rockbox/lib/rbcodec/codecs/libfaad/sbr_hfadj.c
Sean Bartell f40bfc9267 Add codecs to librbcodec.
Change-Id: Id7f4717d51ed02d67cb9f9cb3c0ada4a81843f97
Reviewed-on: http://gerrit.rockbox.org/137
Reviewed-by: Nils Wallménius <nils@rockbox.org>
Tested-by: Nils Wallménius <nils@rockbox.org>
2012-04-25 22:13:20 +02:00

1631 lines
79 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id$
**/
/* High Frequency adjustment */
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include "sbr_syntax.h"
#include "sbr_hfadj.h"
#include "sbr_noise.h"
#ifdef FIXED_POINT
#define REAL_UPSCALE(A) ((A)<<REAL_BITS)
#define REAL_DOWNSCALE(A) ((A)>>REAL_BITS)
#else
#define REAL_UPSCALE(A) (A)
#define REAL_DOWNSCALE(A) (A)
#endif
/* static function declarations */
static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
#ifdef SBR_LOW_POWER
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
#endif
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
void hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
,real_t *deg /* aliasing degree */
#endif
,uint8_t ch)
{
sbr_hfadj_info adj MEM_ALIGN_ATTR;
memset(&adj,0,sizeof(adj));
if (sbr->bs_frame_class[ch] == FIXFIX)
{
sbr->l_A[ch] = -1;
} else if (sbr->bs_frame_class[ch] == VARFIX) {
if (sbr->bs_pointer[ch] > 1)
sbr->l_A[ch] = -1;
else
sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
} else {
if (sbr->bs_pointer[ch] == 0)
sbr->l_A[ch] = -1;
else
sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
}
estimate_current_envelope(sbr, &adj, Xsbr, ch);
calculate_gain(sbr, &adj, ch);
#ifdef SBR_LOW_POWER
calc_gain_groups(sbr, &adj, deg, ch);
aliasing_reduction(sbr, &adj, deg, ch);
#endif
hf_assembly(sbr, &adj, Xsbr, ch);
}
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
{
if (sbr->f[ch][l] == HI_RES)
{
/* in case of using f_table_high we just have 1 to 1 mapping
* from bs_add_harmonic[l][k]
*/
if ((l >= sbr->l_A[ch]) ||
(sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
{
return sbr->bs_add_harmonic[ch][current_band];
}
} else {
uint8_t b, lb, ub;
/* in case of f_table_low we check if any of the HI_RES bands
* within this LO_RES band has bs_add_harmonic[l][k] turned on
* (note that borders in the LO_RES table are also present in
* the HI_RES table)
*/
/* find first HI_RES band in current LO_RES band */
lb = 2 * (current_band ) - ((sbr->N_high & 1) ? 1 : 0);
/* find first HI_RES band in next LO_RES band */
ub = 2 * (current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
/* check all HI_RES bands in current LO_RES band for sinusoid */
for (b = lb; b < ub; b++)
{
if ((l >= sbr->l_A[ch]) ||
(sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
{
if (sbr->bs_add_harmonic[ch][b] == 1)
return 1;
}
}
}
return 0;
}
static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
{
uint8_t m, l, j, k, k_l, k_h, p;
real_t nrg, div, tmp;
(void)adj;
if (sbr->bs_interpol_freq == 1)
{
for (l = 0; l < sbr->L_E[ch]; l++)
{
uint8_t i, l_i, u_i;
l_i = sbr->t_E[ch][l];
u_i = sbr->t_E[ch][l+1];
div = (real_t)(u_i - l_i);
for (m = 0; m < sbr->M; m++)
{
nrg = 0;
for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
{
tmp = QMF_RE(Xsbr[i][m + sbr->kx]);
nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#ifndef SBR_LOW_POWER
tmp = QMF_IM(Xsbr[i][m + sbr->kx]);
nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#endif
}
sbr->E_curr[ch][m][l] = nrg / div;
#ifdef SBR_LOW_POWER
sbr->E_curr[ch][m][l] *= 2;
#endif
}
}
} else {
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
{
k_l = sbr->f_table_res[sbr->f[ch][l]][p];
k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
for (k = k_l; k < k_h; k++)
{
uint8_t i, l_i, u_i;
nrg = 0;
l_i = sbr->t_E[ch][l];
u_i = sbr->t_E[ch][l+1];
div = (real_t)((u_i - l_i)*(k_h - k_l));
for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
{
for (j = k_l; j < k_h; j++)
{
tmp = QMF_RE(Xsbr[i][j]);
nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#ifndef SBR_LOW_POWER
tmp = QMF_IM(Xsbr[i][j]);
nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#endif
}
}
sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
