582225967f
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@23486 a1c6a512-1295-4272-9138-f99709370657
1852 lines
57 KiB
C
1852 lines
57 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2005 Miika Pekkarinen
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include <stdbool.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <sound.h>
|
|
#include "dsp.h"
|
|
#include "eq.h"
|
|
#include "kernel.h"
|
|
#include "system.h"
|
|
#include "settings.h"
|
|
#include "replaygain.h"
|
|
#include "tdspeed.h"
|
|
#include "buffer.h"
|
|
#include "fixedpoint.h"
|
|
#include "fracmul.h"
|
|
|
|
/* Define LOGF_ENABLE to enable logf output in this file */
|
|
/*#define LOGF_ENABLE*/
|
|
#include "logf.h"
|
|
|
|
/* 16-bit samples are scaled based on these constants. The shift should be
|
|
* no more than 15.
|
|
*/
|
|
#define WORD_SHIFT 12
|
|
#define WORD_FRACBITS 27
|
|
|
|
#define NATIVE_DEPTH 16
|
|
/* If the small buffer size changes, check the assembly code! */
|
|
#define SMALL_SAMPLE_BUF_COUNT 256
|
|
#define DEFAULT_GAIN 0x01000000
|
|
|
|
/* enums to index conversion properly with stereo mode and other settings */
|
|
enum
|
|
{
|
|
SAMPLE_INPUT_LE_NATIVE_I_STEREO = STEREO_INTERLEAVED,
|
|
SAMPLE_INPUT_LE_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED,
|
|
SAMPLE_INPUT_LE_NATIVE_MONO = STEREO_MONO,
|
|
SAMPLE_INPUT_GT_NATIVE_I_STEREO = STEREO_INTERLEAVED + STEREO_NUM_MODES,
|
|
SAMPLE_INPUT_GT_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED + STEREO_NUM_MODES,
|
|
SAMPLE_INPUT_GT_NATIVE_MONO = STEREO_MONO + STEREO_NUM_MODES,
|
|
SAMPLE_INPUT_GT_NATIVE_1ST_INDEX = STEREO_NUM_MODES
|
|
};
|
|
|
|
enum
|
|
{
|
|
SAMPLE_OUTPUT_MONO = 0,
|
|
SAMPLE_OUTPUT_STEREO,
|
|
SAMPLE_OUTPUT_DITHERED_MONO,
|
|
SAMPLE_OUTPUT_DITHERED_STEREO
|
|
};
|
|
|
|
/****************************************************************************
|
|
* NOTE: Any assembly routines that use these structures must be updated
|
|
* if current data members are moved or changed.
|
|
*/
|
|
struct resample_data
|
|
{
|
|
uint32_t delta; /* 00h */
|
|
uint32_t phase; /* 04h */
|
|
int32_t last_sample[2]; /* 08h */
|
|
/* 10h */
|
|
};
|
|
|
|
/* This is for passing needed data to assembly dsp routines. If another
|
|
* dsp parameter needs to be passed, add to the end of the structure
|
|
* and remove from dsp_config.
|
|
* If another function type becomes assembly optimized and requires dsp
|
|
* config info, add a pointer paramter of type "struct dsp_data *".
|
|
* If removing something from other than the end, reserve the spot or
|
|
* else update every implementation for every target.
|
|
* Be sure to add the offset of the new member for easy viewing as well. :)
|
|
* It is the first member of dsp_config and all members can be accessesed
|
|
* through the main aggregate but this is intended to make a safe haven
|
|
* for these items whereas the c part can be rearranged at will. dsp_data
|
|
* could even moved within dsp_config without disurbing the order.
|
|
*/
|
|
struct dsp_data
|
|
{
|
|
int output_scale; /* 00h */
|
|
int num_channels; /* 04h */
|
|
struct resample_data resample_data; /* 08h */
|
|
int32_t clip_min; /* 18h */
|
|
int32_t clip_max; /* 1ch */
|
|
int32_t gain; /* 20h - Note that this is in S8.23 format. */
|
|
/* 24h */
|
|
};
|
|
|
|
/* No asm...yet */
|
|
struct dither_data
|
|
{
|
|
long error[3]; /* 00h */
|
|
long random; /* 0ch */
|
|
/* 10h */
|
|
};
|
|
|
|
struct crossfeed_data
|
|
{
|
|
int32_t gain; /* 00h - Direct path gain */
|
|
int32_t coefs[3]; /* 04h - Coefficients for the shelving filter */
|
|
int32_t history[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
|
|
int32_t delay[13][2]; /* 20h */
|
|
int32_t *index; /* 88h - Current pointer into the delay line */
|
|
/* 8ch */
|
|
};
|
|
|
|
/* Current setup is one lowshelf filters three peaking filters and one
|
|
* highshelf filter. Varying the number of shelving filters make no sense,
|
|
* but adding peaking filters is possible.
|
|
*/
|
|
struct eq_state
|
|
{
|
|
char enabled[5]; /* 00h - Flags for active filters */
|
|
struct eqfilter filters[5]; /* 08h - packing is 4? */
|
|
/* 10ch */
|
|
};
|
|
|
|
struct compressor_menu
|
|
{
|
|
int threshold; /* dB - from menu */
|
|
int ratio; /* from menu */
|
|
int gain; /* dB - from menu */
|
|
bool soft_knee; /* 0 = hard knee, 1 = soft knee */
|
|
int release; /* samples - from menu */
|
|
};
|
|
|
|
/* Include header with defines which functions are implemented in assembly
|
|
code for the target */
|
|
#include <dsp_asm.h>
|
|
|
|
/* Typedefs keep things much neater in this case */
|
|
typedef void (*sample_input_fn_type)(int count, const char *src[],
|
|
int32_t *dst[]);
|
|
typedef int (*resample_fn_type)(int count, struct dsp_data *data,
|
|
const int32_t *src[], int32_t *dst[]);
|
|
typedef void (*sample_output_fn_type)(int count, struct dsp_data *data,
|
|
const int32_t *src[], int16_t *dst);
|
|
|
|
/* Single-DSP channel processing in place */
|
|
typedef void (*channels_process_fn_type)(int count, int32_t *buf[]);
|
|
/* DSP local channel processing in place */
|
|
typedef void (*channels_process_dsp_fn_type)(int count, struct dsp_data *data,
|
|
int32_t *buf[]);
|
|
|
|
/*
|
|
***************************************************************************/
|
|
|
|
struct dsp_config
|
|
{
|
|
struct dsp_data data; /* Config members for use in asm routines */
|
|
long codec_frequency; /* Sample rate of data coming from the codec */
|
|
long frequency; /* Effective sample rate after pitch shift (if any) */
|
|
int sample_depth;
|
|
int sample_bytes;
|
|
int stereo_mode;
|
|
int32_t tdspeed_percent; /* Speed% * PITCH_SPEED_PRECISION */
|
|
bool tdspeed_active; /* Timestretch is in use */
|
|
int frac_bits;
|
|
#ifdef HAVE_SW_TONE_CONTROLS
|
|
/* Filter struct for software bass/treble controls */
|
|
struct eqfilter tone_filter;
|
|
#endif
|
|
/* Functions that change depending upon settings - NULL if stage is
|
|
disabled */
|
|
sample_input_fn_type input_samples;
|
|
resample_fn_type resample;
|
|
sample_output_fn_type output_samples;
|
|
/* These will be NULL for the voice codec and is more economical that
|
|
way */
|
|
channels_process_dsp_fn_type apply_gain;
|
|
channels_process_fn_type apply_crossfeed;
|
|
channels_process_fn_type eq_process;
|
|
channels_process_fn_type channels_process;
|
|
channels_process_fn_type compressor_process;
|
|
};
|
|
|
|
/* General DSP config */
|
|
static struct dsp_config dsp_conf[2] IBSS_ATTR; /* 0=A, 1=V */
|
|
/* Dithering */
|
|
static struct dither_data dither_data[2] IBSS_ATTR; /* 0=left, 1=right */
|
|
static long dither_mask IBSS_ATTR;
|
|
static long dither_bias IBSS_ATTR;
|
|
/* Crossfeed */
|
|
struct crossfeed_data crossfeed_data IDATA_ATTR = /* A */
|
|
{
|
|
.index = (int32_t *)crossfeed_data.delay
|
|
};
|
|
|
|
/* Equalizer */
|
|
static struct eq_state eq_data; /* A */
|
|
|
|
/* Software tone controls */
|
|
#ifdef HAVE_SW_TONE_CONTROLS
|
|
static int prescale; /* A/V */
|
|
static int bass; /* A/V */
|
|
static int treble; /* A/V */
|
|
#endif
|
|
|
|
/* Settings applicable to audio codec only */
|
|
static int32_t pitch_ratio = PITCH_SPEED_100;
|
|
static int channels_mode;
|
|
long dsp_sw_gain;
|
|
long dsp_sw_cross;
|
|
static bool dither_enabled;
|
|
static long eq_precut;
|
|
static long track_gain;
|
|
static bool new_gain;
|
|
static long album_gain;
|
|
static long track_peak;
|
|
static long album_peak;
|
|
static long replaygain;
|
|
static bool crossfeed_enabled;
|
|
|
|
#define AUDIO_DSP (dsp_conf[CODEC_IDX_AUDIO])
|
|
#define VOICE_DSP (dsp_conf[CODEC_IDX_VOICE])
|
|
|
|
/* The internal format is 32-bit samples, non-interleaved, stereo. This
|
|
* format is similar to the raw output from several codecs, so the amount
|
|
* of copying needed is minimized for that case.
