rockbox/firmware/drivers/ata.c
Linus Nielsen Feltzing 364783a3d5 Moved ata_read_sectors() to internal RAM
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@1501 a1c6a512-1295-4272-9138-f99709370657
2002-08-01 08:15:58 +00:00

501 lines
12 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Alan Korr
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdbool.h>
#include "ata.h"
#include "kernel.h"
#include "thread.h"
#include "led.h"
#include "sh7034.h"
#include "system.h"
#include "debug.h"
#include "panic.h"
#include "usb.h"
#define SECTOR_SIZE 512
#define ATA_DATA (*((volatile unsigned short*)0x06104100))
#define ATA_ERROR (*((volatile unsigned char*)0x06100101))
#define ATA_FEATURE ATA_ERROR
#define ATA_NSECTOR (*((volatile unsigned char*)0x06100102))
#define ATA_SECTOR (*((volatile unsigned char*)0x06100103))
#define ATA_LCYL (*((volatile unsigned char*)0x06100104))
#define ATA_HCYL (*((volatile unsigned char*)0x06100105))
#define ATA_SELECT (*((volatile unsigned char*)0x06100106))
#define ATA_COMMAND (*((volatile unsigned char*)0x06100107))
#define ATA_STATUS (*((volatile unsigned char*)0x06100107))
#define ATA_CONTROL1 ((volatile unsigned char*)0x06200206)
#define ATA_CONTROL2 ((volatile unsigned char*)0x06200306)
#define ATA_CONTROL (*ata_control)
#define ATA_ALT_STATUS ATA_CONTROL
#define SELECT_DEVICE1 0x10
#define SELECT_LBA 0x40
#define STATUS_BSY 0x80
#define STATUS_RDY 0x40
#define STATUS_DRQ 0x08
#define STATUS_ERR 0x01
#define CONTROL_nIEN 0x02
#define CONTROL_SRST 0x04
#define CMD_READ_SECTORS 0x20
#define CMD_WRITE_SECTORS 0x30
#define CMD_STANDBY_IMMEDIATE 0xE0
#define CMD_STANDBY 0xE2
#define CMD_SLEEP 0xE6
#define CMD_SECURITY_FREEZE_LOCK 0xF5
#define Q_SLEEP 0
static struct mutex ata_mtx;
char ata_device; /* device 0 (master) or 1 (slave) */
int ata_io_address; /* 0x300 or 0x200, only valid on recorder */
static volatile unsigned char* ata_control;
bool old_recorder = false;
static bool sleeping = false;
static int sleep_timer = 0;
static int sleep_timeout = 5*HZ;
static char ata_stack[DEFAULT_STACK_SIZE];
static char ata_thread_name[] = "ata";
static struct event_queue ata_queue;
static bool initialized = false;
static int wait_for_bsy(void) __attribute__ ((section (".icode")));
static int wait_for_bsy(void)
{
int timeout = current_tick + HZ*4;
while (TIME_BEFORE(current_tick, timeout) && (ATA_ALT_STATUS & STATUS_BSY))
yield();
if (TIME_BEFORE(current_tick, timeout))
{
return 1;
}
else
{
return 0; /* timeout */
}
}
static int wait_for_rdy(void) __attribute__ ((section (".icode")));
static int wait_for_rdy(void)
{
if (!wait_for_bsy())
return 0;
return ATA_ALT_STATUS & STATUS_RDY;
}
static int wait_for_start_of_transfer(void) __attribute__ ((section (".icode")));
static int wait_for_start_of_transfer(void)
{
if (!wait_for_bsy())
return 0;
return (ATA_ALT_STATUS & (STATUS_BSY|STATUS_DRQ)) == STATUS_DRQ;
}
static int wait_for_end_of_transfer(void) __attribute__ ((section (".icode")));
static int wait_for_end_of_transfer(void)
{
if (!wait_for_bsy())
return 0;
