rockbox/apps/plugins/rocklife.c
Michael Giacomelli 9e21a42509 Commit next part of FS#10138 by Teruaki Kawashima. Fixes check for open error in rocklife.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21100 a1c6a512-1295-4272-9138-f99709370657
2009-05-27 19:21:05 +00:00

579 lines
17 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 Matthias Wientapper
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
* This is an implementatino of Conway's Game of Life
*
* from http://en.wikipedia.org/wiki/Conway's_Game_of_Life:
*
* Rules
*
* The universe of the Game of Life is an infinite two-dimensional
* orthogonal grid of square cells, each of which is in one of two
* possible states, live or dead. Every cell interacts with its eight
* neighbours, which are the cells that are directly horizontally,
* vertically, or diagonally adjacent. At each step in time, the
* following transitions occur:
*
* 1. Any live cell with fewer than two live neighbours dies, as if by
* loneliness.
*
* 2. Any live cell with more than three live neighbours dies, as if
* by overcrowding.
*
* 3. Any live cell with two or three live neighbours lives,
* unchanged, to the next generation.
*
* 4. Any dead cell with exactly three live neighbours comes to life.
*
* The initial pattern constitutes the first generation of the
* system. The second generation is created by applying the above
* rules simultaneously to every cell in the first generation --
* births and deaths happen simultaneously, and the discrete moment at
* which this happens is sometimes called a tick. (In other words,
* each generation is based entirely on the one before.) The rules
* continue to be applied repeatedly to create further generations.
*
*
*
* TODO:
* - nicer colours for pixels with respect to age
* - editor for start patterns
* - probably tons of speed-up opportunities
*/
#include "plugin.h"
#include "lib/pluginlib_actions.h"
#include "lib/helper.h"
PLUGIN_HEADER
#define ROCKLIFE_PLAY_PAUSE PLA_FIRE
#define ROCKLIFE_INIT PLA_DOWN
#define ROCKLIFE_NEXT PLA_RIGHT
#define ROCKLIFE_NEXT_REP PLA_RIGHT_REPEAT
#define ROCKLIFE_QUIT PLA_QUIT
#define ROCKLIFE_STATUS PLA_LEFT
#define PATTERN_RANDOM 0
#define PATTERN_GROWTH_1 1
#define PATTERN_GROWTH_2 2
#define PATTERN_ACORN 3
#define PATTERN_GLIDER_GUN 4 /* not yet implemented */
const struct button_mapping *plugin_contexts[]
= {generic_directions, generic_actions};
#define GRID_W LCD_WIDTH
#define GRID_H LCD_HEIGHT
unsigned char grid_a[GRID_W][GRID_H];
unsigned char grid_b[GRID_W][GRID_H];
int generation = 0;
int population = 0;
int status_line = 0;
char buf[30];
static inline bool is_valid_cell(int x, int y) {
return (x >= 0 && x < GRID_W
&& y >= 0 && y < GRID_H);
}
static inline void set_cell_age(int x, int y, unsigned char age, char *pgrid) {
pgrid[x+y*GRID_W] = age;
}
static inline void set_cell(int x, int y, char *pgrid) {
set_cell_age(x, y, 1, pgrid);
}
static inline unsigned char get_cell(int x, int y, char *pgrid) {
if (x < 0)
x += GRID_W;
else if (x >= GRID_W)
x -= GRID_W;
if (y < 0)
y += GRID_H;
else if (y >= GRID_H)
y -= GRID_H;
return pgrid[x+y*GRID_W];
}
/* clear grid */
void init_grid(char *pgrid){
