rockbox/rbutil/mkimxboot/mkimxboot.c
Amaury Pouly ee2eb13b74 mkimxboot: small fixes and display a human readable error
Change-Id: I9362b62351925aef5b14656635875123942fe7e4
2017-11-05 18:30:11 +01:00

1123 lines
38 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include "mkimxboot.h"
#include "sb.h"
#include "dualboot.h"
#include "md5.h"
#include "elf.h"
/* abstract structure to represent a Rockbox firmware. It can be a scrambled file
* or an ELF file or whatever. */
struct rb_fw_t
{
int nr_insts;
struct sb_inst_t *insts;
int entry_idx;
};
/* A firmware upgrade can contains several variants like recovery image, or
* images for different models */
struct imx_fw_variant_desc_t
{
/* Offset within file */
size_t offset;
/* Total size of the firmware */
size_t size;
};
/* Map a MD5 sum of the whole file to a model and describe the variants in it */
struct imx_md5sum_t
{
/* Device model */
enum imx_model_t model;
/* md5sum of the file */
char *md5sum;
/* Version string */
const char *version;
/* Variant descriptions */
struct imx_fw_variant_desc_t fw_variants[VARIANT_COUNT];
};
/* Describe how to produce a bootloader image for a specific model */
struct imx_model_desc_t
{
/* Descriptive name of this model */
const char *model_name;
/* Dualboot code for this model */
const unsigned char *dualboot;
/* Size of dualboot functions for this model */
int dualboot_size;
/* Model name used in the Rockbox header in ".sansa" files - these match the
-add parameter to the "scramble" tool */
const char *rb_model_name;
/* Model number used to initialise the checksum in the Rockbox header in
".sansa" files - these are the same as MODEL_NUMBER in config-target.h */
const int rb_model_num;
/* Array of NULL-terminated keys */
struct crypto_key_t **keys;
/* Dualboot load address */
uint32_t dualboot_addr;
/* Bootloader load address */
uint32_t bootloader_addr;
};
/* Friendly names for variants */
static const char *imx_fw_variant[] =
{
[VARIANT_DEFAULT] = "default",
[VARIANT_ZENXFI2_RECOVERY] = "ZEN X-Fi2 Recovery",
[VARIANT_ZENXFI2_NAND] = "ZEN X-Fi2 NAND",
[VARIANT_ZENXFI2_SD] = "ZEN X-Fi2 eMMC/SD",
[VARIANT_ZENXFISTYLE_RECOVERY] = "ZEN X-Fi Style Recovery",
[VARIANT_ZENSTYLE_RECOVERY] = "ZEN Style 100/300 Recovery",
};
/* List of known MD5 sums for firmware upgrades */
static const struct imx_md5sum_t imx_sums[] =
{
/** Fuze+ */
{
/* Version 2.38.6 */
MODEL_FUZEPLUS, "c3e27620a877dc6b200b97dcb3e0ecc7", "2.38.6",
{ [VARIANT_DEFAULT] = { 0, 34652624 } }
},
/** Zen X-Fi2 */
{
/* Version 1.23.01 */
MODEL_ZENXFI2, "e37e2c24abdff8e624d0a29f79157850", "1.23.01",
{
[VARIANT_ZENXFI2_RECOVERY] = { 602128, 684192},
[VARIANT_ZENXFI2_NAND] = { 1286320, 42406608 },
[VARIANT_ZENXFI2_SD] = { 43692928, 42304208 }
}
},
{
/* Version 1.23.01e */
MODEL_ZENXFI2, "2beff2168212d332f13cfc36ca46989d", "1.23.01e",
{
[VARIANT_ZENXFI2_RECOVERY] = { 0x93010, 684192},
[VARIANT_ZENXFI2_NAND] = { 0x13a0b0, 42410704 },
[VARIANT_ZENXFI2_SD] = { 0x29ac380, 42304208 }
}
},
/** Zen X-Fi3 */
{
/* Version 1.00.15e */
MODEL_ZENXFI3, "658a24eeef5f7186ca731085d8822a87", "1.00.15e",
{ [VARIANT_DEFAULT] = {0, 18110576} }
},
{
/* Version 1.00.22e */
MODEL_ZENXFI3, "a5114cd45ea4554ec221f51a71083862", "1.00.22e",
{ [VARIANT_DEFAULT] = {0, 18110576} }
},
{
/* Version 1.00.25 */
MODEL_ZENXFI3, "a41a3a78f86a4ac2879d194c6d528059", "1.00.25",
{ [VARIANT_DEFAULT] = {0, 18110576 } }
},
{
/* Version 1.00.25e */
MODEL_ZENXFI3, "c180f57e2b2d62620f87a1d853f349ff", "1.00.25e",
{ [VARIANT_DEFAULT] = {0, 18110576 } }
},
/** Zen X-Fi Style */
{
/* Version 1.03.04e */
MODEL_ZENXFISTYLE, "32a731b7f714e9f99a95991003759c98", "1.03.04",
{
[VARIANT_DEFAULT] = {842960, 29876944},
[VARIANT_ZENXFISTYLE_RECOVERY] = {610272, 232688},
}
},
{
/* Version 1.03.04e */
MODEL_ZENXFISTYLE, "2c7ee52d9984d85dd39aa49b3331e66c", "1.03.04e",
{
[VARIANT_DEFAULT] = {842960, 29876944},
[VARIANT_ZENXFISTYLE_RECOVERY] = {610272, 232688},
