERLEAVED)
|
|
{
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
*d0++ = *s0++ << scale;
|
|
*d1++ = *s0++ << scale;
|
|
}
|
|
}
|
|
else if (dsp->stereo_mode == STEREO_NONINTERLEAVED)
|
|
{
|
|
short* s1 = (short*) src[1];
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
*d0++ = *s0++ << scale;
|
|
*d1++ = *s1++ << scale;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
*d0++ = *s0++ << scale;
|
|
}
|
|
}
|
|
}
|
|
else if (dsp->stereo_mode == STEREO_INTERLEAVED)
|
|
{
|
|
long* s0 = (long*) src[0];
|
|
long* d0 = dst[0];
|
|
long* d1 = dst[1];
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
*d0++ = *s0++;
|
|
*d1++ = *s0++;
|
|
}
|
|
}
|
|
|
|
if (dsp->stereo_mode == STEREO_NONINTERLEAVED)
|
|
{
|
|
src[0] += count * dsp->sample_bytes;
|
|
src[1] += count * dsp->sample_bytes;
|
|
}
|
|
else if (dsp->stereo_mode == STEREO_INTERLEAVED)
|
|
{
|
|
src[0] += count * dsp->sample_bytes * 2;
|
|
}
|
|
else
|
|
{
|
|
src[0] += count * dsp->sample_bytes;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Linear resampling that introduces a one sample delay, because of our
|
|
* inability to look into the future at the end of a frame.
|
|
*/
|
|
|
|
static long downsample(long *dst, long *src, int count,
|
|
struct resample_data *r)
|
|
{
|
|
long phase = r->phase;
|
|
long delta = r->delta;
|
|
long last_sample = r->last_sample;
|
|
int pos = phase >> 16;
|
|
int i = 1;
|
|
|
|
/* Do we need last sample of previous frame for interpolation? */
|
|
if (pos > 0)
|
|
{
|
|
last_sample = src[pos - 1];
|
|
}
|
|
|
|
*dst++ = last_sample + FRACMUL((phase & 0xffff) << 15,
|
|
src[pos] - last_sample);
|
|
phase += delta;
|
|
|
|
while ((pos = phase >> 16) < count)
|
|
{
|
|
*dst++ = src[pos - 1] + FRACMUL((phase & 0xffff) << 15,
|
|
src[pos] - src[pos - 1]);
|
|
phase += delta;
|
|
i++;
|
|
}
|
|
|
|
/* Wrap phase accumulator back to start of next frame. */
|
|
r->phase = phase - (count << 16);
|
|
r->delta = delta;
|
|
r->last_sample = src[count - 1];
|
|
return i;
|
|
}
|
|
|
|
static long upsample(long *dst, long *src, int count, struct resample_data *r)
|
|
{
|
|
long phase = r->phase;
|
|
long delta = r->delta;
|
|
long last_sample = r->last_sample;
|
|
int i = 0;
|
|
int pos;
|
|
|
|
while ((pos = phase >> 16) == 0)
|
|
{
|
|
*dst++ = last_sample + FRACMUL((phase & 0xffff) << 15,
|
|
src[pos] - last_sample);
|
|
phase += delta;
|
|
i++;
|
|
}
|
|
|
|
while ((pos = phase >> 16) < count)
|
|
{
|
|
*dst++ = src[pos - 1] + FRACMUL((phase & 0xffff) << 15,
|
|
src[pos] - src[pos - 1]);
|
|
phase += delta;
|
|
i++;
|
|
}
|
|
|
|
/* Wrap phase accumulator back to start of next frame. */
|
|
r->phase = phase - (count << 16);
|
|
r->delta = delta;
|
|
r->last_sample = src[count - 1];
|
|
return i;
|
|
}
|
|
|
|
/* Resample count stereo samples. Updates the src array, if resampling is
|
|
* done, to refer to the resampled data. Returns number of stereo samples
|
|
* for further processing.