memset(pgrid, 0, GRID_W * GRID_H);
}
/*fill grid with pattern from file (viewer mode)*/
static bool load_cellfile(const char *file, char *pgrid){
int fd;
fd = rb->open(file, O_RDONLY);
if (fd<0)
return false;
init_grid(pgrid);
char c;
int nc, x, y, xmid, ymid;
bool comment;
x=0;
y=0;
xmid = (GRID_W>>1) - 2;
ymid = (GRID_H>>1) - 2;
comment = false;
while (true) {
nc = rb->read(fd, &c, 1);
if (nc <= 0)
break;
switch(c) {
case '!':
comment = true;
case '.':
if (!comment)
x++;
break;
case 'O':
if (!comment) {
if (is_valid_cell(xmid + x, ymid + y))
set_cell(xmid + x, ymid + y, pgrid);
x++;
}
break;
case '\n':
y++;
x=0;
comment = false;
break;
default:
break;
}
}
rb->close(fd);
return true;
}
/* fill grid with initial pattern */
static void setup_grid(char *pgrid, int pattern){
int n, max;
int xmid, ymid;
max = GRID_W * GRID_H;
switch(pattern){
case PATTERN_RANDOM:
rb->splash(HZ, "Random");
#if 0 /* two oscilators, debug pattern */
set_cell( 0, 1 , pgrid);
set_cell( 1, 1 , pgrid);
set_cell( 2, 1 , pgrid);
set_cell( 6, 7 , pgrid);
set_cell( 7, 7 , pgrid);
set_cell( 8, 7 , pgrid);
#endif
/* fill screen randomly */
for(n=0; n<(max>>2); n++)
pgrid[rb->rand()%max] = 1;
break;
case PATTERN_GROWTH_1:
rb->splash(HZ, "Growth");
xmid = (GRID_W>>1) - 2;
ymid = (GRID_H>>1) - 2;
set_cell(xmid + 6, ymid + 0 , pgrid);
set_cell(xmid + 4, ymid + 1 , pgrid);
set_cell(xmid + 6, ymid + 1 , pgrid);
set_cell(xmid + 7, ymid + 1 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 6, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 3 , pgrid);
set_cell(xmid + 2, ymid + 4 , pgrid);
set_cell(xmid + 0, ymid + 5 , pgrid);
set_cell(xmid + 2, ymid + 5 , pgrid);
break;
case PATTERN_ACORN:
rb->splash(HZ, "Acorn");
xmid = (GRID_W>>1) - 3;
ymid = (GRID_H>>1) - 1;
set_cell(xmid + 1, ymid + 0 , pgrid);
set_cell(xmid + 3, ymid + 1 , pgrid);
set_cell(xmid + 0, ymid + 2 , pgrid);
set_cell(xmid + 1, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 5, ymid + 2 , pgrid);
set_cell(xmid + 6, ymid + 2 , pgrid);
break;
case PATTERN_GROWTH_2:
rb->splash(HZ, "Growth 2");
xmid = (GRID_W>>1) - 4;
ymid = (GRID_H>>1) - 1;
set_cell(xmid + 0, ymid + 0 , pgrid);
set_cell(xmid + 1, ymid + 0 , pgrid);
set_cell(xmid + 2, ymid + 0 , pgrid);
set_cell(xmid + 4, ymid + 0 , pgrid);
set_cell(xmid + 0, ymid + 1 , pgrid);
set_cell(xmid + 3, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 1, ymid + 3 , pgrid);
set_cell(xmid + 2, ymid + 3 , pgrid);
set_cell(xmid + 4, ymid + 3 , pgrid);
set_cell(xmid + 0, ymid + 4 , pgrid);
set_cell(xmid + 2, ymid + 4 , pgrid);
set_cell(xmid + 4, ymid + 4 , pgrid);
break;
case PATTERN_GLIDER_GUN:
rb->splash(HZ, "Glider Gun");
set_cell( 24, 0, pgrid);
set_cell( 22, 1, pgrid);
set_cell( 24, 1, pgrid);
set_cell( 12, 2, pgrid);
set_cell( 13, 2, pgrid);
set_cell( 20, 2, pgrid);
set_cell( 21, 2, pgrid);
set_cell( 34, 2, pgrid);
set_cell( 35, 2, pgrid);
set_cell( 11, 3, pgrid);
set_cell( 15, 3, pgrid);
set_cell( 20, 3, pgrid);
set_cell( 21, 3, pgrid);
set_cell( 34, 3, pgrid);
set_cell( 35, 3, pgrid);
set_cell( 0, 4, pgrid);
set_cell( 1, 4, pgrid);
set_cell( 10, 4, pgrid);
set_cell( 16, 4, pgrid);
set_cell( 20, 4, pgrid);
set_cell( 21, 4, pgrid);