}
},
{
/* Version 1.03.04e */
MODEL_ZENSTYLE, "dbebec8fe666412061d9740ff68605dd", "1.03.04e",
{
[VARIANT_DEFAULT] = {758848, 6641344},
[VARIANT_ZENSTYLE_RECOVERY] = {610272, 148576},
}
},
/** Sony NWZ-E370 */
{
/* Version 1.00.00 */
MODEL_NWZE370, "a615fdb70b3e1bfb0355a5bc2bf237ab", "1.00.00",
{ [VARIANT_DEFAULT] = {0, 16056320 } }
},
{
/* Version 1.00.01 */
MODEL_NWZE370, "ee83f3c6026cbcc07097867f06fd585f", "1.00.01",
{ [VARIANT_DEFAULT] = {0, 16515072 } }
},
/** Sony NWZ-E360 */
{
/* Version 1.00.00 */
MODEL_NWZE360, "d0047f8a87d456a0032297b3c802a1ff", "1.00.00",
{ [VARIANT_DEFAULT] = {0, 20652032 } }
},
/** Sony NWZ-E380 */
{
/* Version 1.00.00 */
MODEL_NWZE370, "412f8ccd453195c0bebcc1fd8376322f", "1.00.00",
{ [VARIANT_DEFAULT] = {0, 16429056 } }
},
{
/* Version 1.00.200 */
MODEL_NWZE370, "75cfa51078261c547717e11a4676f1af", "1.00.200",
{ [VARIANT_DEFAULT] = {0, 16429056 } }
}
};
static struct crypto_key_t zero_key =
{
.method = CRYPTO_KEY,
.u.key = {0}
};
static struct crypto_key_t *list_zero_key[] = { &zero_key, NULL };
static struct crypto_key_t *list_all_keys[] = { &zero_key, NULL };
static const struct imx_model_desc_t imx_models[] =
{
[MODEL_FUZEPLUS] = {"Fuze+", dualboot_fuzeplus, sizeof(dualboot_fuzeplus),
"fuz+", 72, list_zero_key, 0, 0x40000000 },
[MODEL_ZENXFI2] = {"Zen X-Fi2", dualboot_zenxfi2, sizeof(dualboot_zenxfi2),
"zxf2", 82, list_zero_key, 0, 0x40000000 },
[MODEL_ZENXFI3] = {"Zen X-Fi3", dualboot_zenxfi3, sizeof(dualboot_zenxfi3),
"zxf3", 83, list_zero_key, 0, 0x40000000 },
[MODEL_ZENXFISTYLE] = {"Zen X-Fi Style", dualboot_zenxfistyle, sizeof(dualboot_zenxfistyle),
"zxfs", 94, list_zero_key, 0, 0x40000000 },
[MODEL_ZENSTYLE] = {"Zen Style 100/300", NULL, 0, "", -1, list_zero_key, 0, 0x40000000 },
[MODEL_NWZE370] = {"NWZ-E370", dualboot_nwze370, sizeof(dualboot_nwze370),
"e370", 88, list_zero_key, 0, 0x40000000 },
[MODEL_NWZE360] = {"NWZ-E360", dualboot_nwze360, sizeof(dualboot_nwze360),
"e360", 89, list_zero_key, 0, 0x40000000 },
};
#define NR_IMX_SUMS (sizeof(imx_sums) / sizeof(imx_sums[0]))
#define NR_IMX_MODELS (sizeof(imx_models) / sizeof(imx_models[0]))
#define MAGIC_ROCK 0x726f636b /* 'rock' */
#define MAGIC_RECOVERY 0xfee1dead
#define MAGIC_NORMAL 0xcafebabe
#define MAGIC_CHARGE 0x67726863 /* 'chrg' */
const char *imx_error_to_string(enum imx_error_t err)
{
switch(err)
{
case IMX_SUCCESS: return "success";
case IMX_ERROR: return "error";
case IMX_OPEN_ERROR: return "open error";
case IMX_READ_ERROR: return "read error";
case IMX_NO_MATCH: return "no match";
case IMX_BOOT_INVALID: return "invalid";
case IMX_BOOT_MISMATCH: return "mismatch";
case IMX_BOOT_CHECKSUM_ERROR: return "checksum error";
case IMX_DONT_KNOW_HOW_TO_PATCH: return "don't know how to patch";
case IMX_VARIANT_MISMATCH: return "variant mismatch";
case IMX_WRITE_ERROR: return "write error";
case IMX_FIRST_SB_ERROR: return "sb error";
case IMX_MODEL_MISMATCH: return "model mismatch";
default: return "unknown error";
}
}
static void add_key_list(struct crypto_key_t **list)
{
while(*list != NULL)
add_keys(*list++, 1);
}
static int rb_fw_get_sb_inst_count(struct rb_fw_t *fw)
{
return fw->nr_insts;
}
/* fill sb instruction for the firmware, fill fill rb_fw_get_sb_inst_count() instructions */
static void rb_fw_fill_sb(struct rb_fw_t *fw, struct sb_inst_t *inst,
uint32_t entry_arg)
{
memcpy(inst, fw->insts, fw->nr_insts * sizeof(struct sb_inst_t));
/* copy data if needed */
for(int i = 0; i < fw->nr_insts; i++)
if(fw->insts[i].inst == SB_INST_LOAD)
fw->insts[i].data = memdup(fw->insts[i].data, fw->insts[i].size);
/* replace call argument of the entry point */
inst[fw->entry_idx].argument = entry_arg;
}
static enum imx_error_t patch_std_zero_host_play(int jump_before,
struct imx_option_t opt, struct sb_file_t *sb_file, struct rb_fw_t boot_fw)
{
/* We assume the file has three boot sections: ____, host, play and one
* resource section rsrc.
