rockbox/firmware/kernel.c
Thomas Martitz cc889e9d60 Change the thread api a bit.
* Remove THREAD_ID_CURRENT macro in favor of a thread_self() function, this allows thread functions to be simpler.
* thread_self_entry() shortcut for kernel.c.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@29521 a1c6a512-1295-4272-9138-f99709370657
2011-03-05 17:48:06 +00:00

1087 lines
29 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Björn Stenberg
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "kernel.h"
#include "thread.h"
#include "cpu.h"
#include "system.h"
#include "panic.h"
#include "debug.h"
#include "general.h"
/* Make this nonzero to enable more elaborate checks on objects */
#if defined(DEBUG) || defined(SIMULATOR)
#define KERNEL_OBJECT_CHECKS 1 /* Always 1 for DEBUG and sim*/
#else
#define KERNEL_OBJECT_CHECKS 0
#endif
#if KERNEL_OBJECT_CHECKS
#ifdef SIMULATOR
#define KERNEL_ASSERT(exp, msg...) \
({ if (!({ exp; })) { DEBUGF(msg); exit(-1); } })
#else
#define KERNEL_ASSERT(exp, msg...) \
({ if (!({ exp; })) panicf(msg); })
#endif
#else
#define KERNEL_ASSERT(exp, msg...) ({})
#endif
#if !defined(CPU_PP) || !defined(BOOTLOADER) || \
defined(HAVE_BOOTLOADER_USB_MODE)
volatile long current_tick SHAREDDATA_ATTR = 0;
#endif
/* Unless otherwise defined, do nothing */
#ifndef YIELD_KERNEL_HOOK
#define YIELD_KERNEL_HOOK() false
#endif
#ifndef SLEEP_KERNEL_HOOK
#define SLEEP_KERNEL_HOOK(ticks) false
#endif
/* List of tick tasks - final element always NULL for termination */
void (*tick_funcs[MAX_NUM_TICK_TASKS+1])(void);
/* This array holds all queues that are initiated. It is used for broadcast. */
static struct
{
struct event_queue *queues[MAX_NUM_QUEUES+1];
#ifdef HAVE_CORELOCK_OBJECT
struct corelock cl;
#endif
} all_queues SHAREDBSS_ATTR;
/****************************************************************************
* Standard kernel stuff
****************************************************************************/
void kernel_init(void)
{
/* Init the threading API */
init_threads();
/* Other processors will not reach this point in a multicore build.
* In a single-core build with multiple cores they fall-through and
* sleep in cop_main without returning. */
if (CURRENT_CORE == CPU)
{
memset(tick_funcs, 0, sizeof(tick_funcs));
memset(&all_queues, 0, sizeof(all_queues));
corelock_init(&all_queues.cl);
tick_start(1000/HZ);
#ifdef KDEV_INIT
kernel_device_init();
#endif
}
}
/****************************************************************************
* Timer tick - Timer initialization and interrupt handler is defined at
* the target level.
****************************************************************************/
int tick_add_task(void (*f)(void))
{
int oldlevel = disable_irq_save();
void **arr = (void **)tick_funcs;
void **p = find_array_ptr(arr, f);
/* Add a task if there is room */
if(p - arr < MAX_NUM_TICK_TASKS)
{
*p = f; /* If already in list, no problem. */
}
else
{
panicf("Error! tick_add_task(): out of tasks");
}
restore_irq(oldlevel);
return 0;
}
int tick_remove_task(void (*f)(void))
{
int oldlevel = disable_irq_save();
int rc = remove_array_ptr((void **)tick_funcs, f);
restore_irq(oldlevel);
return rc;
}
/****************************************************************************
* Tick-based interval timers/one-shots - be mindful this is not really
* intended for continuous timers but for events that need to run for a short
* time and be cancelled without further software intervention.
****************************************************************************/
#ifdef INCLUDE_TIMEOUT_API
/* list of active timeout events */
static struct timeout *tmo_list[MAX_NUM_TIMEOUTS+1];
/* timeout tick task - calls event handlers when they expire
* Event handlers may alter expiration, callback and data during operation.