set_cell( 0, 5, pgrid);
set_cell( 1, 5, pgrid);
set_cell( 10, 5, pgrid);
set_cell( 14, 5, pgrid);
set_cell( 16, 5, pgrid);
set_cell( 17, 5, pgrid);
set_cell( 22, 5, pgrid);
set_cell( 24, 5, pgrid);
set_cell( 10, 6, pgrid);
set_cell( 16, 6, pgrid);
set_cell( 24, 6, pgrid);
set_cell( 11, 7, pgrid);
set_cell( 15, 7, pgrid);
set_cell( 12, 8, pgrid);
set_cell( 13, 8, pgrid);
break;
}
}
/* display grid */
static void show_grid(char *pgrid){
int x, y;
unsigned char age;
rb->lcd_clear_display();
for(y=0; y<GRID_H; y++){
for(x=0; x<GRID_W; x++){
age = get_cell(x, y, pgrid);
if(age){
#if LCD_DEPTH >= 16
rb->lcd_set_foreground( LCD_RGBPACK( age, age, age ));
#elif LCD_DEPTH == 2
rb->lcd_set_foreground(age>>7);
#endif
rb->lcd_drawpixel(x, y);
}
}
}
if(status_line){
rb->snprintf(buf, sizeof(buf), "g:%d p:%d", generation, population);
#if LCD_DEPTH > 1
rb->lcd_set_foreground( LCD_BLACK );
#endif
rb->lcd_puts(0, 0, buf);
}
rb->lcd_update();
}
/* Calculates whether the cell will be alive in the next generation.
n is the array with 9 elements that represent the cell itself and its
neighborhood like this (the cell itself is n[4]):
0 1 2
3 4 5
6 7 8
*/
static inline bool check_cell(unsigned char *n)
{
int empty_cells = 0;
int alive_cells;
bool result;
/* count empty neighbour cells */
if(n[0]==0) empty_cells++;
if(n[1]==0) empty_cells++;
if(n[2]==0) empty_cells++;
if(n[3]==0) empty_cells++;
if(n[5]==0) empty_cells++;
if(n[6]==0) empty_cells++;
if(n[7]==0) empty_cells++;
if(n[8]==0) empty_cells++;
/* now we build the number of non-zero neighbours :-P */
alive_cells = 8 - empty_cells;
if (n[4]) {
/* If the cell is alive, it stays alive iff it has 2 or 3 alive neighbours */
result = (alive_cells==2 || alive_cells==3);
}
else {
/* If the cell is dead, it gets alive iff it has 3 alive neighbours */
result = (alive_cells==3);
}
return result;
}
/* Calculate the next generation of cells
*
* The borders of the grid are connected to their opposite sides.
*
* To avoid multiplications while accessing data in the 2-d grid
* (pgrid) we try to re-use previously accessed neighbourhood
* information which is stored in an 3x3 array.
*/
static void next_generation(char *pgrid, char *pnext_grid){
int x, y;
bool cell;
unsigned char age;
unsigned char n[9];
rb->memset(n, 0, sizeof(n));
/*
* cell is (4) with 8 neighbours
*
* 0|1|2
* -----
* 3|4|5
* -----
* 6|7|8
*/
population = 0;
/* go through the grid */
for(y=0; y<GRID_H; y++){
for(x=0; x<GRID_W; x++){
if(y==0 && x==0){
/* first cell in first row, we have to load all neighbours */
n[0] = get_cell(x-1, y-1, pgrid);
n[1] = get_cell(x, y-1, pgrid);
n[2] = get_cell(x+1, y-1, pgrid);
n[3] = get_cell(x-1, y, pgrid);
n[4] = get_cell(x, y, pgrid);
n[5] = get_cell(x+1, y, pgrid);
n[6] = get_cell(x-1, y+1, pgrid);
n[7] = get_cell(x, y+1, pgrid);
n[8] = get_cell(x+1, y+1, pgrid);
} else {
if(x==0){
/* beginning of a row, copy what we know about our predecessor,
0, 1, 3, 4 are known, 2, 5, 6, 7, 8 have to be loaded
*/
n[0] = n[4];
n[1] = n[5];
n[2] = get_cell(x+1, y-1, pgrid);
n[3] = n[7];
n[4] = n[8];
n[5] = get_cell(x+1, y, pgrid);
n[6] = get_cell(x-1, y+1, pgrid);
n[7] = get_cell(x, y+1, pgrid);