*
* Dual Boot:
* ----------
* We patch the file by inserting the dualboot code before the <jump_before>th
* call in the ____ section. We give it as argument the section name 'rock'
* and add a section called 'rock' after rsrc which contains the bootloader.
*
* Single Boot & Recovery:
* -----------------------
* We patch the file by inserting the bootloader code after the <jump_before>th
* call in the ____ section and get rid of everything else. In recovery mode,
* we give 0xfee1dead as argument */
/* used to manipulate entries */
int nr_boot_inst = rb_fw_get_sb_inst_count(&boot_fw);
/* first locate the good instruction */
struct sb_section_t *sec = &sb_file->sections[0];
int jump_idx = 0;
while(jump_idx < sec->nr_insts && jump_before > 0)
if(sec->insts[jump_idx++].inst == SB_INST_CALL)
jump_before--;
if(jump_idx == sec->nr_insts)
{
printf("[ERR] Cannot locate call in section ____\n");
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
if(opt.output == IMX_DUALBOOT)
{
/* create a new instruction array with a hole for two instructions */
struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * (sec->nr_insts + 2));
memcpy(new_insts, sec->insts, sizeof(struct sb_inst_t) * jump_idx);
memcpy(new_insts + jump_idx + 2, sec->insts + jump_idx,
sizeof(struct sb_inst_t) * (sec->nr_insts - jump_idx));
/* first instruction is be a load */
struct sb_inst_t *load = &new_insts[jump_idx];
memset(load, 0, sizeof(struct sb_inst_t));
load->inst = SB_INST_LOAD;
load->size = imx_models[opt.model].dualboot_size;
load->addr = imx_models[opt.model].dualboot_addr;
/* duplicate memory because it will be free'd */
load->data = memdup(imx_models[opt.model].dualboot,
imx_models[opt.model].dualboot_size);
/* second instruction is a call */
struct sb_inst_t *call = &new_insts[jump_idx + 1];
memset(call, 0, sizeof(struct sb_inst_t));
call->inst = SB_INST_CALL;
call->addr = imx_models[opt.model].dualboot_addr;
call->argument = MAGIC_ROCK;
/* free old instruction array */
free(sec->insts);
sec->insts = new_insts;
sec->nr_insts += 2;
/* create a new section */
struct sb_section_t rock_sec;
memset(&rock_sec, 0, sizeof(rock_sec));
/* section can have any number of instructions */
rock_sec.identifier = MAGIC_ROCK;
rock_sec.alignment = BLOCK_SIZE;
rock_sec.nr_insts = nr_boot_inst;
rock_sec.insts = xmalloc(nr_boot_inst * sizeof(struct sb_inst_t));
rb_fw_fill_sb(&boot_fw, rock_sec.insts, MAGIC_NORMAL);
sb_file->sections = augment_array(sb_file->sections,
sizeof(struct sb_section_t), sb_file->nr_sections,
&rock_sec, 1);
sb_file->nr_sections++;
return IMX_SUCCESS;
}
else if(opt.output == IMX_SINGLEBOOT || opt.output == IMX_RECOVERY)
{
bool recovery = (opt.output == IMX_RECOVERY);
/* remove everything after the call and add instructions for firmware */
struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * (jump_idx + nr_boot_inst));
memcpy(new_insts, sec->insts, sizeof(struct sb_inst_t) * jump_idx);
for(int i = jump_idx; i < sec->nr_insts; i++)
sb_free_instruction(sec->insts[i]);
rb_fw_fill_sb(&boot_fw, &new_insts[jump_idx], recovery ? MAGIC_RECOVERY : MAGIC_NORMAL);
free(sec->insts);
sec->insts = new_insts;
sec->nr_insts = jump_idx + nr_boot_inst;
/* remove all other sections */
for(int i = 1; i < sb_file->nr_sections; i++)
sb_free_section(sb_file->sections[i]);
struct sb_section_t *new_sec = xmalloc(sizeof(struct sb_section_t));
memcpy(new_sec, &sb_file->sections[0], sizeof(struct sb_section_t));
free(sb_file->sections);
sb_file->sections = new_sec;
sb_file->nr_sections = 1;
return IMX_SUCCESS;
}