#ifdef SBR_LOW_POWER
sbr->E_curr[ch][k - sbr->kx][l] *= 2;
#endif
}
}
}
}
}
#ifdef FIXED_POINT
#define EPS (1) /* smallest number available in fixed point */
#else
#define EPS (1e-12)
#endif
#ifdef FIXED_POINT
/* log2 values of [0..63] */
static const real_t log2_int_tab[] = {
LOG2_MIN_INF , REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
};
static const real_t pan_log2_tab[] = {
REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667)
};
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
{
/* check for coupled energy/noise data */
if (sbr->bs_coupling == 1)
{
uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
real_t tmp = (7 << REAL_BITS) + (sbr->E[0][k][l] << (REAL_BITS-amp0));
real_t pan;
/* E[1] should always be even so shifting is OK */
uint8_t E = sbr->E[1][k][l] >> amp1;
if (ch == 0)
{
if (E > 12)
{
/* negative */
pan = pan_log2_tab[-12 + E];
} else {
/* positive */
pan = pan_log2_tab[12 - E] + ((12 - E)<<REAL_BITS);
}
} else {
if (E < 12)
{
/* negative */
pan = pan_log2_tab[-E + 12];
} else {
/* positive */
pan = pan_log2_tab[E - 12] + ((E - 12)<<REAL_BITS);
}
}
/* tmp / pan in log2 */
return tmp - pan;
} else {
uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
return (6 << REAL_BITS) + (sbr->E[ch][k][l] << (REAL_BITS-amp));
}
}
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
{
/* check for coupled energy/noise data */
if (sbr->bs_coupling == 1)
{
real_t tmp = (7 << REAL_BITS) - (sbr->Q[0][k][l] << REAL_BITS);
real_t pan;
uint8_t Q = sbr->Q[1][k][l];
if (ch == 0)
{
if (Q > 12)
{
/* negative */
pan = pan_log2_tab[-12 + Q];
} else {
/* positive */
pan = pan_log2_tab[12 - Q] + ((12 - Q)<<REAL_BITS);
}
} else {
if (Q < 12)
{
/* negative */
pan = pan_log2_tab[-Q + 12];
} else {
/* positive */
pan = pan_log2_tab[Q - 12] + ((Q - 12)<<REAL_BITS);
}
}
/* tmp / pan in log2 */
return tmp - pan;
} else {
return (6 << REAL_BITS) - (sbr->Q[ch][k][l] << REAL_BITS);
}
}
static const real_t log_Qplus1_pan[31][13] = {
{ REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
{ REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
{ REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
{ REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
{ REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
{ REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
{ REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
{ REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
{ REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
{ REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
{ REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
{ REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
{ REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
{ REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
{ REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
{ REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
{ REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
{ REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
{ REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
};
static const real_t log_Qplus1[31] = {
REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
REAL_CONST(0.000000000000000)
};
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
{
/* check for coupled energy/noise data */
if (sbr->bs_coupling == 1)
{
if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
(sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
{
if (ch == 0)
{
return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
} else {
return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
}
} else {
return 0;
}
} else {
if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
{
return log_Qplus1[sbr->Q[ch][k][l]];
} else {
return 0;
}
}
}
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
{
/* log2 values of limiter gains */
static real_t limGain[] = {
REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(33.219)
};
uint8_t m, l, k;
uint8_t current_t_noise_band = 0;
uint8_t S_mapped;
real_t Q_M_lim[MAX_M] MEM_ALIGN_ATTR;
real_t G_lim[MAX_M] MEM_ALIGN_ATTR;
