b957f7214b
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21939 a1c6a512-1295-4272-9138-f99709370657
343 lines
10 KiB
C
343 lines
10 KiB
C
/*
|
|
* COOK compatible decoder, fixed point implementation.
|
|
* Copyright (c) 2007 Ian Braithwaite
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* @file cook_float.h
|
|
*
|
|
* Cook AKA RealAudio G2 fixed point functions.
|
|
*
|
|
* Fixed point values are represented as 32 bit signed integers,
|
|
* which can be added and subtracted directly in C (without checks for
|
|
* overflow/saturation.
|
|
* Two multiplication routines are provided:
|
|
* 1) Multiplication by powers of two (2^-31 .. 2^31), implemented
|
|
* with C's bit shift operations.
|
|
* 2) Multiplication by 16 bit fractions (0 <= x < 1), implemented
|
|
* in C using two 32 bit integer multiplications.
|
|
*/
|
|
|
|
/* The following table is taken from libavutil/mathematics.c */
|
|
const uint8_t ff_log2_tab[256]={
|
|
0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
|
|
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
|
|
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
|
|
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
|
|
};
|
|
|
|
/* cplscales was moved from cookdata_fixpoint.h since only *
|
|
* cook_fixpoint.h should see/use it. */
|
|
static const FIXPU* cplscales[5] = {
|
|
cplscale2, cplscale3, cplscale4, cplscale5, cplscale6
|
|
};
|
|
|
|
/**
|
|
* Fixed point multiply by power of two.
|
|
*
|
|
* @param x fix point value
|
|
* @param i integer power-of-two, -31..+31
|
|
*/
|
|
static inline FIXP fixp_pow2(FIXP x, int i)
|
|
{
|
|
if (i < 0)
|
|
return (x >> -i) + ((x >> (-i-1)) & 1);
|
|
else
|
|
return x << i; /* no check for overflow */
|
|
}
|
|
|
|
/**
|
|
* Fixed point multiply by fraction.
|
|
*
|
|
* @param a fix point value
|
|
* @param b fix point fraction, 0 <= b < 1
|
|
*/
|
|
|
|
static inline FIXP fixp_mult_su(FIXP a, FIXPU b)
|
|
{
|
|
|
|
int32_t hb = (a >> 16) * b;
|
|
uint32_t lb = (a & 0xffff) * b;
|
|
|
|
return hb + (lb >> 16) + ((lb & 0x8000) >> 15);
|
|
}
|
|
|
|
/* Faster version of the above using 32x32=64 bit multiply */
|
|
#ifdef CPU_ARM
|
|
#define fixmul31(x, y) \
|
|
({ int32_t __hi; \
|
|
uint32_t __lo; \
|
|
int32_t __result; \
|
|
asm ("smull %0, %1, %3, %4\n\t" \
|
|
"movs %2, %1, lsl #1" \
|
|
: "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
|
|
: "%r" (x), "r" (y) \
|
|
: "cc"); \
|
|
__result; \
|
|
})
|
|
|
|
#elif defined(CPU_COLDFIRE)
|
|
static inline int32_t fixmul31(int32_t x, int32_t y)
|
|
{
|
|
asm (
|
|
"mac.l %[x], %[y], %%acc0 \n" /* multiply */
|
|
"movclr.l %%acc0, %[x] \n" /* get higher half */
|
|
: [x] "+d" (x)
|
|
: [y] "d" (y)
|
|
);
|
|
return x;
|
|
}
|
|
#else
|
|
static inline int32_t fixmul31(int32_t x, int32_t y)
|
|
{
|
|
int64_t temp;
|
|
|
|
temp = x;
|
|
temp *= y;
|
|
|
|
temp >>= 31; //16+31-16 = 31 bits
|
|
|
|
return (int32_t)temp;
|
|
}
|
|
#endif
|
|
|
|
/* math functions taken from libavutil/common.h */
|
|
|
|
static inline int av_log2(unsigned int v)
|
|
{
|
|
int n = 0;
|
|
if (v & 0xffff0000) {
|
|
v >>= 16;
|
|
n += 16;
|
|
}
|
|
if (v & 0xff00) {
|
|
v >>= 8;
|
|
n += 8;
|
|
}
|
|
n += ff_log2_tab[v];
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Clips a signed integer value into the amin-amax range.
