a2a2e14e0d
Instead of providing yet another memory allocator implementation use tlsf and simply link tlsf library. Another small improvement is to *grow* memory pool by grabbing audiobuffer instead of just switching to use audiobuf exclusively. Tested with simple lua 'memory eater' script. This patch extends tlsf lib slightly. You can provide void *get_new_area(size_t * size) function which will override weak dummy implementation provided in lib itself. This allows to automaticaly initialize memory pool as well as grow memory pool if needed (for example grab audiobuffer when pluginbuffer is exhaused). Change-Id: I841af6b6b5bbbf546c14cbf139a7723fbb982f1b |
||
---|---|---|
.. | ||
src | ||
Changelog | ||
COPYING | ||
libtlsf.make | ||
README | ||
SOURCES | ||
TODO |
TLSF Memory Storage allocator implementation. Version 2.4 Feb 2008 Authors: Miguel Masmano, Ismael Ripoll & Alfons Crespo. Copyright UPVLC, OCERA Consortium. TLSF is released in the GPL/LGPL licence. The exact terms of the licence are described in the COPYING file. This component provides basic memory allocation functions: malloc and free, as defined in the standard "C" library. This allocator was designed to provide real-time performance, that is: 1.- Bounded time malloc and free. 2.- Fast response time. 3.- Efficient memory management, that is low fragmentation. The worst response time for both malloc and free is O(1). How to use it: This code is prepared to be used as a stand-alone code that can be linked with a regular application or it can be compiled to be a Linux module (which required the BigPhysicalArea patch). Initially the module was designed to work jointly with RTLinux-GPL, but it can be used as a stand alone Linux module. When compiled as a regular linux process the API is: Initialisation and destruction functions ---------------------------------------- init_memory_pool may be called before any request or release call: - size_t init_memory_pool(size_t, void *); - void destroy_memory_pool(void *); Request and release functions ----------------------------- As can be seen, there are two functions for each traditional memory allocation function (malloc, free, realloc, and calloc). One with the prefix "tlsf_" and the other with the suffix "_ex". The versions with the prefix "tlsf_" provides the expected behaviour, that is, allocating/releasing memory from the default memory pool. The default memory pool is the last pool initialised by the init_memory_pool function. On the other hand, the functions with the prefix "_ex" enable the use of several memory pools. - void *tlsf_malloc(size_t); - void *malloc_ex(size_t, void *); - void tlsf_free(void *ptr); - void free_ex(void *, void *); - void *tlsf_realloc(void *ptr, size_t size); - void *realloc_ex(void *, size_t, void *); - void *tlsf_calloc(size_t nelem, size_t elem_size); - void *calloc_ex(size_t, size_t, void *); EXAMPLE OF USE: char memory_pool[1024*1024]; { ... init_memory_pool(1024*1024, memory_pool); ... ptr1=malloc_ex(100, memory_pool); ptr2=tlsf_malloc(100); // This function will use memory_pool ... tlsf_free(ptr2); free_ex(ptr1, memory_pool); } Growing the memory pool ----------------------- Starting from the version 2.4, the function add_new_area adds an memory area to an existing memory pool. - size_t add_new_area(void *, size_t, void *); This feature is pretty useful when an existing memory pool is running low and we want to add more free memory to it. EXAMPLE OF USE: char memory_pool[1024*1024]; char memory_pool2[1024*1024]; { ... init_memory_pool(1024*1024, memory_pool); ... ptr[0]=malloc_ex(1024*256 memory_pool); ptr[1]=malloc_ex(1024*512, memory_pool); add_new_area(memory_pool2, 1024*1024, memory_pool); // Now we have an extra free memory area of 1Mb // The next malloc may not fail ptr[2]=malloc_ex(1024*512, memory_pool); ... } SBRK and MMAP support --------------------- The version 2.4 can use the functions SBRK and MMAP to _automatically_ growing the memory pool, before running out of memory. So, when this feature is enabled, unless the operating system were out of memory, a malloc operation would not fail due to an "out-of-memory" error. To enable this support, compile tlsf.c with the FLAGS -DUSE_MMAP=1 or -DUSE_SBRK=1 depending on whether you want to use "mmap" or "sbrk" or both. ** By default (default Makefile) this feature is enabled. EXAMPLE OF USE: gcc -o tlsf.o -O2 -Wall -DUSE_MMAP=1 -DUSE_SBRK=1 --- If the sbrk/mmap support is enabled and we are _only_ going to use one memory pool, it is not necessary to call init_memory_pool EXAMPLE OF USE (with MMAP/SBRK support enabled): { ... ptr2=tlsf_malloc(100); // This function will use memory_pool ... tlsf_free(ptr2); } This work has been supported by the followin projects: EUROPEAN: IST-2001-35102(OCERA) http://www.ocera.org. SPANISH: TIN2005-08665-C3-03