real_t G_boost MEM_ALIGN_ATTR;
real_t S_M[MAX_M] MEM_ALIGN_ATTR;
for (l = 0; l < sbr->L_E[ch]; l++)
{
uint8_t current_f_noise_band = 0;
uint8_t current_res_band = 0;
uint8_t current_res_band2 = 0;
uint8_t current_hi_res_band = 0;
real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
{
current_t_noise_band++;
}
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
{
real_t Q_M = 0;
real_t G_max;
real_t den = 0;
real_t acc1 = 0;
real_t acc2 = 0;
uint8_t current_res_band_size = 0;
uint8_t Q_M_size = 0;
uint8_t ml1, ml2;
/* bounds of current limiter bands */
ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
/* calculate the accumulated E_orig and E_curr over the limiter band */
for (m = ml1; m < ml2; m++)
{
if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
{
current_res_band_size++;
} else {
acc1 += pow2_int(-REAL_CONST(10) + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch));
current_res_band++;
current_res_band_size = 1;
}
acc2 += sbr->E_curr[ch][m][l];
}
acc1 += pow2_int(-REAL_CONST(10) + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch));
if (acc1 == 0)
acc1 = LOG2_MIN_INF;
else
acc1 = log2_int(acc1);
/* calculate the maximum gain */
/* ratio of the energy of the original signal and the energy
* of the HF generated signal
*/
G_max = acc1 - log2_int(acc2) + limGain[sbr->bs_limiter_gains];
G_max = min(G_max, limGain[3]);
for (m = ml1; m < ml2; m++)
{
real_t G;
real_t E_curr, E_orig;
real_t Q_orig, Q_orig_plus1;
uint8_t S_index_mapped;
/* check if m is on a noise band border */
if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
{
/* step to next noise band */
current_f_noise_band++;
}
/* check if m is on a resolution band border */
if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
{
/* accumulate a whole range of equal Q_Ms */
if (Q_M_size > 0)
den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
Q_M_size = 0;
/* step to next resolution band */
current_res_band2++;
/* if we move to a new resolution band, we should check if we are
* going to add a sinusoid in this band
*/
S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
}
/* check if m is on a HI_RES band border */
if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
{
/* step to next HI_RES band */
current_hi_res_band++;
}
/* find S_index_mapped
* S_index_mapped can only be 1 for the m in the middle of the
* current HI_RES band
*/
S_index_mapped = 0;
if ((l >= sbr->l_A[ch]) ||
(sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
{
/* find the middle subband of the HI_RES frequency band */
if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
}
/* find bitstream parameters */
if (sbr->E_curr[ch][m][l] == 0)
E_curr = LOG2_MIN_INF;
else
E_curr = log2_int(sbr->E_curr[ch][m][l]);
E_orig = -REAL_CONST(10) + find_log2_E(sbr, current_res_band2, l, ch);
Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
/* Q_M only depends on E_orig and Q_div2:
* since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
* a change of current res band (HI or LO)
*/
Q_M = E_orig + Q_orig - Q_orig_plus1;
/* S_M only depends on E_orig, Q_div and S_index_mapped:
* S_index_mapped can only be non-zero once per HI_RES band
*/
if (S_index_mapped == 0)
{
S_M[m] = LOG2_MIN_INF; /* -inf */
} else {
S_M[m] = E_orig - Q_orig_plus1;
/* accumulate sinusoid part of the total energy */
den += pow2_int(S_M[m]);
}
/* calculate gain */
/* ratio of the energy of the original signal and the energy
* of the HF generated signal
*/
/* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
/* scaled by -10 */
G = E_orig - max(-REAL_CONST(10), E_curr);
if ((S_mapped == 0) && (delta == 1))
{
/* G = G * 1/(1+Q) */
G -= Q_orig_plus1;
} else if (S_mapped == 1) {
/* G = G * Q/(1+Q) */
G += Q_orig - Q_orig_plus1;
}
/* limit the additional noise energy level */
/* and apply the limiter */
if (G_max > G)
{
Q_M_lim[m] = Q_M;
G_lim[m] = G;
if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
{
Q_M_size++;
}
} else {
/* G > G_max */
Q_M_lim[m] = Q_M + G_max - G;
G_lim[m] = G_max;
/* accumulate limited Q_M */
if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