*/
static void timeout_tick(void)
{
unsigned long tick = current_tick;
struct timeout **p = tmo_list;
struct timeout *curr;
for(curr = *p; curr != NULL; curr = *(++p))
{
int ticks;
if(TIME_BEFORE(tick, curr->expires))
continue;
/* this event has expired - call callback */
ticks = curr->callback(curr);
if(ticks > 0)
{
curr->expires = tick + ticks; /* reload */
}
else
{
timeout_cancel(curr); /* cancel */
}
}
}
/* Cancels a timeout callback - can be called from the ISR */
void timeout_cancel(struct timeout *tmo)
{
int oldlevel = disable_irq_save();
int rc = remove_array_ptr((void **)tmo_list, tmo);
if(rc >= 0 && *tmo_list == NULL)
{
tick_remove_task(timeout_tick); /* Last one - remove task */
}
restore_irq(oldlevel);
}
/* Adds a timeout callback - calling with an active timeout resets the
interval - can be called from the ISR */
void timeout_register(struct timeout *tmo, timeout_cb_type callback,
int ticks, intptr_t data)
{
int oldlevel;
void **arr, **p;
if(tmo == NULL)
return;
oldlevel = disable_irq_save();
/* See if this one is already registered */
arr = (void **)tmo_list;
p = find_array_ptr(arr, tmo);
if(p - arr < MAX_NUM_TIMEOUTS)
{
/* Vacancy */
if(*p == NULL)
{
/* Not present */
if(*tmo_list == NULL)
{
tick_add_task(timeout_tick); /* First one - add task */
}
*p = tmo;
}
tmo->callback = callback;
tmo->data = data;
tmo->expires = current_tick + ticks;
}
restore_irq(oldlevel);
}
#endif /* INCLUDE_TIMEOUT_API */
/****************************************************************************
* Thread stuff
****************************************************************************/
unsigned sleep(unsigned ticks)
{
/* In certain situations, certain bootloaders in particular, a normal
* threading call is inappropriate. */
if (SLEEP_KERNEL_HOOK(ticks))
return 0; /* Handled */
disable_irq();
sleep_thread(ticks);
switch_thread();
return 0;
}
void yield(void)
{
/* In certain situations, certain bootloaders in particular, a normal
* threading call is inappropriate. */
if (YIELD_KERNEL_HOOK())
return; /* handled */
switch_thread();
}
/****************************************************************************
* Queue handling stuff
****************************************************************************/
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/****************************************************************************
* Sender thread queue structure that aids implementation of priority
* inheritance on queues because the send list structure is the same as
* for all other kernel objects:
*
* Example state:
* E0 added with queue_send and removed by thread via queue_wait(_w_tmo)
* E3 was posted with queue_post
* 4 events remain enqueued (E1-E4)
*
* rd wr
* q->events[]: | XX | E1 | E2 | E3 | E4 | XX |
* q->send->senders[]: | NULL | T1 | T2 | NULL | T3 | NULL |
* \/ \/ \/
* q->send->list: >->|T0|<->|T1|<->|T2|<-------->|T3|<-<
* q->send->curr_sender: /\
*
* Thread has E0 in its own struct queue_event.
*
****************************************************************************/
/* Puts the specified return value in the waiting thread's return value
* and wakes the thread.
*
* A sender should be confirmed to exist before calling which makes it
* more efficent to reject the majority of cases that don't need this
* called.
*/
static void queue_release_sender(struct thread_entry * volatile * sender,
intptr_t retval)
{
struct thread_entry *thread = *sender;
*sender = NULL; /* Clear slot. */
#ifdef HAVE_WAKEUP_EXT_CB
thread->wakeup_ext_cb = NULL; /* Clear callback. */
#endif
thread->retval = retval; /* Assign thread-local return value. */
*thread->bqp = thread; /* Move blocking queue head to thread since
wakeup_thread wakes the first thread in
the list. */
wakeup_thread(thread->bqp);
}
/* Releases any waiting threads that are queued with queue_send -
* reply with 0.
*/
static void queue_release_all_senders(struct event_queue *q)
{
if(q->send)
{
unsigned int i;
for(i = q->read; i != q->write; i++)
{
struct thread_entry **spp =
&q->send->senders[i & QUEUE_LENGTH_MASK];
if(*spp)
{
queue_release_sender(spp, 0);
}
}
}
}
/* Callback to do extra forced removal steps from sender list in addition
* to the normal blocking queue removal and priority dis-inherit */
static void queue_remove_sender_thread_cb(struct thread_entry *thread)
{
*((struct thread_entry **)thread->retval) = NULL;
#ifdef HAVE_WAKEUP_EXT_CB
thread->wakeup_ext_cb = NULL;
#endif
thread->retval = 0;
}
/* Enables queue_send on the specified queue - caller allocates the extra
* data structure. Only queues which are taken to be owned by a thread should
* enable this however an official owner is not compulsory but must be
* specified for priority inheritance to operate.