|
|
*/
|
|
|
|
#define RESAMPLE_RATIO 4 /* Enough for 11,025 Hz -> 44,100 Hz */
|
|
|
|
static int32_t small_sample_buf[SMALL_SAMPLE_BUF_COUNT] IBSS_ATTR;
|
|
static int32_t small_resample_buf[SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO] IBSS_ATTR;
|
|
|
|
static int32_t *big_sample_buf = NULL;
|
|
static int32_t *big_resample_buf = NULL;
|
|
static int big_sample_buf_count = -1; /* -1=unknown, 0=not available */
|
|
|
|
static int sample_buf_count;
|
|
static int32_t *sample_buf;
|
|
static int32_t *resample_buf;
|
|
|
|
#define SAMPLE_BUF_LEFT_CHANNEL 0
|
|
#define SAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2)
|
|
#define RESAMPLE_BUF_LEFT_CHANNEL 0
|
|
#define RESAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2 * RESAMPLE_RATIO)
|
|
|
|
/* compressor */
|
|
static struct compressor_menu c_menu;
|
|
static int32_t comp_rel_slope IBSS_ATTR; /* S7.24 format */
|
|
static int32_t comp_makeup_gain IBSS_ATTR; /* S7.24 format */
|
|
static int32_t comp_curve[66] IBSS_ATTR; /* S7.24 format */
|
|
static int32_t release_gain IBSS_ATTR; /* S7.24 format */
|
|
#define UNITY (1L << 24) /* unity gain in S7.24 format */
|
|
static void compressor_process(int count, int32_t *buf[]);
|
|
|
|
|
|
/* Clip sample to signed 16 bit range */
|
|
static inline int32_t clip_sample_16(int32_t sample)
|
|
{
|
|
if ((int16_t)sample != sample)
|
|
sample = 0x7fff ^ (sample >> 31);
|
|
return sample;
|
|
}
|
|
|
|
int32_t sound_get_pitch(void)
|
|
{
|
|
return pitch_ratio;
|
|
}
|
|
|
|
void sound_set_pitch(int32_t percent)
|
|
{
|
|
pitch_ratio = percent;
|
|
dsp_configure(&AUDIO_DSP, DSP_SWITCH_FREQUENCY,
|
|
AUDIO_DSP.codec_frequency);
|
|
}
|
|
|
|
static void tdspeed_setup(struct dsp_config *dspc)
|
|
{
|
|
/* Assume timestretch will not be used */
|
|
dspc->tdspeed_active = false;
|
|
sample_buf = small_sample_buf;
|
|
resample_buf = small_resample_buf;
|
|
sample_buf_count = SMALL_SAMPLE_BUF_COUNT;
|
|
|
|
if(!dsp_timestretch_available())
|
|
return; /* Timestretch not enabled or buffer not allocated */
|
|
if (dspc->tdspeed_percent == 0)
|
|
dspc->tdspeed_percent = PITCH_SPEED_100;
|
|
if (!tdspeed_config(
|
|
dspc->codec_frequency == 0 ? NATIVE_FREQUENCY : dspc->codec_frequency,
|
|
dspc->stereo_mode != STEREO_MONO,
|
|
dspc->tdspeed_percent))
|
|
return; /* Timestretch not possible or needed with these parameters */
|
|
|
|
/* Timestretch is to be used */
|
|
dspc->tdspeed_active = true;
|
|
sample_buf = big_sample_buf;
|
|
sample_buf_count = big_sample_buf_count;
|
|
resample_buf = big_resample_buf;
|
|
}
|
|
|
|
void dsp_timestretch_enable(bool enabled)
|
|
{
|
|
/* Hook to set up timestretch buffer on first call to settings_apply() */
|
|
if (big_sample_buf_count < 0) /* Only do something on first call */
|
|
{
|
|
if (enabled)
|
|
{
|
|
/* Set up timestretch buffers */
|
|
big_sample_buf_count = SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO;
|
|
big_sample_buf = small_resample_buf;
|
|
big_resample_buf = (int32_t *) buffer_alloc(big_sample_buf_count * RESAMPLE_RATIO * sizeof(int32_t));
|
|
}
|
|
else
|
|
{
|
|
/* Not enabled at startup, "big" buffers will never be available */
|
|
big_sample_buf_count = 0;
|
|
}
|
|
tdspeed_setup(&AUDIO_DSP);
|
|
}
|
|
}
|
|
|
|
void dsp_set_timestretch(int32_t percent)
|
|
{
|
|
AUDIO_DSP.tdspeed_percent = percent;
|
|
tdspeed_setup(&AUDIO_DSP);
|
|
}
|
|
|
|
int32_t dsp_get_timestretch()
|
|
{
|
|
return AUDIO_DSP.tdspeed_percent;
|
|
}
|
|
|
|
bool dsp_timestretch_available()
|
|
{
|
|
return (global_settings.timestretch_enabled && big_sample_buf_count > 0);
|
|
}
|
|
|
|
/* Convert count samples to the internal format, if needed. Updates src
|
|
* to point past the samples "consumed" and dst is set to point to the
|
|
* samples to consume. Note that for mono, dst[0] equals dst[1], as there
|
|
* is no point in processing the same data twice.
|
|
*/
|
|
|
|
/* convert count 16-bit mono to 32-bit mono */
|
|
static void sample_input_lte_native_mono(
|
|
int count, const char *src[], int32_t *dst[])
|
|
{
|
|
const int16_t *s = (int16_t *) src[0];
|
|
const int16_t * const send = s + count;
|
|
int32_t *d = dst[0] = dst[1] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
|
|
int scale = WORD_SHIFT;
|
|
|
|
while (s < send)
|
|
{
|
|
*d++ = *s++ << scale;
|
|
}
|
|
|
|
src[0] = (char *)s;
|
|
}
|
|
|
|
/* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
|
|
static void sample_input_lte_native_i_stereo(
|
|
int count, const char *src[], int32_t *dst[])
|
|
{
|
|
const int32_t *s = (int32_t *) src[0];
|
|
const int32_t * const send = s + count;
|
|
int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
|
|
int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
|
|
int scale = WORD_SHIFT;
|
|
|
|
while (s < send)
|
|
{
|
|
int32_t slr = *s++;
|
|
#ifdef ROCKBOX_LITTLE_ENDIAN
|
|
*dl++ = (slr >> 16) << scale;
|
|
*dr++ = (int32_t)(int16_t)slr << scale;
|
|
#else /* ROCKBOX_BIG_ENDIAN */
|
|
*dl++ = (int32_t)(int16_t)slr << scale;
|
|
*dr++ = (slr >> 16) << scale;
|
|
#endif
|
|
}
|
|
|
|
src[0] = (char *)s;
|
|
}
|
|
|
|
/* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
|
|
static void sample_input_lte_native_ni_stereo(
|
|
int count, const char *src[], int32_t *dst[])
|
|
{
|
|
const int16_t *sl = (int16_t *) src[0];
|
|
const int16_t *sr = (int16_t *) src[1];
|
|
const int16_t * const slend = sl + count;
|
|
int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
|
|
int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
|
|
int scale = WORD_SHIFT;
|
|
|
|
while (sl < slend)
|
|
{
|
|
*dl++ = *sl++ << scale;
|
|
*dr++ = *sr++ << scale;
|
|
}
|
|
|
|
src[0] = (char *)sl;
|
|
src[1] = (char *)sr;
|
|
}
|
|
|
|
/* convert count 32-bit mono to 32-bit mono */
|
|
static void sample_input_gt_native_mono(
|
|
int count, const char *src[], int32_t *dst[])
|
|
{
|
|
dst[0] = dst[1] = (int32_t *)src[0];
|
|
src[0] = (char *)(dst[0] + count);
|
|
}
|
|
|
|
/* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
|
|
static void sample_input_gt_native_i_stereo(
|
|
int count, const char *src[], int32_t *dst[])
|
|
{
|
|
const int32_t *s = (int32_t *)src[0];
|
|
const int32_t * const send = s + 2*count;
|
|
int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
|
|
int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
|
|
|
|
while (s < send)
|
|
{
|
|
*dl++ = *s++;
|
|
*dr++ = *s++;
|
|
}
|
|
|
|
src[0] = (char *)send;
|
|
}
|
|
|
|
/* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
|
|
static void sample_input_gt_native_ni_stereo(
|
|
int count, const char *src[], int32_t *dst[])
|
|
{
|
|
dst[0] = (int32_t *)src[0];
|
|
dst[1] = (int32_t *)src[1];
|
|
src[0] = (char *)(dst[0] + count);
|
|
src[1] = (char *)(dst[1] + count);
|
|
}
|
|
|
|
/**
|
|
* sample_input_new_format()
|
|
*
|
|
* set the to-native sample conversion function based on dsp sample parameters
|
|
*
|
|
* !DSPPARAMSYNC
|
|
* needs syncing with changes to the following dsp parameters:
|
|
* * dsp->stereo_mode (A/V)
|
|
* * dsp->sample_depth (A/V)
|
|
*/
|
|
static void sample_input_new_format(struct dsp_config *dsp)
|
|
{
|
|
static const sample_input_fn_type sample_input_functions[] =
|
|
{
|
|
[SAMPLE_INPUT_LE_NATIVE_I_STEREO] = sample_input_lte_native_i_stereo,
|
|
[SAMPLE_INPUT_LE_NATIVE_NI_STEREO] = sample_input_lte_native_ni_stereo,
|
|
[SAMPLE_INPUT_LE_NATIVE_MONO] = sample_input_lte_native_mono,
|
|
[SAMPLE_INPUT_GT_NATIVE_I_STEREO] = sample_input_gt_native_i_stereo,
|
|
[SAMPLE_INPUT_GT_NATIVE_NI_STEREO] = sample_input_gt_native_ni_stereo,
|
|