|
|
*/
|
|
static inline int resample(long* src[], int count)
|
|
{
|
|
long new_count;
|
|
|
|
if (dsp->frequency != NATIVE_FREQUENCY)
|
|
{
|
|
long* d0 = &resample_buf[0];
|
|
/* Only process the second channel if needed. */
|
|
long* d1 = (src[0] == src[1]) ? d0
|
|
: &resample_buf[RESAMPLE_BUF_SIZE / 2];
|
|
|
|
if (dsp->frequency < NATIVE_FREQUENCY)
|
|
{
|
|
new_count = upsample(d0, src[0], count,
|
|
&resample_data[current_codec][0]);
|
|
|
|
if (d0 != d1)
|
|
{
|
|
upsample(d1, src[1], count,
|
|
&resample_data[current_codec][1]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
new_count = downsample(d0, src[0], count,
|
|
&resample_data[current_codec][0]);
|
|
|
|
if (d0 != d1)
|
|
{
|
|
downsample(d1, src[1], count,
|
|
&resample_data[current_codec][1]);
|
|
}
|
|
}
|
|
|
|
src[0] = d0;
|
|
src[1] = d1;
|
|
}
|
|
else
|
|
{
|
|
new_count = count;
|
|
}
|
|
|
|
return new_count;
|
|
}
|
|
|
|
static inline long clip_sample(long sample, long min, long max)
|
|
{
|
|
if (sample > max)
|
|
{
|
|
sample = max;
|
|
}
|
|
else if (sample < min)
|
|
{
|
|
sample = min;
|
|
}
|
|
|
|
return sample;
|
|
}
|
|
|
|
/* The "dither" code to convert the 24-bit samples produced by libmad was
|
|
* taken from the coolplayer project - coolplayer.sourceforge.net
|
|
*/
|
|
|
|
static long dither_sample(long sample, long bias, long mask,
|
|
struct dither_data* dither)
|
|
{
|
|
long output;
|
|
long random;
|
|
long min;
|
|
long max;
|
|
|
|
/* Noise shape and bias */
|
|
|
|
sample += dither->error[0] - dither->error[1] + dither->error[2];
|
|
dither->error[2] = dither->error[1];
|
|
dither->error[1] = dither->error[0] / 2;
|
|
|
|
output = sample + bias;
|
|
|
|
/* Dither */
|
|
|
|
random = dither->random * 0x0019660dL + 0x3c6ef35fL;
|
|
sample += (random & mask) - (dither->random & mask);
|
|
dither->random = random;
|
|
|
|
/* Clip and quantize */
|
|
|
|
min = dsp->clip_min;
|
|
max = dsp->clip_max;
|
|
sample = clip_sample(sample, min, max);
|
|
output = clip_sample(output, min, max) & ~mask;
|
|
|
|
/* Error feedback */
|
|
|
|
dither->error[0] = sample - output;
|
|
|
|
return output;
|
|
}
|
|
|
|
/* Apply a constant gain to the samples (e.g., for ReplayGain). May update
|
|
* the src array if gain was applied.
|
|
* Note that this must be called before the resampler.
|
|
*/
|
|
static void apply_gain(long* src[], int count)
|
|
{
|
|
if (dsp->replaygain)
|
|
{
|
|
long* s0 = src[0];
|
|
long* s1 = src[1];
|
|
long* d0 = &sample_buf[0];
|
|
long* d1 = (s0 == s1) ? d0 : &sample_buf[SAMPLE_BUF_SIZE / 2];
|
|
long gain = dsp->replaygain;
|
|
long s;
|
|
long i;
|
|
|
|
src[0] = d0;
|
|
src[1] = d1;
|
|
s = *s0++;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
*d0++ = FRACMUL_8_LOOP(s, gain, s0);
|
|
}
|
|
|
|
if (src [0] != src [1])
|
|
{
|
|
s = *s1++;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
*d1++ = FRACMUL_8_LOOP(s, gain, s1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_samples(short* dst, long* src[], int count)
|
|
{
|
|
long* s0 = src[0];
|
|
long* s1 = src[1];
|
|
int scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
|
|
|
|
if (dsp->dither_enabled)
|
|
{
|
|
long bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
|
|
long mask = (1L << scale) - 1;
|
|
|
|
while (count-- > 0)
|
|
{
|
|
*dst++ = (short) (dither_sample(*s0++, bias, mask, &dither_data[0])
|
|
>> scale);
|
|
*dst++ = (short) (dither_sample(*s1++, bias, mask, &dither_data[1])
|
|
>> scale);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
long min = dsp->clip_min;
|
|
long max = dsp->clip_max;
|
|
|
|
while (count-- > 0)
|
|
{
|
|
*dst++ = (short) (clip_sample(*s0++, min, max) >> scale);
|
|
*dst++ = (short) (clip_sample(*s1++, min, max) >> scale);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Process and convert src audio to dst based on the DSP configuration,
|
|
* reading size bytes of audio data. dst is assumed to be large enough; use
|
|
* dst_get_dest_size() to get the required size. src is an array of
|
|
* pointers; for mono and interleaved stereo, it contains one pointer to the
|
|
* start of the audio data; for non-interleaved stereo, it contains two
|
|
* pointers, one for each audio channel. Returns number of bytes written to
|
|
* dest.