else if(opt.output == IMX_CHARGE)
{
/* throw away everything except the dualboot stub with a special argument */
struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * 2);
/* first instruction is be a load */
struct sb_inst_t *load = &new_insts[0];
memset(load, 0, sizeof(struct sb_inst_t));
load->inst = SB_INST_LOAD;
load->size = imx_models[opt.model].dualboot_size;
load->addr = imx_models[opt.model].dualboot_addr;
/* duplicate memory because it will be free'd */
load->data = memdup(imx_models[opt.model].dualboot,
imx_models[opt.model].dualboot_size);
/* second instruction is a call */
struct sb_inst_t *call = &new_insts[1];
memset(call, 0, sizeof(struct sb_inst_t));
call->inst = SB_INST_CALL;
call->addr = imx_models[opt.model].dualboot_addr;
call->argument = MAGIC_CHARGE;
/* free old instruction array */
free(sec->insts);
sec->insts = new_insts;
sec->nr_insts = 2;
/* remove all other sections */
for(int i = 1; i < sb_file->nr_sections; i++)
sb_free_section(sb_file->sections[i]);
struct sb_section_t *new_sec = xmalloc(sizeof(struct sb_section_t));
memcpy(new_sec, &sb_file->sections[0], sizeof(struct sb_section_t));
free(sb_file->sections);
sb_file->sections = new_sec;
sb_file->nr_sections = 1;
return IMX_SUCCESS;
}
else
{
printf("[ERR] Bad output type !\n");
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
}
static enum imx_error_t parse_subversion(const char *s, const char *end, uint16_t *ver)
{
int len = (end == NULL) ? strlen(s) : end - s;
if(len > 4)
{
printf("[ERR] Bad subversion override '%s' (too long)\n", s);
return IMX_ERROR;
}
*ver = 0;
for(int i = 0; i < len; i++)
{
if(!isdigit(s[i]))
{
printf("[ERR] Bad subversion override '%s' (not a digit)\n", s);
return IMX_ERROR;
}
*ver = *ver << 4 | (s[i] - '0');
}
return IMX_SUCCESS;
}
static enum imx_error_t parse_version(const char *s, struct sb_version_t *ver)
{
const char *dot1 = strchr(s, '.');
if(dot1 == NULL)
{
printf("[ERR] Bad version override '%s' (missing dot)\n", s);
return IMX_ERROR;
}
const char *dot2 = strchr(dot1 + 1, '.');
if(dot2 == NULL)
{
printf("[ERR] Bad version override '%s' (missing second dot)\n", s);
return IMX_ERROR;
}
enum imx_error_t ret = parse_subversion(s, dot1, &ver->major);
if(ret != IMX_SUCCESS) return ret;
ret = parse_subversion(dot1 + 1, dot2, &ver->minor);
if(ret != IMX_SUCCESS) return ret;
ret = parse_subversion(dot2 + 1, NULL, &ver->revision);
if(ret != IMX_SUCCESS) return ret;
return IMX_SUCCESS;
}
static enum imx_error_t patch_firmware(struct imx_option_t opt,
struct sb_file_t *sb_file, struct rb_fw_t boot_fw)
{
if(opt.force_version)
{
enum imx_error_t err = parse_version(opt.force_version, &sb_file->product_ver);
if(err != IMX_SUCCESS)
return err;
err = parse_version(opt.force_version, &sb_file->component_ver);
if(err != IMX_SUCCESS)
return err;
}
switch(opt.model)
{
case MODEL_FUZEPLUS:
/* The Fuze+ uses the standard ____, host, play sections, patch after third
* call in ____ section */
return patch_std_zero_host_play(3, opt, sb_file, boot_fw);
case MODEL_ZENXFI3:
/* The ZEN X-Fi3 uses the standard ____, hSst, pSay sections, patch after third
* call in ____ section. Although sections names use the S variant, they are standard. */
return patch_std_zero_host_play(3, opt, sb_file, boot_fw);
case MODEL_NWZE360:
case MODEL_NWZE370:
/* The NWZ-E360/E370 uses the standard ____, host, play sections, patch after first
* call in ____ section. */
return patch_std_zero_host_play(1, opt, sb_file, boot_fw);
case MODEL_ZENXFI2:
/* The ZEN X-Fi2 has two types of firmware: recovery and normal.