[SAMPLE_INPUT_GT_NATIVE_MONO] = sample_input_gt_native_mono,
|
|
};
|
|
|
|
int convert = dsp->stereo_mode;
|
|
|
|
if (dsp->sample_depth > NATIVE_DEPTH)
|
|
convert += SAMPLE_INPUT_GT_NATIVE_1ST_INDEX;
|
|
|
|
dsp->input_samples = sample_input_functions[convert];
|
|
}
|
|
|
|
|
|
#ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
|
|
/* write mono internal format to output format */
|
|
static void sample_output_mono(int count, struct dsp_data *data,
|
|
const int32_t *src[], int16_t *dst)
|
|
{
|
|
const int32_t *s0 = src[0];
|
|
const int scale = data->output_scale;
|
|
const int dc_bias = 1 << (scale - 1);
|
|
|
|
while (count-- > 0)
|
|
{
|
|
int32_t lr = clip_sample_16((*s0++ + dc_bias) >> scale);
|
|
*dst++ = lr;
|
|
*dst++ = lr;
|
|
}
|
|
}
|
|
#endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
|
|
|
|
/* write stereo internal format to output format */
|
|
#ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
|
|
static void sample_output_stereo(int count, struct dsp_data *data,
|
|
const int32_t *src[], int16_t *dst)
|
|
{
|
|
const int32_t *s0 = src[0];
|
|
const int32_t *s1 = src[1];
|
|
const int scale = data->output_scale;
|
|
const int dc_bias = 1 << (scale - 1);
|
|
|
|
while (count-- > 0)
|
|
{
|
|
*dst++ = clip_sample_16((*s0++ + dc_bias) >> scale);
|
|
*dst++ = clip_sample_16((*s1++ + dc_bias) >> scale);
|
|
}
|
|
}
|
|
#endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
|
|
|
|
/**
|
|
* The "dither" code to convert the 24-bit samples produced by libmad was
|
|
* taken from the coolplayer project - coolplayer.sourceforge.net
|
|
*
|
|
* This function handles mono and stereo outputs.
|
|
*/
|
|
static void sample_output_dithered(int count, struct dsp_data *data,
|
|
const int32_t *src[], int16_t *dst)
|
|
{
|
|
const int32_t mask = dither_mask;
|
|
const int32_t bias = dither_bias;
|
|
const int scale = data->output_scale;
|
|
const int32_t min = data->clip_min;
|
|
const int32_t max = data->clip_max;
|
|
const int32_t range = max - min;
|
|
int ch;
|
|
int16_t *d;
|
|
|
|
for (ch = 0; ch < data->num_channels; ch++)
|
|
{
|
|
struct dither_data * const dither = &dither_data[ch];
|
|
const int32_t *s = src[ch];
|
|
int i;
|
|
|
|
for (i = 0, d = &dst[ch]; i < count; i++, s++, d += 2)
|
|
{
|
|
int32_t output, sample;
|
|
int32_t random;
|
|
|
|
/* Noise shape and bias (for correct rounding later) */
|
|
sample = *s;
|
|
sample += dither->error[0] - dither->error[1] + dither->error[2];
|
|
dither->error[2] = dither->error[1];
|
|
dither->error[1] = dither->error[0]/2;
|
|
|
|
output = sample + bias;
|
|
|
|
/* Dither, highpass triangle PDF */
|
|
random = dither->random*0x0019660dL + 0x3c6ef35fL;
|
|
output += (random & mask) - (dither->random & mask);
|
|
dither->random = random;
|
|
|
|
/* Round sample to output range */
|
|
output &= ~mask;
|
|
|
|
/* Error feedback */
|
|
dither->error[0] = sample - output;
|
|
|
|
/* Clip */
|
|
if ((uint32_t)(output - min) > (uint32_t)range)
|
|
{
|
|
int32_t c = min;
|
|
if (output > min)
|
|
c += range;
|
|
output = c;
|
|
}
|
|
|
|
/* Quantize and store */
|
|
*d = output >> scale;
|
|
}
|
|
}
|
|
|
|
if (data->num_channels == 2)
|
|
return;
|
|
|
|
/* Have to duplicate left samples into the right channel since
|
|
pcm buffer and hardware is interleaved stereo */
|
|
d = &dst[0];
|
|
|
|
while (count-- > 0)
|
|
{
|
|
int16_t s = *d++;
|
|
*d++ = s;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sample_output_new_format()
|
|
*
|
|
* set the from-native to ouput sample conversion routine
|
|
*
|
|
* !DSPPARAMSYNC
|
|
* needs syncing with changes to the following dsp parameters:
|
|
* * dsp->stereo_mode (A/V)
|
|
* * dither_enabled (A)
|
|
*/
|
|
static void sample_output_new_format(struct dsp_config *dsp)
|
|
{
|
|
static const sample_output_fn_type sample_output_functions[] =
|
|
{
|
|
sample_output_mono,
|
|
sample_output_stereo,
|
|
sample_output_dithered,
|
|
sample_output_dithered
|
|
};
|
|
|
|
int out = dsp->data.num_channels - 1;
|
|
|
|
if (dsp == &AUDIO_DSP && dither_enabled)
|
|
out += 2;
|
|
|
|
dsp->output_samples = sample_output_functions[out];
|
|
}
|
|
|
|
/**
|
|
* Linear interpolation resampling that introduces a one sample delay because
|
|
* of our inability to look into the future at the end of a frame.
|
|
*/
|
|
#ifndef DSP_HAVE_ASM_RESAMPLING
|
|
static int dsp_downsample(int count, struct dsp_data *data,
|
|
const int32_t *src[], int32_t *dst[])
|
|
{
|
|
int ch = data->num_channels - 1;
|
|
uint32_t delta = data->resample_data.delta;
|
|
uint32_t phase, pos;
|
|
int32_t *d;
|
|
|
|
/* Rolled channel loop actually showed slightly faster. */
|
|
do
|
|
{
|
|
/* Just initialize things and not worry too much about the relatively
|
|
* uncommon case of not being able to spit out a sample for the frame.
|
|
*/
|
|
const int32_t *s = src[ch];
|
|
int32_t last = data->resample_data.last_sample[ch];
|
|
|
|
data->resample_data.last_sample[ch] = s[count - 1];
|
|
d = dst[ch];
|
|
phase = data->resample_data.phase;
|
|
pos = phase >> 16;
|
|
|
|
/* Do we need last sample of previous frame for interpolation? */
|
|
if (pos > 0)
|
|
last = s[pos - 1];
|
|
|
|
while (pos < (uint32_t)count)
|
|
{
|
|
*d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
|
|
phase += delta;
|
|
pos = phase >> 16;
|
|
last = s[pos - 1];
|
|
}
|
|
}
|
|
while (--ch >= 0);
|
|
|
|
/* Wrap phase accumulator back to start of next frame. */
|
|
data->resample_data.phase = phase - (count << 16);
|
|
return d - dst[0];
|
|
}
|
|
|
|
static int dsp_upsample(int count, struct dsp_data *data,
|
|
const int32_t *src[], int32_t *dst[])
|
|
{
|
|
int ch = data->num_channels - 1;
|
|
uint32_t delta = data->resample_data.delta;
|
|
uint32_t phase, pos;
|
|
int32_t *d;
|
|
|
|
/* Rolled channel loop actually showed slightly faster. */
|
|
do
|
|
{
|
|
/* Should always be able to output a sample for a ratio up to RESAMPLE_RATIO */
|
|
const int32_t *s = src[ch];
|
|
int32_t last = data->resample_data.last_sample[ch];
|
|
|
|
data->resample_data.last_sample[ch] = s[count - 1];
|
|
d = dst[ch];
|
|
phase = data->resample_data.phase;
|
|
pos = phase >> 16;
|
|
|
|
while (pos == 0)
|
|
{
|
|
*d++ = last + FRACMUL((phase & 0xffff) << 15, s[0] - last);
|
|
phase += delta;
|
|
pos = phase >> 16;
|
|
}
|
|
|
|
while (pos < (uint32_t)count)
|
|
{
|
|
last = s[pos - 1];
|
|
*d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
|
|
phase += delta;
|
|
pos = phase >> 16;
|
|
}
|
|
}
|
|
while (--ch >= 0);
|
|
|
|
/* Wrap phase accumulator back to start of next frame. */
|
|
data->resample_data.phase = phase & 0xffff;
|
|
return d - dst[0];
|
|
}
|
|
#endif /* DSP_HAVE_ASM_RESAMPLING */
|
|
|
|
static void resampler_new_delta(struct dsp_config *dsp)
|
|
{
|
|
dsp->data.resample_data.delta = (unsigned long)
|
|
dsp->frequency * 65536LL / NATIVE_FREQUENCY;
|
|
|
|
if (dsp->frequency == NATIVE_FREQUENCY)
|
|
{
|
|
/* NOTE: If fully glitch-free transistions from no resampling to
|
|
resampling are desired, last_sample history should be maintained
|
|
even when not resampling. */
|
|
dsp->resample = NULL;
|
|
dsp->data.resample_data.phase = 0;
|
|
dsp->data.resample_data.last_sample[0] = 0;
|
|
dsp->data.resample_data.last_sample[1] = 0;
|
|
}
|
|
else if (dsp->frequency < NATIVE_FREQUENCY)
|
|
dsp->resample = dsp_upsample;
|
|
else
|
|
dsp->resample = dsp_downsample;
|
|
}
|
|
|
|
/* Resample count stereo samples. Updates the src array, if resampling is
|
|
* done, to refer to the resampled data. Returns number of stereo samples
|
|
* for further processing.
