rockbox/apps/codecs/libgme/nsf_emu.c

1105 lines
27 KiB
C

// Game_Music_Emu 0.5.5. http://www.slack.net/~ant/
#include "nsf_emu.h"
#include "multi_buffer.h"
#include "blargg_endian.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
const char gme_wrong_file_type [] ICONST_ATTR = "Wrong file type for this emulator";
long const clock_divisor = 12;
int const stereo = 2; // number of channels for stereo
int const silence_max = 6; // seconds
int const silence_threshold = 0x10;
long const fade_block_size = 512;
int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift)
// number of frames until play interrupts init
int const initial_play_delay = 7; // KikiKaikai needed this to work
int const rom_addr = 0x8000;
void clear_track_vars( struct Nsf_Emu* this )
{
this->current_track = -1;
this->out_time = 0;
this->emu_time = 0;
this->emu_track_ended_ = true;
this->track_ended = true;
this->fade_start = INT_MAX / 2 + 1;
this->fade_step = 1;
this->silence_time = 0;
this->silence_count = 0;
this->buf_remain = 0;
}
static int pcm_read( void* emu, addr_t addr )
{
return *Cpu_get_code( &((struct Nsf_Emu*) emu)->cpu, addr );
}
void Nsf_init( struct Nsf_Emu* this )
{
this->sample_rate = 0;
this->mute_mask_ = 0;
this->tempo = 1.0;
this->gain = 1.0;
// defaults
this->max_initial_silence = 2;
this->ignore_silence = false;
this->voice_count = 0;
// Set sound gain
Sound_set_gain( this, 1.2 );
// Unload
clear_track_vars( this );
// Init rom
Rom_init( &this->rom, 0x1000 );
// Init & clear nsfe info
Info_init( &this->info );
Info_unload( &this->info ); // TODO: extremely hacky!
Cpu_init( &this->cpu );
Apu_init( &this->apu );
Apu_dmc_reader( &this->apu, pcm_read, this );
}
// Setup
blargg_err_t init_sound( struct Nsf_Emu* this )
{
/* if ( header_.chip_flags & ~(fds_flag | namco_flag | vrc6_flag | fme7_flag) )
warning( "Uses unsupported audio expansion hardware" ); **/
this->voice_count = apu_osc_count;
double adjusted_gain = 1.0 / 0.75 * this->gain;
#ifdef NSF_EMU_APU_ONLY
{
if ( this->header_.chip_flags )
set_warning( "Uses unsupported audio expansion hardware" );
}
#else
{
if ( vrc6_enabled( this ) )
{
Vrc6_init( &this->vrc6 );
adjusted_gain *= 0.75;
this->voice_count += vrc6_osc_count;
}
if ( fme7_enabled( this ) )
{
Fme7_init( &this->fme7 );
adjusted_gain *= 0.75;
this->voice_count += fme7_osc_count;
}
if ( mmc5_enabled( this ) )
{
Mmc5_init( &this->mmc5 );
adjusted_gain *= 0.75;
this->voice_count += mmc5_osc_count;
}
if ( fds_enabled( this ) )
{
Fds_init( &this->fds );
adjusted_gain *= 0.75;
this->voice_count += fds_osc_count ;
}
if ( namco_enabled( this ) )
{
Namco_init( &this->namco );
adjusted_gain *= 0.75;
this->voice_count += namco_osc_count;
}
if ( vrc7_enabled( this ) )
{
#ifndef NSF_EMU_NO_VRC7
Vrc7_init( &this->vrc7 );
Vrc7_set_rate( &this->vrc7, this->sample_rate );
#endif
adjusted_gain *= 0.75;
this->voice_count += vrc7_osc_count;
}
if ( vrc7_enabled( this ) ) Vrc7_volume( &this->vrc7, adjusted_gain );
if ( namco_enabled( this ) ) Namco_volume( &this->namco, adjusted_gain );
if ( vrc6_enabled( this ) ) Vrc6_volume( &this->vrc6, adjusted_gain );
if ( fme7_enabled( this ) ) Fme7_volume( &this->fme7, adjusted_gain );
if ( mmc5_enabled( this ) ) Apu_volume( &this->mmc5.apu, adjusted_gain );
if ( fds_enabled( this ) ) Fds_volume( &this->fds, adjusted_gain );
}
#endif
if ( adjusted_gain > this->gain )
adjusted_gain = this->gain;
Apu_volume( &this->apu, adjusted_gain );
return 0;
}
// Header stuff
bool valid_tag( struct header_t* this )
{
return 0 == memcmp( this->tag, "NESM\x1A", 5 );
}
// True if file supports only PAL speed
static bool pal_only( struct header_t* this )
{
return (this->speed_flags & 3) == 1;
}
static double clock_rate( struct header_t* this )
{
return pal_only( this ) ? 1662607.125 : 1789772.727272727;
}
int play_period( struct header_t* this )
{
// NTSC
int clocks = 29780;
int value = 0x411A;
byte const* rate_ptr = this->ntsc_speed;
// PAL
if ( pal_only( this ) )
{
clocks = 33247;
value = 0x4E20;
rate_ptr = this->pal_speed;
}
// Default rate
int rate = get_le16( rate_ptr );
if ( rate == 0 )
rate = value;
// Custom rate
if ( rate != value )
clocks = (int) (rate * clock_rate( this ) * (1.0/1000000.0));
return clocks;
}
// Gets address, given pointer to it in file header. If zero, returns rom_addr.