*
* Use of queue_wait(_w_tmo) by multiple threads on a queue using synchronous
* messages results in an undefined order of message replies or possible default
* replies if two or more waits happen before a reply is done.
*/
void queue_enable_queue_send(struct event_queue *q,
struct queue_sender_list *send,
unsigned int owner_id)
{
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
if(send != NULL && q->send == NULL)
{
memset(send, 0, sizeof(*send));
#ifdef HAVE_PRIORITY_SCHEDULING
send->blocker.wakeup_protocol = wakeup_priority_protocol_release;
send->blocker.priority = PRIORITY_IDLE;
if(owner_id != 0)
{
send->blocker.thread = thread_id_entry(owner_id);
q->blocker_p = &send->blocker;
}
#endif
q->send = send;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
(void)owner_id;
}
/* Unblock a blocked thread at a given event index */
static inline void queue_do_unblock_sender(struct queue_sender_list *send,
unsigned int i)
{
if(send)
{
struct thread_entry **spp = &send->senders[i];
if(UNLIKELY(*spp))
{
queue_release_sender(spp, 0);
}
}
}
/* Perform the auto-reply sequence */
static inline void queue_do_auto_reply(struct queue_sender_list *send)
{
if(send && send->curr_sender)
{
/* auto-reply */
queue_release_sender(&send->curr_sender, 0);
}
}
/* Moves waiting thread's refrence from the senders array to the
* current_sender which represents the thread waiting for a reponse to the
* last message removed from the queue. This also protects the thread from
* being bumped due to overflow which would not be a valid action since its
* message _is_ being processed at this point. */
static inline void queue_do_fetch_sender(struct queue_sender_list *send,
unsigned int rd)
{
if(send)
{
struct thread_entry **spp = &send->senders[rd];
if(*spp)
{
/* Move thread reference from array to the next thread
that queue_reply will release */
send->curr_sender = *spp;
(*spp)->retval = (intptr_t)spp;
*spp = NULL;
}
/* else message was posted asynchronously with queue_post */
}
}
#else
/* Empty macros for when synchoronous sending is not made */
#define queue_release_all_senders(q)
#define queue_do_unblock_sender(send, i)
#define queue_do_auto_reply(send)
#define queue_do_fetch_sender(send, rd)
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
/* Queue must not be available for use during this call */
void queue_init(struct event_queue *q, bool register_queue)
{
int oldlevel = disable_irq_save();
if(register_queue)
{
corelock_lock(&all_queues.cl);
}
corelock_init(&q->cl);
q->queue = NULL;
/* What garbage is in write is irrelevant because of the masking design-
* any other functions the empty the queue do this as well so that
* queue_count and queue_empty return sane values in the case of a
* concurrent change without locking inside them. */
q->read = q->write;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
q->send = NULL; /* No message sending by default */
IF_PRIO( q->blocker_p = NULL; )
#endif
if(register_queue)
{
void **queues = (void **)all_queues.queues;
void **p = find_array_ptr(queues, q);
if(p - queues >= MAX_NUM_QUEUES)
{
panicf("queue_init->out of queues");
}
if(*p == NULL)
{
/* Add it to the all_queues array */
*p = q;
corelock_unlock(&all_queues.cl);
}
}
restore_irq(oldlevel);
}
/* Queue must not be available for use during this call */
void queue_delete(struct event_queue *q)
{
int oldlevel = disable_irq_save();
corelock_lock(&all_queues.cl);
corelock_lock(&q->cl);
/* Remove the queue if registered */
remove_array_ptr((void **)all_queues.queues, q);
corelock_unlock(&all_queues.cl);
/* Release thread(s) waiting on queue head */
thread_queue_wake(&q->queue);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send)
{
/* Release threads waiting for replies */
queue_release_all_senders(q);
/* Reply to any dequeued message waiting for one */
queue_do_auto_reply(q->send);
q->send = NULL;
IF_PRIO( q->blocker_p = NULL; )
}
#endif
q->read = q->write;
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
/* NOTE: multiple threads waiting on a queue head cannot have a well-
defined release order if timeouts are used. If multiple threads must
access the queue head, use a dispatcher or queue_wait only. */
void queue_wait(struct event_queue *q, struct queue_event *ev)
{
int oldlevel;
unsigned int rd;
#ifdef HAVE_PRIORITY_SCHEDULING
KERNEL_ASSERT(QUEUE_GET_THREAD(q) == NULL ||
QUEUE_GET_THREAD(q) == thread_self_entry(),
"queue_wait->wrong thread\n");
#endif
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* auto-reply */
queue_do_auto_reply(q->send);
while(1)
{
struct thread_entry *current;