|
|
*/
|
|
static inline int resample(struct dsp_config *dsp, int count, int32_t *src[])
|
|
{
|
|
int32_t *dst[2] =
|
|
{
|
|
&resample_buf[RESAMPLE_BUF_LEFT_CHANNEL],
|
|
&resample_buf[RESAMPLE_BUF_RIGHT_CHANNEL],
|
|
};
|
|
|
|
count = dsp->resample(count, &dsp->data, (const int32_t **)src, dst);
|
|
|
|
src[0] = dst[0];
|
|
src[1] = dst[dsp->data.num_channels - 1];
|
|
|
|
return count;
|
|
}
|
|
|
|
static void dither_init(struct dsp_config *dsp)
|
|
{
|
|
memset(dither_data, 0, sizeof (dither_data));
|
|
dither_bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
|
|
dither_mask = (1L << (dsp->frac_bits + 1 - NATIVE_DEPTH)) - 1;
|
|
}
|
|
|
|
void dsp_dither_enable(bool enable)
|
|
{
|
|
struct dsp_config *dsp = &AUDIO_DSP;
|
|
dither_enabled = enable;
|
|
sample_output_new_format(dsp);
|
|
}
|
|
|
|
/* Applies crossfeed to the stereo signal in src.
|
|
* Crossfeed is a process where listening over speakers is simulated. This
|
|
* is good for old hard panned stereo records, which might be quite fatiguing
|
|
* to listen to on headphones with no crossfeed.
|
|
*/
|
|
#ifndef DSP_HAVE_ASM_CROSSFEED
|
|
static void apply_crossfeed(int count, int32_t *buf[])
|
|
{
|
|
int32_t *hist_l = &crossfeed_data.history[0];
|
|
int32_t *hist_r = &crossfeed_data.history[2];
|
|
int32_t *delay = &crossfeed_data.delay[0][0];
|
|
int32_t *coefs = &crossfeed_data.coefs[0];
|
|
int32_t gain = crossfeed_data.gain;
|
|
int32_t *di = crossfeed_data.index;
|
|
|
|
int32_t acc;
|
|
int32_t left, right;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
left = buf[0][i];
|
|
right = buf[1][i];
|
|
|
|
/* Filter delayed sample from left speaker */
|
|
acc = FRACMUL(*di, coefs[0]);
|
|
acc += FRACMUL(hist_l[0], coefs[1]);
|
|
acc += FRACMUL(hist_l[1], coefs[2]);
|
|
/* Save filter history for left speaker */
|
|
hist_l[1] = acc;
|
|
hist_l[0] = *di;
|
|
*di++ = left;
|
|
/* Filter delayed sample from right speaker */
|
|
acc = FRACMUL(*di, coefs[0]);
|
|
acc += FRACMUL(hist_r[0], coefs[1]);
|
|
acc += FRACMUL(hist_r[1], coefs[2]);
|
|
/* Save filter history for right speaker */
|
|
hist_r[1] = acc;
|
|
hist_r[0] = *di;
|
|
*di++ = right;
|
|
/* Now add the attenuated direct sound and write to outputs */
|
|
buf[0][i] = FRACMUL(left, gain) + hist_r[1];
|
|
buf[1][i] = FRACMUL(right, gain) + hist_l[1];
|
|
|
|
/* Wrap delay line index if bigger than delay line size */
|
|
if (di >= delay + 13*2)
|
|
di = delay;
|
|
}
|
|
/* Write back local copies of data we've modified */
|
|
crossfeed_data.index = di;
|
|
}
|
|
#endif /* DSP_HAVE_ASM_CROSSFEED */
|
|
|
|
/**
|
|
* dsp_set_crossfeed(bool enable)
|
|
*
|
|
* !DSPPARAMSYNC
|
|
* needs syncing with changes to the following dsp parameters:
|
|
* * dsp->stereo_mode (A)
|
|
*/
|
|
void dsp_set_crossfeed(bool enable)
|
|
{
|
|
crossfeed_enabled = enable;
|
|
AUDIO_DSP.apply_crossfeed = (enable && AUDIO_DSP.data.num_channels > 1)
|
|
? apply_crossfeed : NULL;
|
|
}
|
|
|
|
void dsp_set_crossfeed_direct_gain(int gain)
|
|
{
|
|
crossfeed_data.gain = get_replaygain_int(gain * 10) << 7;
|
|
/* If gain is negative, the calculation overflowed and we need to clamp */
|
|
if (crossfeed_data.gain < 0)
|
|
crossfeed_data.gain = 0x7fffffff;
|
|
}
|
|
|
|
/* Both gains should be below 0 dB */
|
|
void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff)
|
|
{
|
|
int32_t *c = crossfeed_data.coefs;
|
|
long scaler = get_replaygain_int(lf_gain * 10) << 7;
|
|
|
|
cutoff = 0xffffffff/NATIVE_FREQUENCY*cutoff;
|
|
hf_gain -= lf_gain;
|
|
/* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
|
|
* point instead of shelf midpoint. This is for compatibility with the old
|
|
* crossfeed shelf filter and should be removed if crossfeed settings are
|
|
* ever made incompatible for any other good reason.
|
|
*/
|
|
cutoff = fp_div(cutoff, get_replaygain_int(hf_gain*5), 24);
|
|
filter_shelf_coefs(cutoff, hf_gain, false, c);
|
|
/* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
|
|
* over 1 and can do this safely
|
|
*/
|
|
c[0] = FRACMUL_SHL(c[0], scaler, 4);
|
|
c[1] = FRACMUL_SHL(c[1], scaler, 4);
|
|
c[2] <<= 4;
|
|
}
|
|
|
|
/* Apply a constant gain to the samples (e.g., for ReplayGain).
|
|
* Note that this must be called before the resampler.
|
|
*/
|
|
#ifndef DSP_HAVE_ASM_APPLY_GAIN
|
|
static void dsp_apply_gain(int count, struct dsp_data *data, int32_t *buf[])
|
|
{
|
|
const int32_t gain = data->gain;
|
|
int ch;
|
|
|
|
for (ch = 0; ch < data->num_channels; ch++)
|
|
{
|
|
int32_t *d = buf[ch];
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
d[i] = FRACMUL_SHL(d[i], gain, 8);
|
|
}
|
|
}
|
|
#endif /* DSP_HAVE_ASM_APPLY_GAIN */
|
|
|
|
/* Combine all gains to a global gain. */
|
|
static void set_gain(struct dsp_config *dsp)
|
|
{
|
|
/* gains are in S7.24 format */
|
|
dsp->data.gain = DEFAULT_GAIN;
|
|
|
|
/* Replay gain not relevant to voice */
|
|
if (dsp == &AUDIO_DSP && replaygain)
|
|
{
|
|
dsp->data.gain = replaygain;
|
|
}
|
|
|
|
if (dsp->eq_process && eq_precut)
|
|
{
|
|
dsp->data.gain = fp_mul(dsp->data.gain, eq_precut, 24);
|
|
}
|
|
|
|
#ifdef HAVE_SW_VOLUME_CONTROL
|
|
if (global_settings.volume < SW_VOLUME_MAX ||
|
|
global_settings.volume > SW_VOLUME_MIN)
|
|
{
|
|
int vol_gain = get_replaygain_int(global_settings.volume * 100);
|
|
dsp->data.gain = (long) (((int64_t) dsp->data.gain * vol_gain) >> 24);
|
|
}
|
|
#endif
|
|
|
|
if (dsp->data.gain == DEFAULT_GAIN)
|
|
{
|
|
dsp->data.gain = 0;
|
|
}
|
|
else
|
|
{
|
|
dsp->data.gain >>= 1; /* convert gain to S8.23 format */
|
|
}
|
|
|
|
dsp->apply_gain = dsp->data.gain != 0 ? dsp_apply_gain : NULL;
|
|
}
|
|
|
|
/**
|
|
* Update the amount to cut the audio before applying the equalizer.