addr_t get_addr( byte const in [] )
{
addr_t addr = get_le16( in );
if ( addr == 0 )
addr = rom_addr;
return addr;
}
static blargg_err_t check_nsf_header( struct header_t* h )
{
if ( !valid_tag( h ) )
return gme_wrong_file_type;
return 0;
}
blargg_err_t Nsf_load( struct Nsf_Emu* this, void* data, long size )
{
// Unload
Info_unload( &this->info ); // TODO: extremely hacky!
this->m3u.size = 0;
this->voice_count = 0;
clear_track_vars( this );
assert( offsetof (struct header_t,unused [4]) == header_size );
if ( !memcmp( data, "NESM\x1A", 5 ) ) {
Nsf_disable_playlist( this, true );
RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, 0 ) );
return Nsf_post_load( this );
}
blargg_err_t err = Info_load( &this->info, data, size, this );
Nsf_disable_playlist( this, false );
return err;
}
blargg_err_t Nsf_post_load( struct Nsf_Emu* this )
{
RETURN_ERR( check_nsf_header( &this->header ) );
/* if ( header_.vers != 1 )
warning( "Unknown file version" ); */
// set up data
addr_t load_addr = get_le16( this->header.load_addr );
/* if ( load_addr < (fds_enabled() ? sram_addr : rom_addr) )
warning( "Load address is too low" ); */
Rom_set_addr( &this->rom, load_addr % this->rom.bank_size );
/* if ( header_.vers != 1 )
warning( "Unknown file version" ); */
set_play_period( this, play_period( &this->header ) );
// sound and memory
blargg_err_t err = init_sound( this );
if ( err )
return err;
// Post load
Sound_set_tempo( this, this->tempo );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
// Set track_count
this->track_count = this->header.track_count;
// Change clock rate & setup buffer
this->clock_rate__ = (long) (clock_rate( &this->header ) + 0.5);
Buffer_clock_rate( &this->stereo_buf, this->clock_rate__ );
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
return 0;
}
void Nsf_disable_playlist( struct Nsf_Emu* this, bool b )
{
Info_disable_playlist( &this->info, b );
this->track_count = this->info.track_count;
}
void Nsf_clear_playlist( struct Nsf_Emu* this )
{
Nsf_disable_playlist( this, true );
}
void write_bank( struct Nsf_Emu* this, int bank, int data )
{
// Find bank in ROM
int offset = mask_addr( data * this->rom.bank_size, this->rom.mask );
/* if ( offset >= rom.size() )
warning( "invalid bank" ); */
void const* rom_data = Rom_at_addr( &this->rom, offset );
#ifndef NSF_EMU_APU_ONLY
if ( bank < bank_count - fds_banks && fds_enabled( this ) )
{
// TODO: FDS bank switching is kind of hacky, might need to
// treat ROM as RAM so changes won't get lost when switching.