{
den += pow2_int(Q_M_lim[m]);
}
}
/* accumulate the total energy */
/* E_curr changes for every m so we do need to accumulate every m */
den += pow2_int(E_curr + G_lim[m]);
}
/* accumulate last range of equal Q_Ms */
if (Q_M_size > 0)
{
den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
}
/* calculate the final gain */
/* G_boost: [0..2.51188643] */
G_boost = acc1 - log2_int(den /*+ EPS*/);
G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
for (m = ml1; m < ml2; m++)
{
/* apply compensation to gain, noise floor sf's and sinusoid levels */
#ifndef SBR_LOW_POWER
adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
#else
/* sqrt() will be done after the aliasing reduction to save a
* few multiplies
*/
adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
#endif
adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
if (S_M[m] != LOG2_MIN_INF)
{
adj->S_M_boost[l][m] = pow2_int((S_M[m] + G_boost) >> 1);
} else {
adj->S_M_boost[l][m] = 0;
}
}
}
}
}
#else
//#define LOG2_TEST
#ifdef LOG2_TEST
#define LOG2_MIN_INF -100000
__inline float pow2(float val)
{
return pow(2.0, val);
}
__inline float log2(float val)
{
return log(val)/log(2.0);
}
#define RB 14
float QUANTISE2REAL(float val)
{
__int32 ival = (__int32)(val * (1<<RB));
return (float)ival / (float)((1<<RB));
}
float QUANTISE2INT(float val)
{
return floor(val);
}
/* log2 values of [0..63] */
static const real_t log2_int_tab[] = {
LOG2_MIN_INF, 0.000000000000000, 1.000000000000000, 1.584962500721156,
2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
};
static const real_t pan_log2_tab[] = {
1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
0.000044026886827, 0.000022013611360, 0.000011006847667
};
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
{
/* check for coupled energy/noise data */
if (sbr->bs_coupling == 1)
{
real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
float pan;
int E = (int)(sbr->E[1][k][l] * amp1);
if (ch == 0)
{
if (E > 12)
{
/* negative */
pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
} else {
/* positive */
pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
}
} else {
if (E < 12)
{
/* negative */
pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
} else {
/* positive */
pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
}
}
/* tmp / pan in log2 */
return QUANTISE2REAL(tmp - pan);
} else {
real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
}
}
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
{
/* check for coupled energy/noise data */
if (sbr->bs_coupling == 1)
{
float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
float pan;
int Q = (int)(sbr->Q[1][k][l]);
if (ch == 0)
{
if (Q > 12)
{
/* negative */
pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
} else {
/* positive */
pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
}
} else {
if (Q < 12)
{
/* negative */
pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
} else {
/* positive */
pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
}
}
/* tmp / pan in log2 */
return QUANTISE2REAL(tmp - pan);
} else {
return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
}
}
static const real_t log_Qplus1_pan[31][13] = {
{ REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
{ REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
{ REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
{ REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
{ REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
{ REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
{ REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
{ REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
{ REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
{ REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
{ REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
{ REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
{ REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
{ REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
{ REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
{ REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
{ REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
{ REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
{ REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
{ REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
};
static const real_t log_Qplus1[31] = {
REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
REAL_CONST(0.000000000000000)
};
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
{
/* check for coupled energy/noise data */
if (sbr->bs_coupling == 1)
{
if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
(sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
{
if (ch == 0)
{
return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
} else {
return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
}
} else {
return 0;
}
} else {
if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
{
return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
} else {
return 0;
}
}
}
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
{
/* log2 values of limiter gains */
static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
uint8_t m, l, k;
uint8_t current_t_noise_band = 0;
uint8_t S_mapped;
real_t Q_M_lim[MAX_M] MEM_ALIGN_ATTR;
real_t G_lim[MAX_M] MEM_ALIGN_ATTR;
real_t G_boost MEM_ALIGN_ATTR;
real_t S_M[MAX_M] MEM_ALIGN_ATTR;
for (l = 0; l < sbr->L_E[ch]; l++)
{
uint8_t current_f_noise_band = 0;
uint8_t current_res_band = 0;
uint8_t current_res_band2 = 0;
uint8_t current_hi_res_band = 0;
real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
{
current_t_noise_band++;
}
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
{
real_t Q_M = 0;
real_t G_max;
real_t den = 0;
real_t acc1 = 0;
real_t acc2 = 0;
uint8_t current_res_band_size = 0;
uint8_t Q_M_size = 0;
uint8_t ml1, ml2;
/* bounds of current limiter bands */
ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
/* calculate the accumulated E_orig and E_curr over the limiter band */
for (m = ml1; m < ml2; m++)
{
if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
{
current_res_band_size++;
} else {
acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
current_res_band++;
current_res_band_size = 1;
}
acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
}
acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
acc1 = QUANTISE2REAL( log2(EPS + acc1) );
/* calculate the maximum gain */
/* ratio of the energy of the original signal and the energy
* of the HF generated signal
*/
G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
G_max = min(G_max, QUANTISE2REAL(limGain[3]));
for (m = ml1; m < ml2; m++)
{
real_t G;
real_t E_curr, E_orig;
real_t Q_orig, Q_orig_plus1;
uint8_t S_index_mapped;
/* check if m is on a noise band border */
if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
{
/* step to next noise band */
current_f_noise_band++;
}
/* check if m is on a resolution band border */
if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
{
/* accumulate a whole range of equal Q_Ms */
if (Q_M_size > 0)
den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
Q_M_size = 0;
/* step to next resolution band */
current_res_band2++;
/* if we move to a new resolution band, we should check if we are
* going to add a sinusoid in this band
*/
S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
}
/* check if m is on a HI_RES band border */
if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
{
/* step to next HI_RES band */
current_hi_res_band++;
}
/* find S_index_mapped
* S_index_mapped can only be 1 for the m in the middle of the
* current HI_RES band
*/
S_index_mapped = 0;
if ((l >= sbr->l_A[ch]) ||
(sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
{
/* find the middle subband of the HI_RES frequency band */
if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
}
/* find bitstream parameters */
if (sbr->E_curr[ch][m][l] == 0)
E_curr = LOG2_MIN_INF;
else
E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
/* Q_M only depends on E_orig and Q_div2:
* since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