rd = q->read;
if (rd != q->write) /* A waking message could disappear */
break;
current = thread_self_entry();
IF_COP( current->obj_cl = &q->cl; )
current->bqp = &q->queue;
block_thread(current);
corelock_unlock(&q->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
}
q->read = rd + 1;
rd &= QUEUE_LENGTH_MASK;
*ev = q->events[rd];
/* Get data for a waiting thread if one */
queue_do_fetch_sender(q->send, rd);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_wait_w_tmo(struct event_queue *q, struct queue_event *ev, int ticks)
{
int oldlevel;
unsigned int rd, wr;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
KERNEL_ASSERT(QUEUE_GET_THREAD(q) == NULL ||
QUEUE_GET_THREAD(q) == thread_self_entry(),
"queue_wait_w_tmo->wrong thread\n");
#endif
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Auto-reply */
queue_do_auto_reply(q->send);
rd = q->read;
wr = q->write;
if (rd == wr && ticks > 0)
{
struct thread_entry *current = thread_self_entry();
IF_COP( current->obj_cl = &q->cl; )
current->bqp = &q->queue;
block_thread_w_tmo(current, ticks);
corelock_unlock(&q->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
rd = q->read;
wr = q->write;
}
/* no worry about a removed message here - status is checked inside
locks - perhaps verify if timeout or false alarm */
if (rd != wr)
{
q->read = rd + 1;
rd &= QUEUE_LENGTH_MASK;
*ev = q->events[rd];
/* Get data for a waiting thread if one */
queue_do_fetch_sender(q->send, rd);
}
else
{
ev->id = SYS_TIMEOUT;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_post(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
KERNEL_ASSERT((q->write - q->read) <= QUEUE_LENGTH,
"queue_post ovf q=%08lX", (long)q);
q->events[wr].id = id;
q->events[wr].data = data;
/* overflow protect - unblock any thread waiting at this index */
queue_do_unblock_sender(q->send, wr);
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* IRQ handlers are not allowed use of this function - we only aim to
protect the queue integrity by turning them off. */
intptr_t queue_send(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
KERNEL_ASSERT((q->write - q->read) <= QUEUE_LENGTH,
"queue_send ovf q=%08lX", (long)q);
q->events[wr].id = id;
q->events[wr].data = data;
if(LIKELY(q->send))
{
struct queue_sender_list *send = q->send;
struct thread_entry **spp = &send->senders[wr];
struct thread_entry *current = thread_self_entry();
if(UNLIKELY(*spp))
{
/* overflow protect - unblock any thread waiting at this index */
queue_release_sender(spp, 0);
}
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
/* Save thread in slot, add to list and wait for reply */
*spp = current;
IF_COP( current->obj_cl = &q->cl; )
IF_PRIO( current->blocker = q->blocker_p; )
#ifdef HAVE_WAKEUP_EXT_CB
current->wakeup_ext_cb = queue_remove_sender_thread_cb;
#endif
current->retval = (intptr_t)spp;
current->bqp = &send->list;
block_thread(current);
corelock_unlock(&q->cl);
switch_thread();
return current->retval;
}
/* Function as queue_post if sending is not enabled */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
return 0;
}
#if 0 /* not used now but probably will be later */
/* Query if the last message dequeued was added by queue_send or not */
bool queue_in_queue_send(struct event_queue *q)
{
bool in_send;
#if NUM_CORES > 1
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
#endif
in_send = q->send && q->send->curr_sender;
#if NUM_CORES > 1
corelock_unlock(&q->cl);
restore_irq(oldlevel);
#endif
return in_send;
}
#endif
/* Replies with retval to the last dequeued message sent with queue_send */
void queue_reply(struct event_queue *q, intptr_t retval)
{
if(q->send && q->send->curr_sender)
{
struct queue_sender_list *sender;
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
sender = q->send;
/* Double-check locking */
if(LIKELY(sender && sender->curr_sender))
queue_release_sender(&sender->curr_sender, retval);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
}
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
bool queue_peek(struct event_queue *q, struct queue_event *ev)
{
unsigned int rd;
if(q->read == q->write)
return false;
bool have_msg = false;
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
rd = q->read;
if(rd != q->write)
{
*ev = q->events[rd & QUEUE_LENGTH_MASK];
have_msg = true;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
return have_msg;
}
/* Poll queue to see if a message exists - careful in using the result if
* queue_remove_from_head is called when messages are posted - possibly use
* queue_wait_w_tmo(&q, 0) in that case or else a removed message that