* Normal uses the standard ___, host, play sections and recovery only ____ */
switch(opt.fw_variant)
{
case VARIANT_ZENXFI2_RECOVERY:
case VARIANT_ZENXFI2_NAND:
case VARIANT_ZENXFI2_SD:
return patch_std_zero_host_play(1, opt, sb_file, boot_fw);
default:
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
break;
case MODEL_ZENXFISTYLE:
/* The ZEN X-Fi Style uses the standard ____, host, play sections, patch after first
* call in ____ section. */
return patch_std_zero_host_play(1, opt, sb_file, boot_fw);
default:
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
}
static enum imx_error_t unpatch_std_zero_host_play(int jump_before,
struct imx_option_t opt, struct sb_file_t *sb_file)
{
/* find rockbox section */
int rb_sec = -1;
for(int i = 0; i < sb_file->nr_sections; i++)
if(sb_file->sections[i].identifier == MAGIC_ROCK)
rb_sec = i;
if(rb_sec == -1)
{
printf("[ERR][INTERNAL] Cannot find rockbox section\n");
return IMX_ERROR;
}
/** 1) remove rockbox section */
/* free rockbox section */
sb_free_section(sb_file->sections[rb_sec]);
/* create a new array of sections */
sb_file->nr_sections--;
struct sb_section_t *new_sec = xmalloc(sb_file->nr_sections * sizeof(struct sb_section_t));
/* copy all sections exception rockbox */
memcpy(new_sec, sb_file->sections, rb_sec * sizeof(struct sb_section_t));
memcpy(new_sec + rb_sec, sb_file->sections + rb_sec + 1,
(sb_file->nr_sections - rb_sec) * sizeof(struct sb_section_t));
/* free old array and replace it */
free(sb_file->sections);
sb_file->sections = new_sec;
/** 2) remove patch instructions in boot section */
struct sb_section_t *sec = &sb_file->sections[0];
int jump_idx = 0;
while(jump_idx < sec->nr_insts && jump_before > 0)
if(sec->insts[jump_idx++].inst == SB_INST_CALL)
jump_before--;
if(jump_idx == sec->nr_insts)
{
printf("[ERR] Cannot locate call in section ____\n");
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
/* free two instructions */
sb_free_instruction(sec->insts[jump_idx]);
sb_free_instruction(sec->insts[jump_idx + 1]);
/* create a new array of instructions */
sec->nr_insts -= 2;
struct sb_inst_t *new_inst = xmalloc(sec->nr_insts * sizeof(struct sb_inst_t));
/* copy all instructions except the two patch to remove */
memcpy(new_inst, sec->insts, jump_idx * sizeof(struct sb_inst_t));
memcpy(new_inst + jump_idx, sec->insts + jump_idx + 2,
(sec->nr_insts - jump_idx) * sizeof(struct sb_inst_t));
/* free old array and replace it */
free(sec->insts);
sec->insts = new_inst;
return IMX_SUCCESS;
}
static enum imx_error_t unpatch_firmware(struct imx_option_t opt,
struct sb_file_t *sb_file)
{
/* keep consistent with patch_firmware */
switch(opt.model)
{
case MODEL_FUZEPLUS:
/* The Fuze+ uses the standard ____, host, play sections, patch after third
* call in ____ section */
return unpatch_std_zero_host_play(3, opt, sb_file);
case MODEL_ZENXFI3:
/* The ZEN X-Fi3 uses the standard ____, hSst, pSay sections, patch after third
* call in ____ section. Although sections names use the S variant, they are standard. */
return unpatch_std_zero_host_play(3, opt, sb_file);
case MODEL_NWZE360:
case MODEL_NWZE370:
/* The NWZ-E360/E370 uses the standard ____, host, play sections, patch after first
* call in ____ section. */
return unpatch_std_zero_host_play(1, opt, sb_file);
case MODEL_ZENXFI2:
/* The ZEN X-Fi2 has two types of firmware: recovery and normal.
* Normal uses the standard ___, host, play sections and recovery only ____ */
switch(opt.fw_variant)
{
case VARIANT_ZENXFI2_RECOVERY:
case VARIANT_ZENXFI2_NAND:
case VARIANT_ZENXFI2_SD:
return unpatch_std_zero_host_play(1, opt, sb_file);
default:
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
break;
case MODEL_ZENXFISTYLE:
/* The ZEN X-Fi Style uses the standard ____, host, play sections, patch after first
* call in ____ section. */
return unpatch_std_zero_host_play(1, opt, sb_file);
default:
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
}
static uint32_t get_uint32be(unsigned char *p)
{
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
}
void dump_imx_dev_info(const char *prefix)
{
printf("%smkimxboot models:\n", prefix);
for(int i = 0; i < NR_IMX_MODELS; i++)
{
printf("%s %s: idx=%d rb_model=%s rb_num=%d\n", prefix,
imx_models[i].model_name, i, imx_models[i].rb_model_name,
imx_models[i].rb_model_num);
}