* a change of current res band (HI or LO)
*/
Q_M = E_orig + Q_orig - Q_orig_plus1;
/* S_M only depends on E_orig, Q_div and S_index_mapped:
* S_index_mapped can only be non-zero once per HI_RES band
*/
if (S_index_mapped == 0)
{
S_M[m] = LOG2_MIN_INF; /* -inf */
} else {
S_M[m] = E_orig - Q_orig_plus1;
/* accumulate sinusoid part of the total energy */
den += pow2(S_M[m]);
}
/* calculate gain */
/* ratio of the energy of the original signal and the energy
* of the HF generated signal
*/
/* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
/* scaled by -10 */
G = E_orig - max(-10, E_curr);
if ((S_mapped == 0) && (delta == 1))
{
/* G = G * 1/(1+Q) */
G -= Q_orig_plus1;
} else if (S_mapped == 1) {
/* G = G * Q/(1+Q) */
G += Q_orig - Q_orig_plus1;
}
/* limit the additional noise energy level */
/* and apply the limiter */
if (G_max > G)
{
Q_M_lim[m] = QUANTISE2REAL(Q_M);
G_lim[m] = QUANTISE2REAL(G);
if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
{
Q_M_size++;
}
} else {
/* G > G_max */
Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
G_lim[m] = G_max;
/* accumulate limited Q_M */
if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
{
den += QUANTISE2INT(pow2(Q_M_lim[m]));
}
}
/* accumulate the total energy */
/* E_curr changes for every m so we do need to accumulate every m */
den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
}
/* accumulate last range of equal Q_Ms */
if (Q_M_size > 0)
{
den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
}
/* calculate the final gain */
/* G_boost: [0..2.51188643] */
G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
for (m = ml1; m < ml2; m++)
{
/* apply compensation to gain, noise floor sf's and sinusoid levels */
#ifndef SBR_LOW_POWER
adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
#else
/* sqrt() will be done after the aliasing reduction to save a
* few multiplies
*/
adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
#endif
adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
if (S_M[m] != LOG2_MIN_INF)
{
adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
} else {
adj->S_M_boost[l][m] = 0;
}
}
}
}
}
#else
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
{
static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
uint8_t m, l, k;
uint8_t current_t_noise_band = 0;
uint8_t S_mapped;
real_t Q_M_lim[MAX_M] MEM_ALIGN_ATTR;
real_t G_lim[MAX_M] MEM_ALIGN_ATTR;
real_t G_boost MEM_ALIGN_ATTR;
real_t S_M[MAX_M] MEM_ALIGN_ATTR;
for (l = 0; l < sbr->L_E[ch]; l++)
{
uint8_t current_f_noise_band = 0;
uint8_t current_res_band = 0;
uint8_t current_res_band2 = 0;
uint8_t current_hi_res_band = 0;
real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
{
current_t_noise_band++;
}
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
{
real_t G_max;
real_t den = 0;
real_t acc1 = 0;
real_t acc2 = 0;
uint8_t ml1, ml2;
ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
/* calculate the accumulated E_orig and E_curr over the limiter band */
for (m = ml1; m < ml2; m++)
{
if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
{
current_res_band++;
}
acc1 += sbr->E_orig[ch][current_res_band][l];
acc2 += sbr->E_curr[ch][m][l];
}
/* calculate the maximum gain */
/* ratio of the energy of the original signal and the energy
* of the HF generated signal
*/
G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
G_max = min(G_max, 1e10);
for (m = ml1; m < ml2; m++)
{
real_t Q_M, G;
real_t Q_div, Q_div2;
uint8_t S_index_mapped;
/* check if m is on a noise band border */
if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
{
/* step to next noise band */
current_f_noise_band++;
}
/* check if m is on a resolution band border */
if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
{
/* step to next resolution band */
current_res_band2++;
/* if we move to a new resolution band, we should check if we are
* going to add a sinusoid in this band
*/
S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
}
/* check if m is on a HI_RES band border */
if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
{
/* step to next HI_RES band */