* unsignals the queue may cause an unwanted block */
bool queue_empty(const struct event_queue* q)
{
return ( q->read == q->write );
}
void queue_clear(struct event_queue* q)
{
int oldlevel;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Release all threads waiting in the queue for a reply -
dequeued sent message will be handled by owning thread */
queue_release_all_senders(q);
q->read = q->write;
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_remove_from_head(struct event_queue *q, long id)
{
int oldlevel;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
while(q->read != q->write)
{
unsigned int rd = q->read & QUEUE_LENGTH_MASK;
if(q->events[rd].id != id)
{
break;
}
/* Release any thread waiting on this message */
queue_do_unblock_sender(q->send, rd);
q->read++;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
/**
* The number of events waiting in the queue.
*
* @param struct of event_queue
* @return number of events in the queue
*/
int queue_count(const struct event_queue *q)
{
return q->write - q->read;
}
int queue_broadcast(long id, intptr_t data)
{
struct event_queue **p = all_queues.queues;
struct event_queue *q;
#if NUM_CORES > 1
int oldlevel = disable_irq_save();
corelock_lock(&all_queues.cl);
#endif
for(q = *p; q != NULL; q = *(++p))
{
queue_post(q, id, data);
}
#if NUM_CORES > 1
corelock_unlock(&all_queues.cl);
restore_irq(oldlevel);
#endif
return p - all_queues.queues;
}
/****************************************************************************
* Simple mutex functions ;)
****************************************************************************/
static inline void __attribute__((always_inline))
mutex_set_thread(struct mutex *mtx, struct thread_entry *td)
{
#ifdef HAVE_PRIORITY_SCHEDULING
mtx->blocker.thread = td;
#else
mtx->thread = td;
#endif
}
static inline struct thread_entry * __attribute__((always_inline))
mutex_get_thread(volatile struct mutex *mtx)
{
#ifdef HAVE_PRIORITY_SCHEDULING
return mtx->blocker.thread;
#else
return mtx->thread;
#endif
}
/* Initialize a mutex object - call before any use and do not call again once
* the object is available to other threads */
void mutex_init(struct mutex *m)
{
corelock_init(&m->cl);
m->queue = NULL;
m->recursion = 0;
mutex_set_thread(m, NULL);
#ifdef HAVE_PRIORITY_SCHEDULING
m->blocker.priority = PRIORITY_IDLE;
m->blocker.wakeup_protocol = wakeup_priority_protocol_transfer;
m->no_preempt = false;
#endif
}
/* Gain ownership of a mutex object or block until it becomes free */
void mutex_lock(struct mutex *m)
{
struct thread_entry *current = thread_self_entry();
if(current == mutex_get_thread(m))
{
/* current thread already owns this mutex */
m->recursion++;
return;
}
/* lock out other cores */
corelock_lock(&m->cl);
/* must read thread again inside cs (a multiprocessor concern really) */
if(LIKELY(mutex_get_thread(m) == NULL))
{
/* lock is open */
mutex_set_thread(m, current);
corelock_unlock(&m->cl);
return;
}
/* block until the lock is open... */
IF_COP( current->obj_cl = &m->cl; )
IF_PRIO( current->blocker = &m->blocker; )
current->bqp = &m->queue;
disable_irq();
block_thread(current);
corelock_unlock(&m->cl);
/* ...and turn control over to next thread */
switch_thread();
}
/* Release ownership of a mutex object - only owning thread must call this */
void mutex_unlock(struct mutex *m)
{
/* unlocker not being the owner is an unlocking violation */
KERNEL_ASSERT(mutex_get_thread(m) == thread_self_entry(),
"mutex_unlock->wrong thread (%s != %s)\n",
mutex_get_thread(m)->name,
thread_self_entry()->name);
if(m->recursion > 0)
{
/* this thread still owns lock */
m->recursion--;
return;
}
/* lock out other cores */
corelock_lock(&m->cl);
/* transfer to next queued thread if any */
if(LIKELY(m->queue == NULL))
{
/* no threads waiting - open the lock */
mutex_set_thread(m, NULL);
corelock_unlock(&m->cl);
return;
}
else
{
const int oldlevel = disable_irq_save();
/* Tranfer of owning thread is handled in the wakeup protocol
* if priorities are enabled otherwise just set it from the
* queue head. */
IFN_PRIO( mutex_set_thread(m, m->queue); )
IF_PRIO( unsigned int result = ) wakeup_thread(&m->queue);
restore_irq(oldlevel);
corelock_unlock(&m->cl);
#ifdef HAVE_PRIORITY_SCHEDULING
if((result & THREAD_SWITCH) && !m->no_preempt)
switch_thread();
#endif
}
}
/****************************************************************************
* Simple semaphore functions ;)
****************************************************************************/
#ifdef HAVE_SEMAPHORE_OBJECTS
/* Initialize the semaphore object.