byte* out = sram( this );
if ( bank >= fds_banks )
{
out = fdsram( this );
bank -= fds_banks;
}
memcpy( &out [bank * this->rom.bank_size], rom_data, this->rom.bank_size );
return;
}
#endif
if ( bank >= fds_banks )
Cpu_map_code( &this->cpu, (bank + 6) * this->rom.bank_size, this->rom.bank_size, rom_data, false );
}
void map_memory( struct Nsf_Emu* this )
{
// Map standard things
Cpu_reset( &this->cpu, unmapped_code( this ) );
Cpu_map_code( &this->cpu, 0, 0x2000, this->low_ram, low_ram_size ); // mirrored four times
Cpu_map_code( &this->cpu, sram_addr, sram_size, sram( this ), 0 );
// Determine initial banks
byte banks [bank_count];
static byte const zero_banks [sizeof this->header.banks] = { 0 };
if ( memcmp( this->header.banks, zero_banks, sizeof zero_banks ) )
{
banks [0] = this->header.banks [6];
banks [1] = this->header.banks [7];
memcpy( banks + fds_banks, this->header.banks, sizeof this->header.banks );
}
else
{
// No initial banks, so assign them based on load_addr
int i, first_bank = (get_addr( this->header.load_addr ) - sram_addr) / this->rom.bank_size;
unsigned total_banks = this->rom.size / this->rom.bank_size;
for ( i = bank_count; --i >= 0; )
{
int bank = i - first_bank;
if ( (unsigned) bank >= total_banks )
bank = 0;
banks [i] = bank;
}
}
// Map banks
int i;
for ( i = (fds_enabled( this ) ? 0 : fds_banks); i < bank_count; ++i )
write_bank( this, i, banks [i] );
// Map FDS RAM
if ( fds_enabled( this ) )
Cpu_map_code( &this->cpu, rom_addr, fdsram_size, fdsram( this ), 0 );
}
void set_voice( struct Nsf_Emu* this, int i, struct Blip_Buffer* buf, struct Blip_Buffer* left, struct Blip_Buffer* right)
{
#if defined(ROCKBOX)
(void) left;
(void) right;
#endif
if ( i < apu_osc_count )
{
Apu_osc_output( &this->apu, i, buf );
return;
}
i -= apu_osc_count;
#ifndef NSF_EMU_APU_ONLY
{
if ( vrc6_enabled( this ) && (i -= vrc6_osc_count) < 0 )
{
Vrc6_osc_output( &this->vrc6, i + vrc6_osc_count, buf );
return;
}
if ( fme7_enabled( this ) && (i -= fme7_osc_count) < 0 )
{
Fme7_osc_output( &this->fme7, i + fme7_osc_count, buf );
return;
}
if ( mmc5_enabled( this ) && (i -= mmc5_osc_count) < 0 )
{
Mmc5_set_output( &this->mmc5, i + mmc5_osc_count, buf );
return;
}
if ( fds_enabled( this ) && (i -= fds_osc_count) < 0 )
{
Fds_set_output( &this->fds, i + fds_osc_count, buf );
return;
}
if ( namco_enabled( this ) && (i -= namco_osc_count) < 0 )
{
Namco_osc_output( &this->namco, i + namco_osc_count, buf );
return;
}
if ( vrc7_enabled( this ) && (i -= vrc7_osc_count) < 0 )
{
Vrc7_set_output( &this->vrc7, i + vrc7_osc_count, buf );
return;
}
}
#endif
}
// Emulation
// Music Emu
blargg_err_t Nsf_set_sample_rate( struct Nsf_Emu* this, long rate )
{
require( !this->sample_rate ); // sample rate can't be changed once set
Buffer_init( &this->stereo_buf );
RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) );
// Set bass frequency
Buffer_bass_freq( &this->stereo_buf, 80 );
this->sample_rate = rate;
return 0;
}
void Sound_mute_voice( struct Nsf_Emu* this, int index, bool mute )
{
require( (unsigned) index < (unsigned) this->voice_count );
int bit = 1 << index;
int mask = this->mute_mask_ | bit;
if ( !mute )
mask ^= bit;
Sound_mute_voices( this, mask );
}
void Sound_mute_voices( struct Nsf_Emu* this, int mask )
{
require( this->sample_rate ); // sample rate must be set first
this->mute_mask_ = mask;
int i;
for ( i = this->voice_count; i--; )
{
if ( mask & (1 << i) )
{
set_voice( this, i, 0, 0, 0 );
}
else
{
struct channel_t ch = Buffer_channel( &this->stereo_buf );
assert( (ch.center && ch.left && ch.right) ||
(!ch.center && !ch.left && !ch.right) ); // all or nothing
set_voice( this, i, ch.center, ch.left, ch.right );
}
}
}
void Sound_set_tempo( struct Nsf_Emu* this, double t )
{
require( this->sample_rate ); // sample rate must be set first
double const min = 0.02;
double const max = 4.00;
if ( t < min ) t = min;
if ( t > max ) t = max;
this->tempo = t;
set_play_period( this, (int) (play_period( &this->header ) / t) );
Apu_set_tempo( &this->apu, t );
#ifndef NSF_EMU_APU_ONLY
if ( fds_enabled( this ) )
Fds_set_tempo( &this->fds, t );
#endif
}
inline void push_byte( struct Nsf_Emu* this, int b )
{
this->low_ram [0x100 + this->cpu.r.sp--] = b;
}
// Jumps to routine, given pointer to address in file header. Pushes idle_addr
// as return address, NOT old PC.