current_hi_res_band++;
}
/* find S_index_mapped
* S_index_mapped can only be 1 for the m in the middle of the
* current HI_RES band
*/
S_index_mapped = 0;
if ((l >= sbr->l_A[ch]) ||
(sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
{
/* find the middle subband of the HI_RES frequency band */
if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
}
/* Q_div: [0..1] (1/(1+Q_mapped)) */
Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
/* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
/* Q_M only depends on E_orig and Q_div2:
* since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
* a change of current noise band
*/
Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
/* S_M only depends on E_orig, Q_div and S_index_mapped:
* S_index_mapped can only be non-zero once per HI_RES band
*/
if (S_index_mapped == 0)
{
S_M[m] = 0;
} else {
S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
/* accumulate sinusoid part of the total energy */
den += S_M[m];
}
/* calculate gain */
/* ratio of the energy of the original signal and the energy
* of the HF generated signal
*/
G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
if ((S_mapped == 0) && (delta == 1))
G *= Q_div;
else if (S_mapped == 1)
G *= Q_div2;
/* limit the additional noise energy level */
/* and apply the limiter */
if (G_max > G)
{
Q_M_lim[m] = Q_M;
G_lim[m] = G;
} else {
Q_M_lim[m] = Q_M * G_max / G;
G_lim[m] = G_max;
}
/* accumulate the total energy */
den += sbr->E_curr[ch][m][l] * G_lim[m];
if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
den += Q_M_lim[m];
}
/* G_boost: [0..2.51188643] */
G_boost = (acc1 + EPS) / (den + EPS);
G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
for (m = ml1; m < ml2; m++)
{
/* apply compensation to gain, noise floor sf's and sinusoid levels */
#ifndef SBR_LOW_POWER
adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
#else
/* sqrt() will be done after the aliasing reduction to save a
* few multiplies
*/
adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
#endif
adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
if (S_M[m] != 0)
{
adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
} else {
adj->S_M_boost[l][m] = 0;
}
}
}
}
}
#endif // log2_test
#endif
#ifdef SBR_LOW_POWER
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
{
uint8_t l, k, i;
uint8_t grouping;
for (l = 0; l < sbr->L_E[ch]; l++)
{
i = 0;
grouping = 0;
for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
{
if (deg[k + 1] && adj->S_mapped[l][k-sbr->kx] == 0)
{
if (grouping == 0)
{
sbr->f_group[l][i] = k;
grouping = 1;
i++;
}
} else {
if (grouping)
{
if (adj->S_mapped[l][k-sbr->kx])
{
sbr->f_group[l][i] = k;
} else {
sbr->f_group[l][i] = k + 1;
}
grouping = 0;
i++;
}
}
}
if (grouping)
{
sbr->f_group[l][i] = sbr->kx + sbr->M;
i++;
}
sbr->N_G[l] = (uint8_t)(i >> 1);
}
}
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
{
uint8_t l, k, m;
real_t E_total, E_total_est, G_target, acc;
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (k = 0; k < sbr->N_G[l]; k++)
{
E_total_est = E_total = 0;
for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
{
/* E_curr: integer */
/* G_lim_boost: fixed point */
/* E_total_est: integer */
/* E_total: integer */
E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
}
/* G_target: fixed point */
if ((E_total_est + EPS) == 0)
{
G_target = 0;
} else {
G_target = DIV_Q(E_total, (E_total_est + EPS));
}
acc = 0;
for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
{
real_t alpha;
/* alpha: (COEF) fixed point */
if (m < sbr->kx + sbr->M - 1)
{
alpha = max(deg[m], deg[m + 1]);
} else {
alpha = deg[m];
}
adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
/* acc: integer */
acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
}
/* acc: fixed point */
if (acc + EPS == 0)
{
acc = 0;
} else {
acc = DIV_Q(E_total, (acc + EPS));
}
for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
{
adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
}
}
}
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
{
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