printf("%smkimxboot variants:\n", prefix);
for(int i = 0; i < VARIANT_COUNT; i++)
{
printf("%s %d: %s\n", prefix, i, imx_fw_variant[i]);
}
printf("%smkimxboot mapping:\n", prefix);
for(int i = 0; i < NR_IMX_SUMS; i++)
{
printf("%s md5sum=%s -> idx=%d, ver=%s\n", prefix, imx_sums[i].md5sum,
imx_sums[i].model, imx_sums[i].version);
for(int j = 0; j < VARIANT_COUNT; j++)
if(imx_sums[i].fw_variants[j].size)
printf("%s variant=%d -> offset=%#x size=%#x\n", prefix,
j, (unsigned)imx_sums[i].fw_variants[j].offset,
(unsigned)imx_sums[i].fw_variants[j].size);
}
}
/* find an entry into imx_sums which matches the MD5 sum of a file */
static enum imx_error_t find_model_by_md5sum(uint8_t file_md5sum[16], int *md5_idx)
{
int i = 0;
while(i < NR_IMX_SUMS)
{
uint8_t md5[20];
if(strlen(imx_sums[i].md5sum) != 32)
{
printf("[INFO] Invalid MD5 sum in imx_sums\n");
return IMX_ERROR;
}
for(int j = 0; j < 16; j++)
{
byte a, b;
if(convxdigit(imx_sums[i].md5sum[2 * j], &a) || convxdigit(imx_sums[i].md5sum[2 * j + 1], &b))
{
printf("[ERR][INTERNAL] Bad checksum format: %s\n", imx_sums[i].md5sum);
return IMX_ERROR;
}
md5[j] = (a << 4) | b;
}
if(memcmp(file_md5sum, md5, 16) == 0)
break;
i++;
}
if(i == NR_IMX_SUMS)
{
printf("[WARN] MD5 sum doesn't match any known file\n");
return IMX_NO_MATCH;
}
*md5_idx = i;
return IMX_SUCCESS;
}
/* read a file to a buffer */
static enum imx_error_t read_file(const char *file, void **buffer, size_t *size)
{
FILE *f = fopen(file, "rb");
if(f == NULL)
{
printf("[ERR] Cannot open file '%s' for reading: %m\n", file);
return IMX_OPEN_ERROR;
}
fseek(f, 0, SEEK_END);
*size = ftell(f);
fseek(f, 0, SEEK_SET);
*buffer = xmalloc(*size);
if(fread(*buffer, *size, 1, f) != 1)
{
free(*buffer);
fclose(f);
printf("[ERR] Cannot read file '%s': %m\n", file);
return IMX_READ_ERROR;
}
fclose(f);
return IMX_SUCCESS;
}
/* write a file from a buffer */
static enum imx_error_t write_file(const char *file, void *buffer, size_t size)
{
FILE *f = fopen(file, "wb");
if(f == NULL)
{
printf("[ERR] Cannot open file '%s' for writing: %m\n", file);
return IMX_OPEN_ERROR;
}
if(fwrite(buffer, size, 1, f) != 1)
{
fclose(f);
printf("[ERR] Cannot write file '%s': %m\n", file);
return IMX_WRITE_ERROR;
}
fclose(f);
return IMX_SUCCESS;
}
/* compute MD5 sum of a buffer */
static enum imx_error_t compute_md5sum_buf(void *buf, size_t sz, uint8_t file_md5sum[16])
{
md5_context ctx;
md5_starts(&ctx);
md5_update(&ctx, buf, sz);
md5_finish(&ctx, file_md5sum);
return IMX_SUCCESS;
}
/* compute MD5 sum of a buffer */
static enum imx_error_t compute_soft_md5sum_buf(struct sb_file_t *sb, uint8_t file_md5sum[16])
{
md5_context ctx;
md5_starts(&ctx);
#define hash(obj) \
md5_update(&ctx, (void *)&obj, sizeof(obj))
/* various header fiels */
hash(sb->timestamp);
hash(sb->drive_tag);
hash(sb->drive_tag);
hash(sb->first_boot_sec_id);
hash(sb->flags);
hash(sb->product_ver);
hash(sb->component_ver);
for(int i = 0; i < sb->nr_sections; i++)
{
struct sb_section_t *sec = &sb->sections[i];
hash(sec->identifier);
uint32_t flags = sec->other_flags;
if(!sec->is_data)
flags |= SECTION_BOOTABLE;
if(sec->is_cleartext)
flags |= SECTION_CLEARTEXT;
hash(flags);
for(int j = 0; j < sec->nr_insts; j++)
{
struct sb_inst_t *inst = &sec->insts[j];
switch(inst->inst)
{
case SB_INST_NOP:
/* ignore them totally because they are used for padding */
break;
case SB_INST_LOAD:
hash(inst->inst);
hash(inst->addr);
md5_update(&ctx, inst->data, inst->size);
break;
case SB_INST_FILL:
hash(inst->inst);
hash(inst->addr);
hash(inst->pattern);
break;
case SB_INST_JUMP:
case SB_INST_CALL:
hash(inst->inst);
hash(inst->addr);
hash(inst->argument);
break;
case SB_INST_MODE:
hash(inst->inst);
hash(inst->argument);
break;
case SB_INST_DATA:
md5_update(&ctx, inst->data, inst->size);
break;
default:
printf("[ERR][INTERNAL] Unexpected instruction %d\n", inst->inst);
return IMX_ERROR;
}
}
}
#undef hash
md5_finish(&ctx, file_md5sum);
return IMX_SUCCESS;
}
/* compute MD5 of a file */
enum imx_error_t compute_md5sum(const char *file, uint8_t file_md5sum[16])
{
void *buf;
size_t sz;
enum imx_error_t err = read_file(file, &buf, &sz);
if(err != IMX_SUCCESS)
return err;
compute_md5sum_buf(buf, sz, file_md5sum);
free(buf);
return IMX_SUCCESS;
}
/* compute soft MD5 of a file */
enum imx_error_t compute_soft_md5sum(const char *file, uint8_t soft_md5sum[16])