return (ATA_ALT_STATUS & (STATUS_RDY|STATUS_DRQ)) == STATUS_RDY;
}
int ata_read_sectors(unsigned long start,
unsigned char count,
void* buf) __attribute__ ((section (".icode")));
int ata_read_sectors(unsigned long start,
unsigned char count,
void* buf)
{
int i;
int ret = 0;
if ( sleeping ) {
if (ata_soft_reset()) {
return -1;
}
}
mutex_lock(&ata_mtx);
sleep_timer = sleep_timeout;
if (!wait_for_rdy())
{
mutex_unlock(&ata_mtx);
return -1;
}
led(true);
ATA_NSECTOR = count;
ATA_SECTOR = start & 0xff;
ATA_LCYL = (start >> 8) & 0xff;
ATA_HCYL = (start >> 16) & 0xff;
ATA_SELECT = ((start >> 24) & 0xf) | SELECT_LBA | ata_device;
ATA_COMMAND = CMD_READ_SECTORS;
for (i=0; i<count; i++) {
int j;
if (!wait_for_start_of_transfer())
{
mutex_unlock(&ata_mtx);
return -1;
}
for (j=0; j<SECTOR_SIZE/2; j++)
((unsigned short*)buf)[j] = SWAB16(ATA_DATA);
#ifdef USE_INTERRUPT
/* reading the status register clears the interrupt */
j = ATA_STATUS;
#endif
buf += SECTOR_SIZE; /* Advance one sector */
}
led(false);
if(!wait_for_end_of_transfer())
ret = -1;
mutex_unlock(&ata_mtx);
return ret;
}
int ata_write_sectors(unsigned long start,
unsigned char count,
void* buf)
{
int i;
if ( sleeping ) {
if (ata_soft_reset()) {
return -1;
}
}
mutex_lock(&ata_mtx);
sleep_timer = sleep_timeout;
if (!wait_for_rdy())
{
mutex_unlock(&ata_mtx);
return 0;
}
led(true);
ATA_NSECTOR = count;
ATA_SECTOR = start & 0xff;
ATA_LCYL = (start >> 8) & 0xff;
ATA_HCYL = (start >> 16) & 0xff;
ATA_SELECT = ((start >> 24) & 0xf) | SELECT_LBA | ata_device;
ATA_COMMAND = CMD_WRITE_SECTORS;
for (i=0; i<count; i++) {
int j;
if (!wait_for_start_of_transfer())
{
mutex_unlock(&ata_mtx);
return 0;
}
for (j=0; j<SECTOR_SIZE/2; j++)
ATA_DATA = SWAB16(((unsigned short*)buf)[j]);
#ifdef USE_INTERRUPT
/* reading the status register clears the interrupt */
j = ATA_STATUS;
#endif
buf += SECTOR_SIZE;
}
led(false);
i = wait_for_end_of_transfer();
mutex_unlock(&ata_mtx);
return i;
}
static int check_registers(void)
{
if ( ATA_STATUS & STATUS_BSY )
return -1;
ATA_NSECTOR = 0xa5;
ATA_SECTOR = 0x5a;
ATA_LCYL = 0xaa;
ATA_HCYL = 0x55;
if ((ATA_NSECTOR == 0xa5) &&
(ATA_SECTOR == 0x5a) &&
(ATA_LCYL == 0xaa) &&
(ATA_HCYL == 0x55))
return 0;
return -2;
}
static int freeze_lock(void)
{
if (!wait_for_rdy())
return -1;
ATA_COMMAND = CMD_SECURITY_FREEZE_LOCK;
if (!wait_for_rdy())
return -1;
return 0;
}
void ata_spindown(int seconds)
{
sleep_timeout = seconds * HZ;
}
bool ata_disk_is_active(void)
{
return !sleeping;
}
static int ata_perform_sleep(void)
{
int ret = 0;
mutex_lock(&ata_mtx);
if(!wait_for_rdy()) {
mutex_unlock(&ata_mtx);
return -1;
}
ATA_SELECT = ata_device;
#ifdef DEBUG
ATA_COMMAND = CMD_STANDBY;
#else
ATA_COMMAND = CMD_SLEEP;
#endif
if (!wait_for_rdy())
ret = -1;
sleeping = true;
sleep_timer = 0;
mutex_unlock(&ata_mtx);
return ret;
}
int ata_sleep(void)
{
queue_post(&ata_queue, Q_SLEEP, NULL);
return 0;
}
static void ata_thread(void)
{
struct event ev;
while (1) {
queue_wait(&ata_queue, &ev);
switch ( ev.id ) {
case SYS_USB_CONNECTED:
/* Tell the USB thread that we are safe */