void jsr_then_stop( struct Nsf_Emu* this, byte const addr [] )
{
this->cpu.r.pc = get_addr( addr );
push_byte( this, (idle_addr - 1) >> 8 );
push_byte( this, (idle_addr - 1) );
}
int cpu_read( struct Nsf_Emu* this, addr_t addr )
{
#ifndef NSF_EMU_APU_ONLY
{
if ( namco_enabled( this ) && addr == namco_data_reg_addr )
return Namco_read_data( &this->namco );
if ( fds_enabled( this ) && (unsigned) (addr - fds_io_addr) < fds_io_size )
return Fds_read( &this->fds, Cpu_time( &this->cpu ), addr );
if ( mmc5_enabled( this ) ) {
int i = addr - 0x5C00;
if ( (unsigned) i < mmc5_exram_size )
return this->mmc5.exram [i];
int m = addr - 0x5205;
if ( (unsigned) m < 2 )
return (this->mmc5_mul [0] * this->mmc5_mul [1]) >> (m * 8) & 0xFF;
}
}
#endif
/* Unmapped read */
return addr >> 8;
}
int unmapped_read( struct Nsf_Emu* this, addr_t addr )
{
(void) this;
switch ( addr )
{
case 0x2002:
case 0x4016:
case 0x4017:
return addr >> 8;
}
// Unmapped read
return addr >> 8;
}
void cpu_write( struct Nsf_Emu* this, addr_t addr, int data )
{
#ifndef NSF_EMU_APU_ONLY
{
nes_time_t time = Cpu_time( &this->cpu );
if ( fds_enabled( this) && (unsigned) (addr - fds_io_addr) < fds_io_size )
{
Fds_write( &this->fds, time, addr, data );
return;
}
if ( namco_enabled( this) )
{
if ( addr == namco_addr_reg_addr )
{
Namco_write_addr( &this->namco, data );
return;
}
if ( addr == namco_data_reg_addr )
{
Namco_write_data( &this->namco, time, data );
return;
}
}
if ( vrc6_enabled( this) )
{
int reg = addr & (vrc6_addr_step - 1);
int osc = (unsigned) (addr - vrc6_base_addr) / vrc6_addr_step;
if ( (unsigned) osc < vrc6_osc_count && (unsigned) reg < vrc6_reg_count )
{
Vrc6_write_osc( &this->vrc6, time, osc, reg, data );
return;
}
}
if ( fme7_enabled( this) && addr >= fme7_latch_addr )
{
switch ( addr & fme7_addr_mask )
{
case fme7_latch_addr:
Fme7_write_latch( &this->fme7, data );
return;
case fme7_data_addr:
Fme7_write_data( &this->fme7, time, data );
return;
}
}
if ( mmc5_enabled( this) )
{
if ( (unsigned) (addr - mmc5_regs_addr) < mmc5_regs_size )
{
Mmc5_write_register( &this->mmc5, time, addr, data );
return;
}
int m = addr - 0x5205;
if ( (unsigned) m < 2 )
{
this->mmc5_mul [m] = data;
return;
}
int i = addr - 0x5C00;
if ( (unsigned) i < mmc5_exram_size )
{
this->mmc5.exram [i] = data;
return;
}
}
if ( vrc7_enabled( this) )
{
if ( addr == 0x9010 )
{
Vrc7_write_reg( &this->vrc7, data );
return;
}
if ( (unsigned) (addr - 0x9028) <= 0x08 )
{
Vrc7_write_data( &this->vrc7, time, data );
return;
}
}
}
#endif
// Unmapped_write
}
void unmapped_write( struct Nsf_Emu* this, addr_t addr, int data )
{
(void) data;
switch ( addr )
{
case 0x8000: // some write to $8000 and $8001 repeatedly
case 0x8001:
case 0x4800: // probably namco sound mistakenly turned on in MCK
case 0xF800:
case 0xFFF8: // memory mapper?