{
clear_keys();
add_key_list(list_all_keys);
/* read file */
enum sb_error_t err;
struct sb_file_t *sb = sb_read_file(file, false, NULL, generic_std_printf, &err);
if(sb == NULL)
{
printf("[ERR] Cannot load SB file: %d\n", err);
return err;
}
/* compute sum */
err = compute_soft_md5sum_buf(sb, soft_md5sum);
/* release file */
sb_free(sb);
return err;
}
/* Load a rockbox firwmare from a buffer. Data is copied. Assume firmware is
* using our scramble format. */
static enum imx_error_t rb_fw_load_buf_scramble(struct rb_fw_t *fw, uint8_t *buf,
size_t sz, enum imx_model_t model)
{
if(sz < 8)
{
printf("[ERR] Bootloader file is too small to be valid\n");
return IMX_BOOT_INVALID;
}
/* check model name */
uint8_t *name = buf + 4;
if(memcmp(name, imx_models[model].rb_model_name, 4) != 0)
{
printf("[ERR] Bootloader model doesn't match found model for input file\n");
return IMX_BOOT_MISMATCH;
}
/* check checksum */
uint32_t sum = imx_models[model].rb_model_num;
for(int i = 8; i < sz; i++)
sum += buf[i];
if(sum != get_uint32be(buf))
{
printf("[ERR] Bootloader checksum mismatch\n");
return IMX_BOOT_CHECKSUM_ERROR;
}
/* two instructions: load and jump */
fw->nr_insts = 2;
fw->entry_idx = 1;
fw->insts = xmalloc(fw->nr_insts * sizeof(struct sb_inst_t));
memset(fw->insts, 0, fw->nr_insts * sizeof(struct sb_inst_t));
fw->insts[0].inst = SB_INST_LOAD;
fw->insts[0].addr = imx_models[model].bootloader_addr;
fw->insts[0].size = sz - 8;
fw->insts[0].data = memdup(buf + 8, sz - 8);
fw->insts[1].inst = SB_INST_JUMP;
fw->insts[1].addr = imx_models[model].bootloader_addr;
return IMX_SUCCESS;
}
struct elf_user_t
{
void *buf;
size_t sz;
};
static bool elf_read(void *user, uint32_t addr, void *buf, size_t count)
{
struct elf_user_t *u = user;
if(addr + count <= u->sz)
{
memcpy(buf, u->buf + addr, count);
return true;
}
else
return false;
}
/* Load a rockbox firwmare from a buffer. Data is copied. Assume firmware is
* using ELF format. */
static enum imx_error_t rb_fw_load_buf_elf(struct rb_fw_t *fw, uint8_t *buf,
size_t sz, enum imx_model_t model)
{
struct elf_params_t elf;
struct elf_user_t user;
user.buf = buf;
user.sz = sz;
elf_init(&elf);
if(!elf_read_file(&elf, elf_read, generic_std_printf, &user))
{
elf_release(&elf);
printf("[ERR] Error parsing ELF file\n");
return IMX_BOOT_INVALID;
}
fw->nr_insts = elf_get_nr_sections(&elf) + 1;
fw->insts = xmalloc(fw->nr_insts * sizeof(struct sb_inst_t));
fw->entry_idx = fw->nr_insts - 1;
memset(fw->insts, 0, fw->nr_insts * sizeof(struct sb_inst_t));
struct elf_section_t *sec = elf.first_section;
for(int i = 0; sec; i++, sec = sec->next)
{
fw->insts[i].addr = elf_translate_virtual_address(&elf, sec->addr);
fw->insts[i].size = sec->size;
if(sec->type == EST_LOAD)
{
fw->insts[i].inst = SB_INST_LOAD;
fw->insts[i].data = memdup(sec->section, sec->size);
}
else if(sec->type == EST_FILL)
{
fw->insts[i].inst = SB_INST_FILL;
fw->insts[i].pattern = sec->pattern;
}
else
{
printf("[WARN] Warning parsing ELF file: unsupported section type mapped to NOP!\n");
fw->insts[i].inst = SB_INST_NOP;
}
}
fw->insts[fw->nr_insts - 1].inst = SB_INST_JUMP;
if(!elf_get_start_addr(&elf, &fw->insts[fw->nr_insts - 1].addr))
{
elf_release(&elf);
printf("[ERROR] Error parsing ELF file: it has no entry point!\n");
return IMX_BOOT_INVALID;
}
elf_release(&elf);
return IMX_SUCCESS;
}
/* Load a rockbox firwmare from a buffer. Data is copied. */
static enum imx_error_t rb_fw_load_buf(struct rb_fw_t *fw, uint8_t *buf,
size_t sz, enum imx_model_t model)
{
/* detect file format */
if(sz >= 4 && buf[0] == 0x7f && memcmp(buf + 1, "ELF", 3) == 0)
return rb_fw_load_buf_elf(fw, buf, sz, model);
else
return rb_fw_load_buf_scramble(fw, buf, sz, model);
}
/* load a rockbox firmware from a file. */
static enum imx_error_t rb_fw_load(struct rb_fw_t *fw, const char *file,
enum imx_model_t model)
{
void *buf;
size_t sz;
int ret = read_file(file, &buf, &sz);
if(ret == IMX_SUCCESS)
{
ret = rb_fw_load_buf(fw, buf, sz, model);
free(buf);
}
return ret;
}
/* free rockbox firmware */
static void rb_fw_free(struct rb_fw_t *fw)
{
for(int i = 0; i < fw->nr_insts; i++)
sb_free_instruction(fw->insts[i]);
free(fw->insts);
memset(fw, 0, sizeof(struct rb_fw_t));
}
static bool contains_rockbox_bootloader(struct sb_file_t *sb_file)
{
for(int i = 0; i < sb_file->nr_sections; i++)