|
|
*
|
|
* @param precut to apply in decibels (multiplied by 10)
|
|
*/
|
|
void dsp_set_eq_precut(int precut)
|
|
{
|
|
eq_precut = get_replaygain_int(precut * -10);
|
|
set_gain(&AUDIO_DSP);
|
|
}
|
|
|
|
/**
|
|
* Synchronize the equalizer filter coefficients with the global settings.
|
|
*
|
|
* @param band the equalizer band to synchronize
|
|
*/
|
|
void dsp_set_eq_coefs(int band)
|
|
{
|
|
const int *setting;
|
|
long gain;
|
|
unsigned long cutoff, q;
|
|
|
|
/* Adjust setting pointer to the band we actually want to change */
|
|
setting = &global_settings.eq_band0_cutoff + (band * 3);
|
|
|
|
/* Convert user settings to format required by coef generator functions */
|
|
cutoff = 0xffffffff / NATIVE_FREQUENCY * (*setting++);
|
|
q = *setting++;
|
|
gain = *setting++;
|
|
|
|
if (q == 0)
|
|
q = 1;
|
|
|
|
/* NOTE: The coef functions assume the EMAC unit is in fractional mode,
|
|
which it should be, since we're executed from the main thread. */
|
|
|
|
/* Assume a band is disabled if the gain is zero */
|
|
if (gain == 0)
|
|
{
|
|
eq_data.enabled[band] = 0;
|
|
}
|
|
else
|
|
{
|
|
if (band == 0)
|
|
eq_ls_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
|
|
else if (band == 4)
|
|
eq_hs_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
|
|
else
|
|
eq_pk_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
|
|
|
|
eq_data.enabled[band] = 1;
|
|
}
|
|
}
|
|
|
|
/* Apply EQ filters to those bands that have got it switched on. */
|
|
static void eq_process(int count, int32_t *buf[])
|
|
{
|
|
static const int shifts[] =
|
|
{
|
|
EQ_SHELF_SHIFT, /* low shelf */
|
|
EQ_PEAK_SHIFT, /* peaking */
|
|
EQ_PEAK_SHIFT, /* peaking */
|
|
EQ_PEAK_SHIFT, /* peaking */
|
|
EQ_SHELF_SHIFT, /* high shelf */
|
|
};
|
|
unsigned int channels = AUDIO_DSP.data.num_channels;
|
|
int i;
|
|
|
|
/* filter configuration currently is 1 low shelf filter, 3 band peaking
|
|
filters and 1 high shelf filter, in that order. we need to know this
|
|
so we can choose the correct shift factor.
|
|
*/
|
|
for (i = 0; i < 5; i++)
|
|
{
|
|
if (!eq_data.enabled[i])
|
|
continue;
|
|
eq_filter(buf, &eq_data.filters[i], count, channels, shifts[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Use to enable the equalizer.
|
|
*
|
|
* @param enable true to enable the equalizer
|
|
*/
|
|
void dsp_set_eq(bool enable)
|
|
{
|
|
AUDIO_DSP.eq_process = enable ? eq_process : NULL;
|
|
set_gain(&AUDIO_DSP);
|
|
}
|
|
|
|
static void dsp_set_stereo_width(int value)
|
|
{
|
|
long width, straight, cross;
|
|
|
|
width = value * 0x7fffff / 100;
|
|
|
|
if (value <= 100)
|
|
{
|
|
straight = (0x7fffff + width) / 2;
|
|
cross = straight - width;
|
|
}
|
|
else
|
|
{
|
|
/* straight = (1 + width) / (2 * width) */
|
|
straight = ((int64_t)(0x7fffff + width) << 22) / width;
|
|
cross = straight - 0x7fffff;
|
|
}
|
|
|
|
dsp_sw_gain = straight << 8;
|
|
dsp_sw_cross = cross << 8;
|
|
}
|
|
|
|
/**
|
|
* Implements the different channel configurations and stereo width.
|
|
*/
|
|
|
|
/* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
|
|
* completeness. */
|
|
#if 0
|
|
static void channels_process_sound_chan_stereo(int count, int32_t *buf[])
|
|
{
|
|
/* The channels are each just themselves */
|
|
(void)count; (void)buf;
|
|
}
|
|
#endif
|
|
|
|
#ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
|
|
static void channels_process_sound_chan_mono(int count, int32_t *buf[])
|
|
{
|
|
int32_t *sl = buf[0], *sr = buf[1];
|
|
|
|
while (count-- > 0)
|
|
{
|
|
int32_t lr = *sl/2 + *sr/2;
|
|
*sl++ = lr;
|
|
*sr++ = lr;
|
|
}
|
|
}
|
|
#endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
|
|
|
|
#ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
|
|
static void channels_process_sound_chan_custom(int count, int32_t *buf[])
|
|
{
|
|
const int32_t gain = dsp_sw_gain;
|
|
const int32_t cross = dsp_sw_cross;
|
|
int32_t *sl = buf[0], *sr = buf[1];
|
|
|
|
while (count-- > 0)
|
|
{
|
|
int32_t l = *sl;
|
|
int32_t r = *sr;
|
|
*sl++ = FRACMUL(l, gain) + FRACMUL(r, cross);
|
|
*sr++ = FRACMUL(r, gain) + FRACMUL(l, cross);
|
|
}
|
|
}
|
|
#endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
|
|
|
|
static void channels_process_sound_chan_mono_left(int count, int32_t *buf[])
|
|
{
|
|
/* Just copy over the other channel */
|
|
memcpy(buf[1], buf[0], count * sizeof (*buf));
|
|
}
|
|
|
|
static void channels_process_sound_chan_mono_right(int count, int32_t *buf[])
|
|
{
|
|
/* Just copy over the other channel */
|
|
memcpy(buf[0], buf[1], count * sizeof (*buf));
|
|
}
|
|
|
|
#ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
|
|
static void channels_process_sound_chan_karaoke(int count, int32_t *buf[])
|
|
{
|
|
int32_t *sl = buf[0], *sr = buf[1];
|
|
|
|
while (count-- > 0)
|
|
{
|
|
int32_t ch = *sl/2 - *sr/2;
|
|
*sl++ = ch;
|
|
*sr++ = -ch;
|
|
}
|
|
}
|
|
#endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
|
|
|
|
static void dsp_set_channel_config(int value)
|
|
{
|
|
static const channels_process_fn_type channels_process_functions[] =
|
|
{
|
|
/* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
|
|
[SOUND_CHAN_STEREO] = NULL,
|
|
[SOUND_CHAN_MONO] = channels_process_sound_chan_mono,
|
|
[SOUND_CHAN_CUSTOM] = channels_process_sound_chan_custom,
|
|
[SOUND_CHAN_MONO_LEFT] = channels_process_sound_chan_mono_left,
|
|
[SOUND_CHAN_MONO_RIGHT] = channels_process_sound_chan_mono_right,
|
|
[SOUND_CHAN_KARAOKE] = channels_process_sound_chan_karaoke,
|
|
};
|
|
|
|
if ((unsigned)value >= ARRAYLEN(channels_process_functions) ||
|
|
AUDIO_DSP.stereo_mode == STEREO_MONO)
|
|
{
|
|
value = SOUND_CHAN_STEREO;
|
|
}
|
|
|
|
/* This doesn't apply to voice */
|
|
channels_mode = value;
|
|
AUDIO_DSP.channels_process = channels_process_functions[value];
|
|
}
|
|
|
|
#if CONFIG_CODEC == SWCODEC
|
|
|
|
#ifdef HAVE_SW_TONE_CONTROLS
|
|
static void set_tone_controls(void)
|
|
{
|
|
filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY*200,
|
|
0xffffffff/NATIVE_FREQUENCY*3500,
|
|
bass, treble, -prescale,
|
|
AUDIO_DSP.tone_filter.coefs);
|
|
/* Sync the voice dsp coefficients */
|
|
memcpy(&VOICE_DSP.tone_filter.coefs, AUDIO_DSP.tone_filter.coefs,
|
|
sizeof (VOICE_DSP.tone_filter.coefs));
|
|
}
|
|
#endif
|
|
|
|
/* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
|
|
* code directly.
|
|
*/
|
|
int dsp_callback(int msg, intptr_t param)
|
|
{
|
|
switch (msg)
|
|
{
|
|
#ifdef HAVE_SW_TONE_CONTROLS
|
|
case DSP_CALLBACK_SET_PRESCALE:
|
|
prescale = param;
|
|
set_tone_controls();
|
|
break;
|
|
/* prescaler is always set after calling any of these, so we wait with
|
|
* calculating coefs until the above case is hit.
|
|
*/
|
|
case DSP_CALLBACK_SET_BASS:
|
|
bass = param;
|
|
break;
|
|
case DSP_CALLBACK_SET_TREBLE:
|
|
treble = param;
|
|
break;
|
|
#ifdef HAVE_SW_VOLUME_CONTROL
|
|
case DSP_CALLBACK_SET_SW_VOLUME:
|
|
set_gain(&AUDIO_DSP);
|
|
break;
|
|
#endif
|
|
#endif
|
|
case DSP_CALLBACK_SET_CHANNEL_CONFIG:
|
|
dsp_set_channel_config(param);
|
|
break;
|
|
case DSP_CALLBACK_SET_STEREO_WIDTH:
|
|
dsp_set_stereo_width(param);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Process and convert src audio to dst based on the DSP configuration,
|
|
* reading count number of audio samples. dst is assumed to be large
|
|
* enough; use dsp_output_count() to get the required number. src is an
|
|
* array of pointers; for mono and interleaved stereo, it contains one
|
|
* pointer to the start of the audio data and the other is ignored; for
|
|
* non-interleaved stereo, it contains two pointers, one for each audio
|
|
* channel. Returns number of bytes written to dst.