DEBUGF("ata_thread got SYS_USB_CONNECTED\n");
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&ata_queue);
break;
case Q_SLEEP:
ata_perform_sleep();
break;
}
}
}
static void ata_tick(void)
{
if (sleep_timer) {
sleep_timer--;
if (!sleep_timer)
queue_post(&ata_queue, 0, NULL);
}
}
int ata_hard_reset(void)
{
int ret;
mutex_lock(&ata_mtx);
PADR &= ~0x0200;
sleep(2);
PADR |= 0x0200;
ret = wait_for_rdy();
/* Massage the return code so it is 0 on success and -1 on failure */
ret = ret?0:-1;
sleeping = false;
mutex_unlock(&ata_mtx);
return ret;
}
int ata_soft_reset(void)
{
int ret;
int retry_count;
mutex_lock(&ata_mtx);
ATA_SELECT = SELECT_LBA | ata_device;
ATA_CONTROL = CONTROL_nIEN|CONTROL_SRST;
sleep(HZ/20000); /* >= 5us */
ATA_CONTROL = CONTROL_nIEN;
sleep(HZ/400); /* >2ms */
/* This little sucker can take up to 30 seconds */
retry_count = 8;
do
{
ret = wait_for_rdy();
} while(!ret && retry_count--);
/* Massage the return code so it is 0 on success and -1 on failure */
ret = ret?0:-1;
sleeping = false;
mutex_unlock(&ata_mtx);
return ret;
}
static int master_slave_detect(void)
{
/* master? */
ATA_SELECT = 0;
if ( ATA_STATUS & STATUS_RDY ) {
ata_device = 0;
DEBUGF("Found master harddisk\n");
}
else {
/* slave? */
ATA_SELECT = SELECT_DEVICE1;
if ( ATA_STATUS & STATUS_RDY ) {
ata_device = SELECT_DEVICE1;
DEBUGF("Found slave harddisk\n");
}
else
return -1;
}
return 0;
}
static int io_address_detect(void)
{
unsigned char tmp = ATA_STATUS & 0xf9; /* Mask the IDX and CORR bits */
unsigned char dummy;
/* We compare the STATUS register with the ALT_STATUS register, which
is located at the same address as CONTROL. If they are the same, we
assume that we have the correct address.
We can't read the ATA_STATUS directly, since the read data will stay
on the data bus if the following read does not assert the Chip Select
to the ATA controller. We read a register that we know exists to make
sure that the data on the bus isn't identical to the STATUS register
contents. */
ATA_SECTOR = 0;
dummy = ATA_SECTOR;
if(tmp == ((*ATA_CONTROL2) & 0xf9))
{
DEBUGF("CONTROL is at 0x306\n");
ata_io_address = 0x300; /* For debug purposes only */
old_recorder = true;
ata_control = ATA_CONTROL2;
}
else
{
DEBUGF("CONTROL is at 0x206\n");
ata_io_address = 0x200; /* For debug purposes only */
old_recorder = false;
ata_control = ATA_CONTROL1;
}
/* Let's check again, to be sure */
if(tmp != ATA_CONTROL)
{
DEBUGF("ATA I/O address detection failed\n");
return -1;
}
return 0;
}
void ata_enable(bool on)
{
if(on)
PADR &= ~0x80; /* enable ATA */
else
PADR |= 0x80; /* disable ATA */
PAIOR |= 0x80;
}
int ata_init(void)
{
mutex_init(&ata_mtx);
led(false);
ata_enable(true);
if ( !initialized ) {
if (master_slave_detect())
return -1;
if (io_address_detect())
return -2;
if (check_registers())
return -3;
if (freeze_lock())
return -4;
queue_init(&ata_queue);
create_thread(ata_thread, ata_stack,
sizeof(ata_stack), ata_thread_name);
tick_add_task(ata_tick);
initialized = true;
}
ATA_SELECT = SELECT_LBA;
ATA_CONTROL = CONTROL_nIEN;
return 0;
}