|
|
*/
|
|
long dsp_process(char* dst, char* src[], long size)
|
|
{
|
|
long* tmp[2];
|
|
long written = 0;
|
|
long factor;
|
|
int samples;
|
|
|
|
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
|
|
/* set emac unit for dsp processing, and save old macsr, we're running in
|
|
codec thread context at this point, so can't clobber it */
|
|
unsigned long old_macsr = coldfire_get_macsr();
|
|
coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_ROUND | EMAC_SATURATE);
|
|
#endif
|
|
|
|
dsp = &dsp_conf[current_codec];
|
|
|
|
factor = (dsp->stereo_mode != STEREO_MONO) ? 2 : 1;
|
|
size /= dsp->sample_bytes * factor;
|
|
dsp_set_replaygain(false);
|
|
|
|
while (size > 0)
|
|
{
|
|
samples = convert_to_internal(src, size, tmp);
|
|
size -= samples;
|
|
apply_gain(tmp, samples);
|
|
samples = resample(tmp, samples);
|
|
write_samples((short*) dst, tmp, samples);
|
|
written += samples;
|
|
dst += samples * sizeof(short) * 2;
|
|
yield();
|
|
}
|
|
#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
|
|
/* set old macsr again */
|
|
coldfire_set_macsr(old_macsr);
|
|
#endif
|
|
return written * sizeof(short) * 2;
|
|
}
|
|
|
|
/* Given size bytes of input data, calculate the maximum number of bytes of
|
|
* output data that would be generated (the calculation is not entirely
|
|
* exact and rounds upwards to be on the safe side; during resampling,
|
|
* the number of samples generated depends on the current state of the
|
|
* resampler).
|
|
*/
|
|
/* dsp_input_size MUST be called afterwards */
|
|
long dsp_output_size(long size)
|
|
{
|
|
dsp = &dsp_conf[current_codec];
|
|
|
|
if (dsp->sample_depth > NATIVE_DEPTH)
|
|
{
|
|
size /= 2;
|
|
}
|
|
|
|
if (dsp->frequency != NATIVE_FREQUENCY)
|
|
{
|
|
size = (long) ((((unsigned long) size * NATIVE_FREQUENCY)
|
|
+ (dsp->frequency - 1)) / dsp->frequency);
|
|
}
|
|
|
|
/* round to the next multiple of 2 (these are shorts) */
|
|
size = (size + 1) & ~1;
|
|
|
|
if (dsp->stereo_mode == STEREO_MONO)
|
|
{
|
|
size *= 2;
|
|
}
|
|
|
|
/* now we have the size in bytes for two resampled channels,
|
|
* and the size in (short) must not exceed RESAMPLE_BUF_SIZE to
|
|
* avoid resample buffer overflow. One must call dsp_input_size()
|
|
* to get the correct input buffer size. */
|
|
if (size > RESAMPLE_BUF_SIZE*2)
|
|
size = RESAMPLE_BUF_SIZE*2;
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Given size bytes of output buffer, calculate number of bytes of input
|
|
* data that would be consumed in order to fill the output buffer.
|
|
*/
|
|
long dsp_input_size(long size)
|
|
{
|
|
dsp = &dsp_conf[current_codec];
|
|
|
|
/* convert to number of output stereo samples. */
|
|
size /= 2;
|
|
|
|
/* Mono means we need half input samples to fill the output buffer */
|
|
if (dsp->stereo_mode == STEREO_MONO)
|
|
size /= 2;
|
|
|
|
/* size is now the number of resampled input samples. Convert to
|
|
original input samples. */
|
|
if (dsp->frequency != NATIVE_FREQUENCY)
|
|
{
|
|
/* Use the real resampling delta =
|
|
* (unsigned long) dsp->frequency * 65536 / NATIVE_FREQUENCY, and
|
|
* round towards zero to avoid buffer overflows. */
|
|
size = ((unsigned long)size *
|
|
resample_data[current_codec][0].delta) >> 16;
|
|
}
|
|
|
|
/* Convert back to bytes. */
|
|
if (dsp->sample_depth > NATIVE_DEPTH)
|
|
size *= 4;
|
|
else
|
|
size *= 2;
|
|
|
|
return size;
|
|
}
|
|
|
|
int dsp_stereo_mode(void)
|
|
{
|
|
dsp = &dsp_conf[current_codec];
|
|
|
|
return dsp->stereo_mode;
|
|
}
|
|
|
|
bool dsp_configure(int setting, void *value)
|
|
{
|
|