|
|
*/
|
|
int dsp_process(struct dsp_config *dsp, char *dst, const char *src[], int count)
|
|
{
|
|
int32_t *tmp[2];
|
|
static long last_yield;
|
|
long tick;
|
|
int written = 0;
|
|
|
|
#if defined(CPU_COLDFIRE)
|
|
/* set emac unit for dsp processing, and save old macsr, we're running in
|
|
codec thread context at this point, so can't clobber it */
|
|
unsigned long old_macsr = coldfire_get_macsr();
|
|
coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
|
|
#endif
|
|
|
|
if (new_gain)
|
|
dsp_set_replaygain(); /* Gain has changed */
|
|
|
|
/* Perform at least one yield before starting */
|
|
last_yield = current_tick;
|
|
yield();
|
|
|
|
/* Testing function pointers for NULL is preferred since the pointer
|
|
will be preloaded to be used for the call if not. */
|
|
while (count > 0)
|
|
{
|
|
int samples = MIN(sample_buf_count/2, count);
|
|
count -= samples;
|
|
|
|
dsp->input_samples(samples, src, tmp);
|
|
|
|
if (dsp->tdspeed_active)
|
|
samples = tdspeed_doit(tmp, samples);
|
|
|
|
int chunk_offset = 0;
|
|
while (samples > 0)
|
|
{
|
|
int32_t *t2[2];
|
|
t2[0] = tmp[0]+chunk_offset;
|
|
t2[1] = tmp[1]+chunk_offset;
|
|
|
|
int chunk = MIN(sample_buf_count/2, samples);
|
|
chunk_offset += chunk;
|
|
samples -= chunk;
|
|
|
|
if (dsp->apply_gain)
|
|
dsp->apply_gain(chunk, &dsp->data, t2);
|
|
|
|
if (dsp->resample && (chunk = resample(dsp, chunk, t2)) <= 0)
|
|
break; /* I'm pretty sure we're downsampling here */
|
|
|
|
if (dsp->apply_crossfeed)
|
|
dsp->apply_crossfeed(chunk, t2);
|
|
|
|
if (dsp->eq_process)
|
|
dsp->eq_process(chunk, t2);
|
|
|
|
#ifdef HAVE_SW_TONE_CONTROLS
|
|
if ((bass | treble) != 0)
|
|
eq_filter(t2, &dsp->tone_filter, chunk,
|
|
dsp->data.num_channels, FILTER_BISHELF_SHIFT);
|
|
#endif
|
|
|
|
if (dsp->channels_process)
|
|
dsp->channels_process(chunk, t2);
|
|
|
|
if (dsp->compressor_process)
|
|
dsp->compressor_process(chunk, t2);
|
|
|
|
dsp->output_samples(chunk, &dsp->data, (const int32_t **)t2, (int16_t *)dst);
|
|
|
|
written += chunk;
|
|
dst += chunk * sizeof (int16_t) * 2;
|
|
|
|
/* yield at least once each tick */
|
|
tick = current_tick;
|
|
if (TIME_AFTER(tick, last_yield))
|
|
{
|
|
last_yield = tick;
|
|
yield();
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(CPU_COLDFIRE)
|
|
/* set old macsr again */
|
|
coldfire_set_macsr(old_macsr);
|
|
#endif
|
|
return written;
|
|
}
|
|
|
|
/* Given count number of input samples, calculate the maximum number of
|
|
* samples of output data that would be generated (the calculation is not
|
|
* entirely exact and rounds upwards to be on the safe side; during
|
|
* resampling, the number of samples generated depends on the current state
|
|
* of the resampler).
|
|
*/
|
|
/* dsp_input_size MUST be called afterwards */
|
|
int dsp_output_count(struct dsp_config *dsp, int count)
|
|
{
|
|
if (dsp->tdspeed_active)
|
|
count = tdspeed_est_output_size();
|
|
if (dsp->resample)
|
|
{
|
|
count = (int)(((unsigned long)count * NATIVE_FREQUENCY
|
|
+ (dsp->frequency - 1)) / dsp->frequency);
|
|
}
|
|
|
|
/* Now we have the resampled sample count which must not exceed
|
|
* RESAMPLE_BUF_RIGHT_CHANNEL to avoid resample buffer overflow. One
|
|
* must call dsp_input_count() to get the correct input sample
|
|
* count.
|
|
*/
|
|
if (count > RESAMPLE_BUF_RIGHT_CHANNEL)
|
|
count = RESAMPLE_BUF_RIGHT_CHANNEL;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Given count output samples, calculate number of input samples
|
|
* that would be consumed in order to fill the output buffer.
|
|
*/
|
|
int dsp_input_count(struct dsp_config *dsp, int count)
|
|
{
|
|
/* count is now the number of resampled input samples. Convert to
|
|
original input samples. */
|
|
if (dsp->resample)
|
|
{
|
|
/* Use the real resampling delta =
|
|
* dsp->frequency * 65536 / NATIVE_FREQUENCY, and
|
|
* round towards zero to avoid buffer overflows. */
|
|
count = (int)(((unsigned long)count *
|
|
dsp->data.resample_data.delta) >> 16);
|
|
}
|
|
|
|
if (dsp->tdspeed_active)
|
|
count = tdspeed_est_input_size(count);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void dsp_set_gain_var(long *var, long value)
|
|
{
|
|
*var = value;
|
|
new_gain = true;
|
|
}
|
|
|
|
static void dsp_update_functions(struct dsp_config *dsp)
|
|
{
|
|
sample_input_new_format(dsp);
|
|
sample_output_new_format(dsp);
|
|
if (dsp == &AUDIO_DSP)
|
|
dsp_set_crossfeed(crossfeed_enabled);
|
|
}
|
|
|
|
intptr_t dsp_configure(struct dsp_config *dsp, int setting, intptr_t value)
|
|
{
|
|
switch (setting)
|
|
{
|
|
case DSP_MYDSP:
|
|
switch (value)
|
|
{
|
|
case CODEC_IDX_AUDIO:
|
|
return (intptr_t)&AUDIO_DSP;
|
|
case CODEC_IDX_VOICE:
|
|
return (intptr_t)&VOICE_DSP;
|
|
default:
|
|
return (intptr_t)NULL;
|
|
}
|
|
|
|
case DSP_SET_FREQUENCY:
|
|
memset(&dsp->data.resample_data, 0, sizeof (dsp->data.resample_data));
|
|
/* Fall through!!! */
|
|
case DSP_SWITCH_FREQUENCY:
|
|
dsp->codec_frequency = (value == 0) ? NATIVE_FREQUENCY : value;
|
|
/* Account for playback speed adjustment when setting dsp->frequency
|
|
if we're called from the main audio thread. Voice UI thread should
|
|
not need this feature.