|
|
* @param a value to clip
|
|
* @param amin minimum value of the clip range
|
|
* @param amax maximum value of the clip range
|
|
* @return clipped value
|
|
*/
|
|
static inline int av_clip(int a, int amin, int amax)
|
|
{
|
|
if (a < amin) return amin;
|
|
else if (a > amax) return amax;
|
|
else return a;
|
|
}
|
|
|
|
/**
|
|
* The real requantization of the mltcoefs
|
|
*
|
|
* @param q pointer to the COOKContext
|
|
* @param index index
|
|
* @param quant_index quantisation index for this band
|
|
* @param subband_coef_index array of indexes to quant_centroid_tab
|
|
* @param subband_coef_sign use random noise instead of predetermined value
|
|
* @param mlt_ptr pointer to the mlt coefficients
|
|
*/
|
|
static void scalar_dequant_math(COOKContext *q, int index,
|
|
int quant_index, int* subband_coef_index,
|
|
int* subband_coef_sign, REAL_T *mlt_p)
|
|
{
|
|
/* Num. half bits to right shift */
|
|
const int s = 33 - quant_index + av_log2(q->samples_per_channel);
|
|
const FIXP *table = quant_tables[s & 1][index];
|
|
FIXP f;
|
|
int i;
|
|
|
|
for(i=0 ; i<SUBBAND_SIZE ; i++) {
|
|
f = table[subband_coef_index[i]];
|
|
/* noise coding if subband_coef_index[i] == 0 */
|
|
if (((subband_coef_index[i] == 0) && cook_random(q)) ||
|
|
((subband_coef_index[i] != 0) && subband_coef_sign[i]))
|
|
f = -f;
|
|
|
|
mlt_p[i] = (s >= 64) ? 0 : fixp_pow2(f, -(s/2));
|
|
}
|
|
}
|
|
|
|
#ifdef TEST
|
|
/**
|
|
* The modulated lapped transform, this takes transform coefficients
|
|
* and transforms them into timedomain samples.
|
|
* A window step is also included.
|
|
*
|
|
* @param q pointer to the COOKContext
|
|
* @param inbuffer pointer to the mltcoefficients
|
|
* @param outbuffer pointer to the timedomain buffer
|
|
* @param mlt_tmp pointer to temporary storage space
|
|
*/
|
|
#include "cook_fixp_mdct.h"
|
|
|
|
static inline void imlt_math(COOKContext *q, FIXP *in)
|
|
{
|
|
const int n = q->samples_per_channel;
|
|
const int step = 4 << (10 - av_log2(n));
|
|
int i = 0, j = step>>1;
|
|
|
|
cook_mdct_backward(2 * n, in, q->mono_mdct_output);
|
|
|
|
do {
|
|
FIXP tmp = q->mono_mdct_output[i];
|
|
|
|
q->mono_mdct_output[i] =
|
|
fixp_mult_su(-q->mono_mdct_output[n + i], sincos_lookup[j]);
|
|
q->mono_mdct_output[n + i] = fixp_mult_su(tmp, sincos_lookup[j+1]);
|
|
j += step;
|
|
} while (++i < n/2);
|
|
do {
|
|
FIXP tmp = q->mono_mdct_output[i];
|
|
|
|
j -= step;
|
|
q->mono_mdct_output[i] =
|
|
fixp_mult_su(-q->mono_mdct_output[n + i], sincos_lookup[j+1]);
|
|
q->mono_mdct_output[n + i] = fixp_mult_su(tmp, sincos_lookup[j]);
|
|
} while (++i < n);
|
|
}
|
|
#else
|
|
#include <codecs/lib/codeclib.h>
|
|
#include <codecs/lib/mdct_lookup.h>
|
|
|
|
static inline void imlt_math(COOKContext *q, FIXP *in)
|
|
{
|
|
const int n = q->samples_per_channel;
|
|
const int step = 2 << (10 - av_log2(n));
|
|
int i = 0, j = 0;
|
|
|
|
mdct_backward(2 * n, in, q->mono_mdct_output);
|
|
|
|
do {
|
|
FIXP tmp = q->mono_mdct_output[i];
|
|
|
|
q->mono_mdct_output[i] =
|
|
fixmul31(-q->mono_mdct_output[n + i], (sincos_lookup0[j]));
|
|
|
|
q->mono_mdct_output[n + i] = fixmul31(tmp, (sincos_lookup0[j+1]) );
|
|
|
|
j += step;
|
|
|
|
} while (++i < n/2);
|
|
|
|
do {
|
|
FIXP tmp = q->mono_mdct_output[i];
|
|
|
|
j -= step;
|
|
q->mono_mdct_output[i] =
|
|
fixmul31(-q->mono_mdct_output[n + i], (sincos_lookup0[j+1]) );
|
|
q->mono_mdct_output[n + i] = fixmul31(tmp, (sincos_lookup0[j]) );
|
|
} while (++i < n);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Perform buffer overlapping.