dsp = &dsp_conf[current_codec];
|
|
|
|
switch (setting)
|
|
{
|
|
case DSP_SET_FREQUENCY:
|
|
memset(&resample_data[current_codec][0], 0,
|
|
sizeof(struct resample_data) * 2);
|
|
/* Fall through!!! */
|
|
case DSP_SWITCH_FREQUENCY:
|
|
dsp->frequency = ((int) value == 0) ? NATIVE_FREQUENCY : (int) value;
|
|
resample_data[current_codec][0].delta =
|
|
resample_data[current_codec][1].delta =
|
|
(unsigned long) dsp->frequency * 65536 / NATIVE_FREQUENCY;
|
|
break;
|
|
|
|
case DSP_SET_CLIP_MIN:
|
|
dsp->clip_min = (long) value;
|
|
break;
|
|
|
|
case DSP_SET_CLIP_MAX:
|
|
dsp->clip_max = (long) value;
|
|
break;
|
|
|
|
case DSP_SET_SAMPLE_DEPTH:
|
|
dsp->sample_depth = (long) value;
|
|
|
|
if (dsp->sample_depth <= NATIVE_DEPTH)
|
|
{
|
|
dsp->frac_bits = WORD_FRACBITS;
|
|
dsp->sample_bytes = sizeof(short);
|
|
dsp->clip_max = ((1 << WORD_FRACBITS) - 1);
|
|
dsp->clip_min = -((1 << WORD_FRACBITS));
|
|
}
|
|
else
|
|
{
|
|
dsp->frac_bits = (long) value;
|
|
dsp->sample_bytes = sizeof(long);
|
|
}
|
|
|
|
break;
|
|
|
|
case DSP_SET_STEREO_MODE:
|
|
dsp->stereo_mode = (long) value;
|
|
break;
|
|
|
|
case DSP_RESET:
|
|
dsp->dither_enabled = false;
|
|
dsp->stereo_mode = STEREO_NONINTERLEAVED;
|
|
dsp->clip_max = ((1 << WORD_FRACBITS) - 1);
|
|
dsp->clip_min = -((1 << WORD_FRACBITS));
|
|
dsp->track_gain = 0;
|
|
dsp->album_gain = 0;
|
|
dsp->track_peak = 0;
|
|
dsp->album_peak = 0;
|
|
dsp->frequency = NATIVE_FREQUENCY;
|
|
dsp->sample_depth = NATIVE_DEPTH;
|
|
dsp->frac_bits = WORD_FRACBITS;
|
|
dsp->new_gain = true;
|
|
break;
|
|
|
|
case DSP_DITHER:
|
|
memset(dither_data, 0, sizeof(dither_data));
|
|
dsp->dither_enabled = (bool) value;
|
|
break;
|
|
|
|
case DSP_SET_TRACK_GAIN:
|
|
dsp->track_gain = (long) value;
|
|
dsp->new_gain = true;
|
|
break;
|
|
|
|
case DSP_SET_ALBUM_GAIN:
|
|
dsp->album_gain = (long) value;
|
|
dsp->new_gain = true;
|
|
break;
|
|
|
|
case DSP_SET_TRACK_PEAK:
|
|
dsp->track_peak = (long) value;
|
|
dsp->new_gain = true;
|
|
break;
|
|
|
|
case DSP_SET_ALBUM_PEAK:
|
|
dsp->album_peak = (long) value;
|
|
dsp->new_gain = true;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void dsp_set_replaygain(bool always)
|
|
{
|
|
dsp = &dsp_conf[current_codec];
|
|
|
|
if (always || dsp->new_gain)
|
|
{
|
|
long gain = 0;
|
|
|
|
dsp->new_gain = false;
|
|
|
|
if (global_settings.replaygain || global_settings.replaygain_noclip)
|
|
{
|
|
bool track_mode
|
|
= ((global_settings.replaygain_type == REPLAYGAIN_TRACK)
|
|
|| ((global_settings.replaygain_type == REPLAYGAIN_SHUFFLE)
|
|
&& global_settings.playlist_shuffle));
|
|
long peak = (track_mode || !dsp->album_peak)
|
|
? dsp->track_peak : dsp->album_peak;
|
|
|
|
if (global_settings.replaygain)
|
|
{
|
|
gain = (track_mode || !dsp->album_gain)
|
|
? dsp->track_gain : dsp->album_gain;
|
|
|
|
if (global_settings.replaygain_preamp)
|
|
{
|
|
long preamp = get_replaygain_int(
|
|
global_settings.replaygain_preamp * 10);
|
|
|
|
gain = (long) (((int64_t) gain * preamp) >> 24);
|
|
}
|
|
}
|
|
|
|
if (gain == 0)
|
|
{
|
|
/* So that noclip can work even with no gain information. */
|
|
gain = DEFAULT_REPLAYGAIN;
|
|
}
|
|
|
|
if (global_settings.replaygain_noclip && (peak != 0)
|
|
&& ((((int64_t) gain * peak) >> 24) >= DEFAULT_REPLAYGAIN))
|
|
{
|
|
gain = (((int64_t) DEFAULT_REPLAYGAIN << 24) / peak);
|
|
}
|
|
|
|
if (gain == DEFAULT_REPLAYGAIN)
|
|
{
|
|
/* Nothing to do, disable processing. */
|
|
gain = 0;
|
|
|
|
}
|
|
}
|
|
|
|
/* Store in S8.23 format to simplify calculations. */
|
|
dsp->replaygain = gain >> 1;
|
|
}
|
|
}
|