return;
}
if ( mmc5_enabled( this ) && addr == 0x5115 ) return;
// FDS memory
if ( fds_enabled( this ) && (unsigned) (addr - 0x8000) < 0x6000 ) return;
}
void fill_buf( struct Nsf_Emu* this );
blargg_err_t Nsf_start_track( struct Nsf_Emu* this, int track )
{
clear_track_vars( this );
// Remap track if playlist available
if ( this->m3u.size > 0 ) {
struct entry_t* e = &this->m3u.entries[track];
track = e->track;
}
else track = Info_remap_track( &this->info, track );
this->current_track = track;
Buffer_clear( &this->stereo_buf );
#ifndef NSF_EMU_APU_ONLY
if ( mmc5_enabled( this ) )
{
this->mmc5_mul [0] = 0;
this->mmc5_mul [1] = 0;
memset( this->mmc5.exram, 0, mmc5_exram_size );
}
if ( fds_enabled( this ) ) Fds_reset( &this->fds );
if ( namco_enabled( this ) ) Namco_reset( &this->namco );
if ( vrc6_enabled( this ) ) Vrc6_reset( &this->vrc6 );
if ( fme7_enabled( this ) ) Fme7_reset( &this->fme7 );
if ( mmc5_enabled( this ) ) Apu_reset( &this->mmc5.apu, false, 0 );
if ( vrc7_enabled( this ) ) Vrc7_reset( &this->vrc7 );
#endif
int speed_flags = 0;
#ifdef NSF_EMU_EXTRA_FLAGS
speed_flags = this->header.speed_flags;
#endif
Apu_reset( &this->apu, pal_only( &this->header ), (speed_flags & 0x20) ? 0x3F : 0 );
Apu_write_register( &this->apu, 0, 0x4015, 0x0F );
Apu_write_register( &this->apu, 0, 0x4017, (speed_flags & 0x10) ? 0x80 : 0 );
memset( unmapped_code( this ), halt_opcode, unmapped_size );
memset( this->low_ram, 0, low_ram_size );
memset( sram( this ), 0, sram_size );
map_memory( this );
// Arrange time of first call to play routine
this->play_extra = 0;
this->next_play = this->play_period;
this->play_delay = initial_play_delay;
this->saved_state.pc = idle_addr;
// Setup for call to init routine
this->cpu.r.a = track;
this->cpu.r.x = pal_only( &this->header );
this->cpu.r.sp = 0xFF;
jsr_then_stop( this, this->header.init_addr );
/* if ( this->cpu.r.pc < get_addr( header.load_addr ) )
warning( "Init address < load address" ); */
this->emu_track_ended_ = false;
this->track_ended = false;
if ( !this->ignore_silence )
{
// play until non-silence or end of track
long end;
for ( end = this->max_initial_silence * stereo * this->sample_rate; this->emu_time < end; )
{
fill_buf( this );
if ( this->buf_remain | (int) this->emu_track_ended_ )
break;
}
this->emu_time = this->buf_remain;
this->out_time = 0;
this->silence_time = 0;
this->silence_count = 0;
}
/* return track_ended() ? warning() : 0; */
return 0;
}
void run_once( struct Nsf_Emu* this, nes_time_t end )
{
// Emulate until next play call if possible
if ( run_cpu_until( this, min( this->next_play, end ) ) )
{
// Halt instruction encountered
if ( this->cpu.r.pc != idle_addr )
{
// special_event( "illegal instruction" );
Cpu_set_time( &this->cpu, this->cpu.end_time );
return;
}
// Init/play routine returned
this->play_delay = 1; // play can now be called regularly
if ( this->saved_state.pc == idle_addr )
{
// nothing to run
nes_time_t t = this->cpu.end_time;
if ( Cpu_time( &this->cpu ) < t )
Cpu_set_time( &this->cpu, t );
}
else
{
// continue init routine that was interrupted by play routine
this->cpu.r = this->saved_state;
this->saved_state.pc = idle_addr;
}
}
if ( Cpu_time( &this->cpu ) >= this->next_play )
{
// Calculate time of next call to play routine
this->play_extra ^= 1; // extra clock every other call
this->next_play += this->play_period + this->play_extra;
// Call routine if ready
if ( this->play_delay && !--this->play_delay )
{
// Save state if init routine is still running
if ( this->cpu.r.pc != idle_addr )
{
check( this->saved_state.pc == idle_addr );
this->saved_state = this->cpu.r;
// special_event( "play called during init" );