#ifdef FIXED_POINT
adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
#else
adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
#endif
}
}
}
}
#endif
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
{
static real_t h_smooth[] = {
FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
FRAC_CONST(0.33333333333333)
};
static int8_t phi_re[] = { 1, 0, -1, 0 };
static int8_t phi_im[] = { 0, 1, 0, -1 };
uint8_t m, l, i, n;
uint16_t fIndexNoise = 0;
uint8_t fIndexSine = 0;
uint8_t assembly_reset = 0;
real_t G_filt, Q_filt;
uint8_t h_SL;
if (sbr->Reset == 1)
{
assembly_reset = 1;
fIndexNoise = 0;
} else {
fIndexNoise = sbr->index_noise_prev[ch];
}
fIndexSine = sbr->psi_is_prev[ch];
for (l = 0; l < sbr->L_E[ch]; l++)
{
uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
#ifdef SBR_LOW_POWER
h_SL = 0;
#else
h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
h_SL = (no_noise ? 0 : h_SL);
#endif
if (assembly_reset)
{
for (n = 0; n < 4; n++)
{
memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
}
/* reset ringbuffer index */
sbr->GQ_ringbuf_index[ch] = 4;
assembly_reset = 0;
}
for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
{
#ifdef SBR_LOW_POWER
uint8_t i_min1, i_plus1;
uint8_t sinusoids = 0;
#endif
/* load new values into ringbuffer */
memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
for (m = 0; m < sbr->M; m++)
{
qmf_t psi;
G_filt = 0;
Q_filt = 0;
#ifndef SBR_LOW_POWER
if (h_SL != 0)
{
uint8_t ri = sbr->GQ_ringbuf_index[ch];
for (n = 0; n <= 4; n++)
{
real_t curr_h_smooth = h_smooth[n];
ri++;
if (ri >= 5)
ri -= 5;
G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
}
} else {
#endif
G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
#ifndef SBR_LOW_POWER
}
#endif
Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt;
/* add noise to the output */
fIndexNoise = (fIndexNoise + 1) & 511;
/* the smoothed gain values are applied to Xsbr */
/* V is defined, not calculated */
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
+ MUL_F(Q_filt, RE(V[fIndexNoise]));
if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
#ifndef SBR_LOW_POWER
QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
+ MUL_F(Q_filt, IM(V[fIndexNoise]));
#endif
{
int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += REAL_UPSCALE(QMF_RE(psi));
#ifndef SBR_LOW_POWER
QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += REAL_UPSCALE(QMF_IM(psi));
#else
i_min1 = (fIndexSine - 1) & 3;
i_plus1 = (fIndexSine + 1) & 3;
real_t tmp1 = 0;
real_t tmp2 = 0;
real_t tmp3 = 0;
if ((m == 0) && (phi_re[i_plus1] != 0))
{
tmp1 += (phi_re[i_plus1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][0]), FRAC_CONST(0.00815)));
if (sbr->M != 0)
{
tmp2 -= (phi_re[i_plus1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][1]), FRAC_CONST(0.00815)));
}
}
if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
{
tmp2 -= (phi_re[i_min1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m - 1]), FRAC_CONST(0.00815)));
}
if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
{
tmp2 -= (phi_re[i_plus1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m + 1]), FRAC_CONST(0.00815)));
}
if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
{
if (m > 0)
{
tmp2 -= (phi_re[i_min1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m - 1]), FRAC_CONST(0.00815)));
}
if (m + sbr->kx < 64)
{
tmp3 += (phi_re[i_min1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m]), FRAC_CONST(0.00815)));
}
}
if (rev<0)
{
tmp1 = -tmp1;
tmp2 = -tmp2;
tmp3 = -tmp3;
}
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) += tmp1;
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx ]) += tmp2;
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) += tmp3;
if (adj->S_M_boost[l][m] != 0)
sinusoids++;
#endif
}
}
fIndexSine = (fIndexSine + 1) & 3;
/* update the ringbuffer index used for filtering G and Q with h_smooth */
sbr->GQ_ringbuf_index[ch]++;
if (sbr->GQ_ringbuf_index[ch] >= 5)
sbr->GQ_ringbuf_index[ch] = 0;
}
}
sbr->index_noise_prev[ch] = fIndexNoise;
sbr->psi_is_prev[ch] = fIndexSine;
}
#endif