* max = maximum up count the semaphore may assume (max >= 1)
* start = initial count of semaphore (0 <= count <= max) */
void semaphore_init(struct semaphore *s, int max, int start)
{
KERNEL_ASSERT(max > 0 && start >= 0 && start <= max,
"semaphore_init->inv arg\n");
s->queue = NULL;
s->max = max;
s->count = start;
corelock_init(&s->cl);
}
/* Down the semaphore's count or wait for 'timeout' ticks for it to go up if
* it is already 0. 'timeout' as TIMEOUT_NOBLOCK (0) will not block and may
* safely be used in an ISR. */
int semaphore_wait(struct semaphore *s, int timeout)
{
int ret;
int oldlevel;
int count;
oldlevel = disable_irq_save();
corelock_lock(&s->cl);
count = s->count;
if(LIKELY(count > 0))
{
/* count is not zero; down it */
s->count = count - 1;
ret = OBJ_WAIT_SUCCEEDED;
}
else if(timeout == 0)
{
/* just polling it */
ret = OBJ_WAIT_TIMEDOUT;
}
else
{
/* too many waits - block until count is upped... */
struct thread_entry * current = thread_self_entry();
IF_COP( current->obj_cl = &s->cl; )
current->bqp = &s->queue;
/* return value will be OBJ_WAIT_SUCCEEDED after wait if wake was
* explicit in semaphore_release */
current->retval = OBJ_WAIT_TIMEDOUT;
if(timeout > 0)
block_thread_w_tmo(current, timeout); /* ...or timed out... */
else
block_thread(current); /* -timeout = infinite */
corelock_unlock(&s->cl);
/* ...and turn control over to next thread */
switch_thread();
return current->retval;
}
corelock_unlock(&s->cl);
restore_irq(oldlevel);
return ret;
}
/* Up the semaphore's count and release any thread waiting at the head of the
* queue. The count is saturated to the value of the 'max' parameter specified
* in 'semaphore_init'. */
void semaphore_release(struct semaphore *s)
{
IF_PRIO( unsigned int result = THREAD_NONE; )
int oldlevel;
oldlevel = disable_irq_save();
corelock_lock(&s->cl);
if(LIKELY(s->queue != NULL))
{
/* a thread was queued - wake it up and keep count at 0 */
KERNEL_ASSERT(s->count == 0,
"semaphore_release->threads queued but count=%d!\n", s->count);
s->queue->retval = OBJ_WAIT_SUCCEEDED; /* indicate explicit wake */
IF_PRIO( result = ) wakeup_thread(&s->queue);
}
else
{
int count = s->count;
if(count < s->max)
{
/* nothing waiting - up it */
s->count = count + 1;
}
}
corelock_unlock(&s->cl);
restore_irq(oldlevel);
#if defined(HAVE_PRIORITY_SCHEDULING) && defined(irq_enabled_checkval)
/* No thread switch if IRQ disabled - it's probably called via ISR.
* switch_thread would as well enable them anyway. */
if((result & THREAD_SWITCH) && irq_enabled_checkval(oldlevel))
switch_thread();
#endif
}
#endif /* HAVE_SEMAPHORE_OBJECTS */