}
jsr_then_stop( this, this->header.play_addr );
}
}
}
void run_until( struct Nsf_Emu* this, nes_time_t end )
{
while ( Cpu_time( &this->cpu ) < end )
run_once( this, end );
}
void end_frame( struct Nsf_Emu* this, nes_time_t end )
{
if ( Cpu_time( &this->cpu ) < end )
run_until( this, end );
Cpu_adjust_time( &this->cpu, -end );
// Localize to new time frame
this->next_play -= end;
check( this->next_play >= 0 );
if ( this->next_play < 0 )
this->next_play = 0;
Apu_end_frame( &this->apu, end );
#ifndef NSF_EMU_APU_ONLY
if ( fds_enabled( this ) ) Fds_end_frame( &this->fds, end );
if ( fme7_enabled( this ) ) Fme7_end_frame( &this->fme7, end );
if ( mmc5_enabled( this ) ) Apu_end_frame( &this->mmc5.apu, end );
if ( namco_enabled( this ) ) Namco_end_frame( &this->namco, end );
if ( vrc6_enabled( this ) ) Vrc6_end_frame( &this->vrc6, end );
if ( vrc7_enabled( this ) ) Vrc7_end_frame( &this->vrc7, end );
#endif
}
// Tell/Seek
blargg_long msec_to_samples( long sample_rate, blargg_long msec )
{
blargg_long sec = msec / 1000;
msec -= sec * 1000;
return (sec * sample_rate + msec * sample_rate / 1000) * stereo;
}
long Track_tell( struct Nsf_Emu* this )
{
blargg_long rate = this->sample_rate * stereo;
blargg_long sec = this->out_time / rate;
return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate;
}
blargg_err_t Track_seek( struct Nsf_Emu* this, long msec )
{
blargg_long time = msec_to_samples( this->sample_rate, msec );
if ( time < this->out_time )
RETURN_ERR( Nsf_start_track( this, this->current_track ) );
return Track_skip( this, time - this->out_time );
}
blargg_err_t skip_( struct Nsf_Emu* this, long count ) ICODE_ATTR;
blargg_err_t Track_skip( struct Nsf_Emu* this, long count )
{
require( this->current_track >= 0 ); // start_track() must have been called already
this->out_time += count;
// remove from silence and buf first
{
long n = min( count, this->silence_count );
this->silence_count -= n;
count -= n;
n = min( count, this->buf_remain );
this->buf_remain -= n;
count -= n;
}
if ( count && !this->emu_track_ended_ )
{
this->emu_time += count;
// End track if error
if ( skip_( this, count ) )
this->emu_track_ended_ = true;
}
if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended
this->track_ended |= this->emu_track_ended_;
return 0;
}
blargg_err_t play_( struct Nsf_Emu* this, long count, sample_t* out ) ICODE_ATTR;
blargg_err_t skip_( struct Nsf_Emu* this, long count )
{
// for long skip, mute sound
const long threshold = 30000;
if ( count > threshold )
{
int saved_mute = this->mute_mask_;
Sound_mute_voices( this, ~0 );
while ( count > threshold / 2 && !this->emu_track_ended_ )
{
RETURN_ERR( play_( this, buf_size, this->buf ) );
count -= buf_size;
}
Sound_mute_voices( this, saved_mute );
}
while ( count && !this->emu_track_ended_ )
{
long n = buf_size;
if ( n > count )
n = count;
count -= n;
RETURN_ERR( play_( this, n, this->buf ) );
}
return 0;
}
// Fading
void Track_set_fade( struct Nsf_Emu* this, long start_msec, long length_msec )
{
this->fade_step = this->sample_rate * length_msec / (fade_block_size * fade_shift * 1000 / stereo);
this->fade_start = msec_to_samples( this->sample_rate, start_msec );
}
// unit / pow( 2.0, (double) x / step )
static int int_log( blargg_long x, int step, int unit )
{
int shift = x / step;
int fraction = (x - shift * step) * unit / step;
return ((unit - fraction) + (fraction >> 1)) >> shift;
}
void handle_fade( struct Nsf_Emu* this, long out_count, sample_t* out )
{
int i;
for ( i = 0; i < out_count; i += fade_block_size )
{
int const shift = 14;
int const unit = 1 << shift;
int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size,