|
|
*/
|
|
if (dsp == &AUDIO_DSP)
|
|
dsp->frequency = pitch_ratio * dsp->codec_frequency / PITCH_SPEED_100;
|
|
else
|
|
dsp->frequency = dsp->codec_frequency;
|
|
|
|
resampler_new_delta(dsp);
|
|
tdspeed_setup(dsp);
|
|
break;
|
|
|
|
case DSP_SET_SAMPLE_DEPTH:
|
|
dsp->sample_depth = value;
|
|
|
|
if (dsp->sample_depth <= NATIVE_DEPTH)
|
|
{
|
|
dsp->frac_bits = WORD_FRACBITS;
|
|
dsp->sample_bytes = sizeof (int16_t); /* samples are 16 bits */
|
|
dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
|
|
dsp->data.clip_min = -((1 << WORD_FRACBITS));
|
|
}
|
|
else
|
|
{
|
|
dsp->frac_bits = value;
|
|
dsp->sample_bytes = sizeof (int32_t); /* samples are 32 bits */
|
|
dsp->data.clip_max = (1 << value) - 1;
|
|
dsp->data.clip_min = -(1 << value);
|
|
}
|
|
|
|
dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
|
|
sample_input_new_format(dsp);
|
|
dither_init(dsp);
|
|
break;
|
|
|
|
case DSP_SET_STEREO_MODE:
|
|
dsp->stereo_mode = value;
|
|
dsp->data.num_channels = value == STEREO_MONO ? 1 : 2;
|
|
dsp_update_functions(dsp);
|
|
tdspeed_setup(dsp);
|
|
break;
|
|
|
|
case DSP_RESET:
|
|
dsp->stereo_mode = STEREO_NONINTERLEAVED;
|
|
dsp->data.num_channels = 2;
|
|
dsp->sample_depth = NATIVE_DEPTH;
|
|
dsp->frac_bits = WORD_FRACBITS;
|
|
dsp->sample_bytes = sizeof (int16_t);
|
|
dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
|
|
dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
|
|
dsp->data.clip_min = -((1 << WORD_FRACBITS));
|
|
dsp->codec_frequency = dsp->frequency = NATIVE_FREQUENCY;
|
|
|
|
if (dsp == &AUDIO_DSP)
|
|
{
|
|
track_gain = 0;
|
|
album_gain = 0;
|
|
track_peak = 0;
|
|
album_peak = 0;
|
|
new_gain = true;
|
|
}
|
|
|
|
dsp_update_functions(dsp);
|
|
resampler_new_delta(dsp);
|
|
tdspeed_setup(dsp);
|
|
if (dsp == &AUDIO_DSP)
|
|
release_gain = UNITY;
|
|
break;
|
|
|
|
case DSP_FLUSH:
|
|
memset(&dsp->data.resample_data, 0,
|
|
sizeof (dsp->data.resample_data));
|
|
resampler_new_delta(dsp);
|
|
dither_init(dsp);
|
|
tdspeed_setup(dsp);
|
|
if (dsp == &AUDIO_DSP)
|
|
release_gain = UNITY;
|
|
break;
|
|
|
|
case DSP_SET_TRACK_GAIN:
|
|
if (dsp == &AUDIO_DSP)
|
|
dsp_set_gain_var(&track_gain, value);
|
|
break;
|
|
|
|
case DSP_SET_ALBUM_GAIN:
|
|
if (dsp == &AUDIO_DSP)
|
|
dsp_set_gain_var(&album_gain, value);
|
|
break;
|
|
|
|
case DSP_SET_TRACK_PEAK:
|
|
if (dsp == &AUDIO_DSP)
|
|
dsp_set_gain_var(&track_peak, value);
|
|
break;
|
|
|
|
case DSP_SET_ALBUM_PEAK:
|
|
if (dsp == &AUDIO_DSP)
|
|
dsp_set_gain_var(&album_peak, value);
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int get_replaygain_mode(bool have_track_gain, bool have_album_gain)
|
|
{
|
|
int type;
|
|
|
|
bool track = ((global_settings.replaygain_type == REPLAYGAIN_TRACK)
|
|
|| ((global_settings.replaygain_type == REPLAYGAIN_SHUFFLE)
|
|
&& global_settings.playlist_shuffle));
|
|
|
|
type = (!track && have_album_gain) ? REPLAYGAIN_ALBUM
|
|
: have_track_gain ? REPLAYGAIN_TRACK : -1;
|
|
|
|
return type;
|
|
}
|
|
|
|
void dsp_set_replaygain(void)
|
|
{
|
|
long gain = 0;
|
|
|
|
new_gain = false;
|
|
|
|
if ((global_settings.replaygain_type != REPLAYGAIN_OFF) ||
|
|
global_settings.replaygain_noclip)
|
|
{
|
|
bool track_mode = get_replaygain_mode(track_gain != 0,
|
|
album_gain != 0) == REPLAYGAIN_TRACK;
|
|
long peak = (track_mode || !album_peak) ? track_peak : album_peak;
|
|
|
|
if (global_settings.replaygain_type != REPLAYGAIN_OFF)
|
|
{
|
|
gain = (track_mode || !album_gain) ? track_gain : album_gain;
|
|
|
|
if (global_settings.replaygain_preamp)
|
|
{
|
|
long preamp = get_replaygain_int(
|
|
global_settings.replaygain_preamp * 10);
|
|
|
|
gain = (long) (((int64_t) gain * preamp) >> 24);
|
|
}
|
|
}
|
|
|
|
if (gain == 0)
|
|
{
|
|
/* So that noclip can work even with no gain information. */
|
|
gain = DEFAULT_GAIN;
|
|
}
|
|
|
|
if (global_settings.replaygain_noclip && (peak != 0)
|
|
&& ((((int64_t) gain * peak) >> 24) >= DEFAULT_GAIN))
|
|
{
|
|
gain = (((int64_t) DEFAULT_GAIN << 24) / peak);
|
|
}
|
|
|
|
if (gain == DEFAULT_GAIN)
|
|
{
|
|
/* Nothing to do, disable processing. */
|
|
gain = 0;
|
|
}
|
|
}
|
|
|
|
/* Store in S7.24 format to simplify calculations. */
|
|
replaygain = gain;
|
|
set_gain(&AUDIO_DSP);
|
|
}
|
|
|
|
/** SET COMPRESSOR
|
|
* Called by the menu system to configure the compressor process */
|
|
void dsp_set_compressor(int c_threshold, int c_ratio, int c_gain,
|
|
int c_knee, int c_release)
|
|
{
|
|
bool changed = false;
|
|
bool active = (c_threshold < 0);
|
|
const int comp_ratio[] = {2, 4, 6, 10, 0};
|
|
int new_ratio = comp_ratio[c_ratio];
|
|
bool new_knee = (c_knee == 1);
|
|
int new_release = c_release * NATIVE_FREQUENCY / 1000;
|
|
|
|
if (c_menu.threshold != c_threshold)
|
|
{
|
|
changed = true;
|
|
c_menu.threshold = c_threshold;
|
|
logf(" Compressor Threshold: %d dB\tEnabled: %s",
|
|
c_menu.threshold, active ? "Yes" : "No");
|
|
}
|
|
|
|
if (c_menu.ratio != new_ratio)
|
|
{
|
|
changed = true;
|
|
c_menu.ratio = new_ratio;
|
|
if (c_menu.ratio)
|
|
{
|
|
logf(" Compressor Ratio: %d:1", c_menu.ratio);
|
|
}
|
|
else
|
|
{
|
|
logf(" Compressor Ratio: Limit");
|
|
}
|
|
}
|
|
|
|
if (c_menu.gain != c_gain)
|
|
{
|
|
changed = true;
|
|
c_menu.gain = c_gain;
|
|
if (c_menu.gain >= 0)
|
|
{
|
|
logf(" Compressor Makeup Gain: %d dB", c_menu.gain);
|
|
}
|
|
else
|
|
{
|
|
logf(" Compressor Makeup Gain: Auto");
|
|
}
|
|
}
|
|
|
|
if (c_menu.soft_knee != new_knee)
|
|
{
|
|
changed = true;
|
|
c_menu.soft_knee = new_knee;
|
|
logf(" Compressor Knee: %s", c_menu.soft_knee==1?"Soft":"Hard");
|
|
}
|
|
|
|
if (c_menu.release != new_release)
|
|
{
|
|
changed = true;
|
|
c_menu.release = new_release;
|
|
logf(" Compressor Release: %d", c_menu.release);
|
|
}
|
|
|
|
if (changed && active)
|
|
{
|
|
/* configure variables for compressor operation */
|
|
int i;
|
|
const int32_t db[] ={0x000000, /* positive db equivalents in S15.16 format */
|
|
0x241FA4, 0x1E1A5E, 0x1A94C8, 0x181518, 0x1624EA, 0x148F82, 0x1338BD, 0x120FD2,
|
|
0x1109EB, 0x101FA4, 0x0F4BB6, 0x0E8A3C, 0x0DD840, 0x0D3377, 0x0C9A0E, 0x0C0A8C,
|
|
0x0B83BE, 0x0B04A5, 0x0A8C6C, 0x0A1A5E, 0x09ADE1, 0x094670, 0x08E398, 0x0884F6,
|
|
0x082A30, 0x07D2FA, 0x077F0F, 0x072E31, 0x06E02A, 0x0694C8, 0x064BDF, 0x060546,
|
|
0x05C0DA, 0x057E78, 0x053E03, 0x04FF5F, 0x04C273, 0x048726, 0x044D64, 0x041518,
|
|
0x03DE30, 0x03A89B, 0x037448, 0x03412A, 0x030F32, 0x02DE52, 0x02AE80, 0x027FB0,
|
|
0x0251D6, 0x0224EA, 0x01F8E2, 0x01CDB4, 0x01A359, 0x0179C9, 0x0150FC, 0x0128EB,
|
|
0x010190, 0x00DAE4, 0x00B4E1, 0x008F82, 0x006AC1, 0x004699, 0x002305};
|
|
|
|
struct curve_point
|
|
{
|
|
int32_t db; /* S15.16 format */
|
|
int32_t offset; /* S15.16 format */
|
|
} db_curve[5];
|
|
|
|
/** Set up the shape of the compression curve first as decibel values*/
|
|
/* db_curve[0] = bottom of knee
|
|
[1] = threshold
|
|
[2] = top of knee
|
|
[3] = 0 db input
|
|
[4] = ~+12db input (2 bits clipping overhead) */
|
|
|
|
db_curve[1].db = c_menu.threshold << 16;
|
|
if (c_menu.soft_knee)
|
|
{
|
|
/* bottom of knee is 3dB below the threshold for soft knee*/
|
|
db_curve[0].db = db_curve[1].db - (3 << 16);
|
|