|
|
*
|
|
* @param q pointer to the COOKContext
|
|
* @param gain gain correction to apply first to output buffer
|
|
* @param buffer data to overlap
|
|
*/
|
|
static inline void overlap_math(COOKContext *q, int gain, FIXP buffer[])
|
|
{
|
|
int i;
|
|
for(i=0 ; i<q->samples_per_channel ; i++) {
|
|
q->mono_mdct_output[i] =
|
|
fixp_pow2(q->mono_mdct_output[i], gain) + buffer[i];
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* the actual requantization of the timedomain samples
|
|
*
|
|
* @param q pointer to the COOKContext
|
|
* @param buffer pointer to the timedomain buffer
|
|
* @param gain_index index for the block multiplier
|
|
* @param gain_index_next index for the next block multiplier
|
|
*/
|
|
static inline void
|
|
interpolate_math(COOKContext *q, FIXP* buffer,
|
|
int gain_index, int gain_index_next)
|
|
{
|
|
int i;
|
|
int gain_size_factor = q->samples_per_channel / 8;
|
|
|
|
if(gain_index == gain_index_next){ //static gain
|
|
for(i = 0; i < gain_size_factor; i++) {
|
|
buffer[i] = fixp_pow2(buffer[i], gain_index);
|
|
}
|
|
} else { //smooth gain
|
|
int step = (gain_index_next - gain_index)
|
|
<< (7 - av_log2(gain_size_factor));
|
|
int x = 0;
|
|
|
|
for(i = 0; i < gain_size_factor; i++) {
|
|
buffer[i] = fixp_mult_su(buffer[i], pow128_tab[x]);
|
|
buffer[i] = fixp_pow2(buffer[i], gain_index+1);
|
|
|
|
x += step;
|
|
gain_index += (x + 128) / 128 - 1;
|
|
x = (x + 128) % 128;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Decoupling calculation for joint stereo coefficients.
|
|
*
|
|
* @param x mono coefficient
|
|
* @param table number of decoupling table
|
|
* @param i table index
|
|
*/
|
|
static inline FIXP cplscale_math(FIXP x, int table, int i)
|
|
{
|
|
return fixp_mult_su(x, cplscales[table-2][i]);
|
|
}
|
|
|
|
|
|
/**
|
|
* Final converion from floating point values to
|
|
* signed, 16 bit sound samples. Round and clip.
|
|
*
|
|
* @param q pointer to the COOKContext
|
|
* @param out pointer to the output buffer
|
|
* @param chan 0: left or single channel, 1: right channel
|
|
*/
|
|
static inline void output_math(COOKContext *q, int16_t *out, int chan)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < q->samples_per_channel; j++) {
|
|
out[chan + q->nb_channels * j] =
|
|
av_clip(fixp_pow2(q->mono_mdct_output[j], -11), -32768, 32767);
|
|
}
|
|
}
|