n[8] = get_cell(x+1, y+1, pgrid);
} else {
/* we are moving right in a row,
* copy what we know about the neighbours on our left side,
* 2, 5, 8 have to be loaded
*/
n[0] = n[1];
n[1] = n[2];
n[2] = get_cell(x+1, y-1, pgrid);
n[3] = n[4];
n[4] = n[5];
n[5] = get_cell(x+1, y, pgrid);
n[6] = n[7];
n[7] = n[8];
n[8] = get_cell(x+1, y+1, pgrid);
}
}
/* how old is our cell? */
age = n[4];
/* calculate the cell based on given neighbour information */
cell = check_cell(n);
/* is the actual cell alive? */
if(cell){
population++;
/* prevent overflow */
if(age<252)
age++;
set_cell_age(x, y, age, pnext_grid);
}
else
set_cell_age(x, y, 0, pnext_grid);
#if 0
DEBUGF("x=%d,y=%d\n", x, y);
DEBUGF("cell: %d\n", cell);
DEBUGF("%d %d %d\n", n[0],n[1],n[2]);
DEBUGF("%d %d %d\n", n[3],n[4],n[5]);
DEBUGF("%d %d %d\n", n[6],n[7],n[8]);
DEBUGF("----------------\n");
#endif
}
}
generation++;
}
/**********************************/
/* this is the plugin entry point */
/**********************************/
enum plugin_status plugin_start(const void* parameter)
{
int button = 0;
int quit = 0;
int stop = 0;
int pattern = 0;
char *pgrid;
char *pnext_grid;
char *ptemp;
(void)(parameter);
backlight_force_on(); /* backlight control in lib/helper.c */
#if LCD_DEPTH > 1
rb->lcd_set_backdrop(NULL);
#ifdef HAVE_LCD_COLOR
rb->lcd_set_background(LCD_RGBPACK(182, 198, 229)); /* rockbox blue */
#else
rb->lcd_set_background(LCD_DEFAULT_BG);
#endif /* HAVE_LCD_COLOR */
#endif /* LCD_DEPTH > 1 */
/* link pointers to grids */
pgrid = (char *)grid_a;
pnext_grid = (char *)grid_b;
init_grid(pgrid);
if( parameter == NULL )
{
setup_grid(pgrid, pattern++);
}
else
{
if( load_cellfile(parameter, pgrid) )
{
rb->splashf( 1*HZ, "Cells loaded (%s)", (char *)parameter );
}
else
{
rb->splash( 1*HZ, "File Open Error");
setup_grid(pgrid, pattern++); /* fall back to stored patterns */
}
}
show_grid(pgrid);
while(!quit) {
button = pluginlib_getaction(TIMEOUT_BLOCK, plugin_contexts, 2);
switch(button) {
case ROCKLIFE_NEXT:
case ROCKLIFE_NEXT_REP:
/* calculate next generation */
next_generation(pgrid, pnext_grid);
/* swap buffers, grid is the new generation */
ptemp = pgrid;
pgrid = pnext_grid;
pnext_grid = ptemp;
/* show new generation */
show_grid(pgrid);
break;
case ROCKLIFE_PLAY_PAUSE:
stop = 0;
while(!stop){
/* calculate next generation */
next_generation(pgrid, pnext_grid);
/* swap buffers, grid is the new generation */
ptemp = pgrid;
pgrid = pnext_grid;
pnext_grid = ptemp;
/* show new generation */
rb->yield();
show_grid(pgrid);
button = pluginlib_getaction(0, plugin_contexts, 2);
switch(button) {
case ROCKLIFE_PLAY_PAUSE:
case ROCKLIFE_QUIT:
stop = 1;
break;
default:
break;
}
rb->yield();
}
break;
case ROCKLIFE_INIT:
init_grid(pgrid);
setup_grid(pgrid, pattern);
show_grid(pgrid);
pattern++;
pattern%=5;
break;
case ROCKLIFE_STATUS:
status_line = !status_line;
show_grid(pgrid);
break;
case ROCKLIFE_QUIT:
/* quit plugin */
quit=true;
return PLUGIN_OK;
break;
default:
if (rb->default_event_handler(button) == SYS_USB_CONNECTED) {
return PLUGIN_USB_CONNECTED;
}
break;
}
rb->yield();
}
backlight_use_settings(); /* backlight control in lib/helper.c */
return PLUGIN_OK;
}