/* top of knee is 3dB above the threshold for soft knee */
|
|
db_curve[2].db = db_curve[1].db + (3 << 16);
|
|
if (c_menu.ratio)
|
|
/* offset = -3db * (ratio - 1) / ratio */
|
|
db_curve[2].offset = (int32_t)((long long)(-3 << 16)
|
|
* (c_menu.ratio - 1) / c_menu.ratio);
|
|
else
|
|
/* offset = -3db for hard limit */
|
|
db_curve[2].offset = (-3 << 16);
|
|
}
|
|
else
|
|
{
|
|
/* bottom of knee is at the threshold for hard knee */
|
|
db_curve[0].db = c_menu.threshold << 16;
|
|
/* top of knee is at the threshold for hard knee */
|
|
db_curve[2].db = c_menu.threshold << 16;
|
|
db_curve[2].offset = 0;
|
|
}
|
|
|
|
/* Calculate 0db and ~+12db offsets */
|
|
db_curve[4].db = 0xC0A8C; /* db of 2 bits clipping */
|
|
if (c_menu.ratio)
|
|
{
|
|
/* offset = threshold * (ratio - 1) / ratio */
|
|
db_curve[3].offset = (int32_t)((long long)(c_menu.threshold << 16)
|
|
* (c_menu.ratio - 1) / c_menu.ratio);
|
|
db_curve[4].offset = (int32_t)((long long)-db_curve[4].db
|
|
* (c_menu.ratio - 1) / c_menu.ratio) + db_curve[3].offset;
|
|
}
|
|
else
|
|
{
|
|
/* offset = threshold for hard limit */
|
|
db_curve[3].offset = (c_menu.threshold << 16);
|
|
db_curve[4].offset = -db_curve[4].db + db_curve[3].offset;
|
|
}
|
|
|
|
/** Now set up the comp_curve table with compression offsets in the form
|
|
of gain factors in S7.24 format */
|
|
/* comp_curve[0] is 0 (-infinity db) input */
|
|
comp_curve[0] = UNITY;
|
|
/* comp_curve[1 to 63] are intermediate compression values corresponding
|
|
to the 6 MSB of the input values of a non-clipped signal */
|
|
for (i = 1; i < 64; i++)
|
|
{
|
|
/* db constants are stored as positive numbers;
|
|
make them negative here */
|
|
int32_t this_db = -db[i];
|
|
|
|
/* no compression below the knee */
|
|
if (this_db <= db_curve[0].db)
|
|
comp_curve[i] = UNITY;
|
|
|
|
/* if soft knee and below top of knee,
|
|
interpolate along soft knee slope */
|
|
else if (c_menu.soft_knee && (this_db <= db_curve[2].db))
|
|
comp_curve[i] = fp_factor(fp_mul(
|
|
((this_db - db_curve[0].db) / 6),
|
|
db_curve[2].offset, 16), 16) << 8;
|
|
|
|
/* interpolate along ratio slope above the knee */
|
|
else
|
|
comp_curve[i] = fp_factor(fp_mul(
|
|
fp_div((db_curve[1].db - this_db), db_curve[1].db, 16),
|
|
db_curve[3].offset, 16), 16) << 8;
|
|
}
|
|
/* comp_curve[64] is the compression level of a maximum level,
|
|
non-clipped signal */
|
|
comp_curve[64] = fp_factor(db_curve[3].offset, 16) << 8;
|
|
|
|
/* comp_curve[65] is the compression level of a maximum level,
|
|
clipped signal */
|
|
comp_curve[65] = fp_factor(db_curve[4].offset, 16) << 8;
|
|
|
|
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
|
|
logf("\n *** Compression Offsets ***");
|
|
/* some settings for display only, not used in calculations */
|
|
db_curve[0].offset = 0;
|
|
db_curve[1].offset = 0;
|
|
db_curve[3].db = 0;
|
|
|
|
for (i = 0; i <= 4; i++)
|
|
{
|
|
logf("Curve[%d]: db: % 6.2f\toffset: % 6.2f", i,
|
|
(float)db_curve[i].db / (1 << 16),
|
|
(float)db_curve[i].offset / (1 << 16));
|
|
}
|
|
|
|
logf("\nGain factors:");
|
|
for (i = 1; i <= 65; i++)
|
|
{
|
|
debugf("%02d: %.6f ", i, (float)comp_curve[i] / UNITY);
|
|
if (i % 4 == 0) debugf("\n");
|
|
}
|
|
debugf("\n");
|
|
#endif
|
|
|
|
/* if using auto peak, then makeup gain is max offset - .1dB headroom */
|
|
int32_t db_makeup = (c_menu.gain == -1) ?
|
|
-(db_curve[3].offset) - 0x199A : c_menu.gain << 16;
|
|
comp_makeup_gain = fp_factor(db_makeup, 16) << 8;
|
|
logf("Makeup gain:\t%.6f", (float)comp_makeup_gain / UNITY);
|
|
|
|
/* calculate per-sample gain change a rate of 10db over release time */
|
|
comp_rel_slope = 0xAF0BB2 / c_menu.release;
|
|
logf("Release slope:\t%.6f", (float)comp_rel_slope / UNITY);
|
|
|
|
release_gain = UNITY;
|
|
}
|
|
|
|
/* enable/disable the compressor */
|
|
AUDIO_DSP.compressor_process = active ? compressor_process : NULL;
|
|
}
|
|
|
|
/** GET COMPRESSION GAIN
|
|
* Returns the required gain factor in S7.24 format in order to compress the
|
|
* sample in accordance with the compression curve. Always 1 or less.
|
|
*/
|
|
static inline int32_t get_compression_gain(int32_t sample)
|
|
{
|
|
const int frac_bits_offset = AUDIO_DSP.frac_bits - 15;
|
|
|
|
/* sample must be positive */
|
|
if (sample < 0)
|
|
sample = -(sample + 1);
|
|
|
|
/* shift sample into 15 frac bit range */
|
|
if (frac_bits_offset > 0)
|
|
sample >>= frac_bits_offset;
|
|
if (frac_bits_offset < 0)
|
|
sample <<= -frac_bits_offset;
|
|
|
|
/* normal case: sample isn't clipped */
|
|
if (sample < (1 << 15))
|
|
{
|
|
/* index is 6 MSB, rem is 9 LSB */
|
|
int index = sample >> 9;
|
|
int32_t rem = (sample & 0x1FF) << 22;
|
|
|
|
/* interpolate from the compression curve:
|
|
higher gain - ((rem / (1 << 31)) * (higher gain - lower gain)) */
|
|
return comp_curve[index] - (FRACMUL(rem,
|
|
(comp_curve[index] - comp_curve[index + 1])));
|
|
}
|
|
/* sample is somewhat clipped, up to 2 bits of overhead */
|
|
if (sample < (1 << 17))
|
|
{
|
|
/* straight interpolation:
|
|
higher gain - ((clipped portion of sample * 4/3
|
|
/ (1 << 31)) * (higher gain - lower gain)) */
|
|
return comp_curve[64] - (FRACMUL(((sample - (1 << 15)) / 3) << 16,
|
|
(comp_curve[64] - comp_curve[65])));
|
|
}
|
|
|
|
/* sample is too clipped, return invalid value */
|
|
return -1;
|
|
}
|
|
|
|
/** COMPRESSOR PROCESS
|
|
* Changes the gain of the samples according to the compressor curve
|
|
*/
|
|
static void compressor_process(int count, int32_t *buf[])
|
|
{
|
|
const int num_chan = AUDIO_DSP.data.num_channels;
|
|
int32_t *in_buf[2] = {buf[0], buf[1]};
|
|
|
|
while (count-- > 0)
|
|
{
|
|
int ch;
|
|
/* use lowest (most compressed) gain factor of the output buffer
|
|
sample pair for both samples (mono is also handled correctly here) */
|
|
int32_t sample_gain = UNITY;
|
|
for (ch = 0; ch < num_chan; ch++)
|
|
{
|
|
int32_t this_gain = get_compression_gain(*in_buf[ch]);
|
|
if (this_gain < sample_gain)
|
|
sample_gain = this_gain;
|
|
}
|
|
|
|
/* perform release slope; skip if no compression and no release slope */
|
|
if ((sample_gain != UNITY) || (release_gain != UNITY))
|
|
{
|
|
/* if larger offset than previous slope, start new release slope */
|
|
if ((sample_gain <= release_gain) && (sample_gain > 0))
|
|
{
|
|
release_gain = sample_gain;
|
|
}
|
|
else
|
|
/* keep sloping towards unity gain (and ignore invalid value) */
|
|
{
|
|
release_gain += comp_rel_slope;
|
|
if (release_gain > UNITY)
|
|
{
|
|
release_gain = UNITY;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* total gain factor is the product of release gain and makeup gain,
|
|
but avoid computation if possible */
|
|
int32_t total_gain = ((release_gain == UNITY) ? comp_makeup_gain :
|
|
(comp_makeup_gain == UNITY) ? release_gain :
|
|
FRACMUL_SHL(release_gain, comp_makeup_gain, 7));
|
|
|
|
/* Implement the compressor: apply total gain factor (if any) to the
|
|
output buffer sample pair/mono sample */
|
|
if (total_gain != UNITY)
|
|
{
|
|
for (ch = 0; ch < num_chan; ch++)
|
|
{
|
|
*in_buf[ch] = FRACMUL_SHL(total_gain, *in_buf[ch], 7);
|
|
}
|
|
}
|
|
in_buf[0]++;
|
|
in_buf[1]++;
|
|
}
|
|
}
|