if(sb_file->sections[i].identifier == MAGIC_ROCK)
return true;
return false;
}
/* modify sb_file to produce requested boot image */
static enum imx_error_t make_boot(struct sb_file_t *sb_file, const char *bootfile,
struct imx_option_t opt)
{
/* things went smoothly, we have a SB image but it may not be suitable as an
* input image: if it contains a rockbox bootloader, we need to remove it */
if(contains_rockbox_bootloader(sb_file))
{
printf("[INFO] SB file contains a Rockbox bootloader, trying to remove it...\n");
enum imx_error_t ret = unpatch_firmware(opt, sb_file);
if(ret != IMX_SUCCESS)
return ret;
}
/* if asked to produce OF, don't do anything more */
if(opt.output == IMX_ORIG_FW)
return IMX_SUCCESS;
/* load rockbox file */
struct rb_fw_t boot_fw;
enum imx_error_t ret = rb_fw_load(&boot_fw, bootfile, opt.model);
if(ret != IMX_SUCCESS)
return ret;
/* produce file */
ret = patch_firmware(opt, sb_file, boot_fw);
rb_fw_free(&boot_fw);
return ret;
}
enum imx_error_t mkimxboot(const char *infile, const char *bootfile,
const char *outfile, struct imx_option_t opt)
{
/* sanity check */
if(opt.fw_variant >= VARIANT_COUNT || opt.model >= MODEL_COUNT)
return IMX_ERROR;
/* dump tables */
dump_imx_dev_info("[INFO] ");
/* load file */
void *buf;
size_t offset = 0, size = 0;
enum imx_error_t ret = read_file(infile, &buf, &size);
if(ret != IMX_SUCCESS)
return ret;
/* compute MD5 sum of the file */
uint8_t file_md5sum[16];
compute_md5sum_buf(buf, size, file_md5sum);
printf("[INFO] MD5 sum of the file: ");
for(int i = 0; i < 16; i++)
printf("%02x", file_md5sum[i]);
printf("\n");
/* find model */
int md5_idx;
ret = find_model_by_md5sum(file_md5sum, &md5_idx);
/* is this a known firmware upgrade ? */
if(ret == IMX_SUCCESS)
{
enum imx_model_t model = imx_sums[md5_idx].model;
printf("[INFO] File is for model %d (%s, version %s)\n", model,
imx_models[model].model_name, imx_sums[md5_idx].version);
/* check the model is the expected one */
if(opt.model == MODEL_UNKNOWN)
opt.model = model;
else if(opt.model != model)
{
printf("[ERR] Model mismatch, was expecting model %d (%s)\n",
opt.model, imx_models[opt.model].model_name);
free(buf);
return IMX_MODEL_MISMATCH;
}
/* use database values */
offset = imx_sums[md5_idx].fw_variants[opt.fw_variant].offset;
size = imx_sums[md5_idx].fw_variants[opt.fw_variant].size;
if(size == 0)
{
printf("[ERR] Input file does not contain variant '%s'\n", imx_fw_variant[opt.fw_variant]);
free(buf);
return IMX_VARIANT_MISMATCH;
}
/* special case: if we need to produce the OF, just bypass read/write of
* the SB file and output this chunk of the file. This is faster and it
* also avoids modifying the OF by reconstructing it */
if(opt.output == IMX_ORIG_FW)
{
printf("[INFO] Extracting original firmware...\n");
ret = write_file(outfile, buf + offset, size);
free(buf);
return ret;
}
}
else
{
printf("[INFO] File doesn't have a known MD5 sum, assuming it's a SB image...\n");
/* image didn't match, so we expect the file to be a raw SB image, either
* produced by mkimxboot when uninstalling bootloader or after installing RB,
* so load all known keys and go on */
/* To be more user friendly, give a nice error message if we detect
* the file is not a SB file */
if(guess_sb_version(infile) == SB_VERSION_UNK)
{
printf("[ERR] Your firmware doesn't look like a SB file\n");
printf("[ERR] This is probably a firmware upgrade\n");
printf("[ERR] Unfortunately, this tool doesn't know about it yet\n");
printf("[ERR] Please report to the developers to add it\n");
free(buf);
return IMX_ERROR;
}
}
/* to proceed further, we need to know the model */
if(opt.model == MODEL_UNKNOWN)
{
printf("[ERR] Cannot do processing of soft image without knowing the model\n");
free(buf);
return IMX_MODEL_MISMATCH;
}
/* load image */
g_debug = opt.debug;
clear_keys();
add_key_list(imx_models[opt.model].keys);
enum sb_error_t err;
struct sb_file_t *sb_file = sb_read_memory(buf + offset, size, false, NULL, generic_std_printf, &err);
if(sb_file == NULL)
{
printf("[ERR] Cannot open firmware as SB file: %d\n", err);
free(buf);
return IMX_FIRST_SB_ERROR + err;
}
/* modify image */
ret = make_boot(sb_file, bootfile, opt);
if(ret == IMX_SUCCESS)
{
/* write image */
ret = sb_write_file(sb_file, outfile, NULL, generic_std_printf);
}
/* cleanup */
sb_free(sb_file);
free(buf);
return ret;
}