this->fade_step, unit );
if ( gain < (unit >> fade_shift) )
this->track_ended = this->emu_track_ended_ = true;
sample_t* io = &out [i];
int count;
for ( count = min( fade_block_size, out_count - i ); count; --count )
{
*io = (sample_t) ((*io * gain) >> shift);
++io;
}
}
}
// Silence detection
void emu_play( struct Nsf_Emu* this, long count, sample_t* out ) ICODE_ATTR;
void emu_play( struct Nsf_Emu* this, long count, sample_t* out )
{
check( current_track_ >= 0 );
this->emu_time += count;
if ( this->current_track >= 0 && !this->emu_track_ended_ ) {
// End track if error
if ( play_( this, count, out ) )
this->emu_track_ended_ = true;
}
else
memset( out, 0, count * sizeof *out );
}
// number of consecutive silent samples at end
static long count_silence( sample_t* begin, long size )
{
sample_t first = *begin;
*begin = silence_threshold; // sentinel
sample_t* p = begin + size;
while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { }
*begin = first;
return size - (p - begin);
}
// fill internal buffer and check it for silence
void fill_buf( struct Nsf_Emu* this )
{
assert( !this->buf_remain );
if ( !this->emu_track_ended_ )
{
emu_play( this, buf_size, this->buf );
long silence = count_silence( this->buf, buf_size );
if ( silence < buf_size )
{
this->silence_time = this->emu_time - silence;
this->buf_remain = buf_size;
return;
}
}
this->silence_count += buf_size;
}
blargg_err_t Nsf_play( struct Nsf_Emu* this, long out_count, sample_t* out )
{
if ( this->track_ended )
{
memset( out, 0, out_count * sizeof *out );
}
else
{
require( this->current_track >= 0 );
require( out_count % stereo == 0 );
assert( this->emu_time >= this->out_time );
long pos = 0;
if ( this->silence_count )
{
// during a run of silence, run emulator at >=2x speed so it gets ahead
long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time;
while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) )
fill_buf( this );
// fill with silence
pos = min( this->silence_count, out_count );
memset( out, 0, pos * sizeof *out );
this->silence_count -= pos;
if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate )
{
this->track_ended = this->emu_track_ended_ = true;
this->silence_count = 0;
this->buf_remain = 0;
}
}
if ( this->buf_remain )
{
// empty silence buf
long n = min( this->buf_remain, out_count - pos );
memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out );
this->buf_remain -= n;
pos += n;
}
// generate remaining samples normally
long remain = out_count - pos;
if ( remain )
{
emu_play( this, remain, out + pos );
this->track_ended |= this->emu_track_ended_;
if ( !this->ignore_silence || this->out_time > this->fade_start )
{
// check end for a new run of silence
long silence = count_silence( out + pos, remain );
if ( silence < remain )
this->silence_time = this->emu_time - silence;
if ( this->emu_time - this->silence_time >= buf_size )
fill_buf( this ); // cause silence detection on next play()
}
}
if ( this->out_time > this->fade_start )
handle_fade( this, out_count, out );
}
this->out_time += out_count;
return 0;
}
blargg_err_t play_( struct Nsf_Emu* this, long count, sample_t* out )
{
long remain = count;
while ( remain )
{
remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain );
if ( remain )
{
if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) )
{
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
}
int msec = Buffer_length( &this->stereo_buf );
blip_time_t clocks_emulated = (blargg_long) msec * this->clock_rate__ / 1000 - 100;
RETURN_ERR( run_clocks( this, &clocks_emulated, msec ) );
assert( clocks_emulated );
Buffer_end_frame( &this->stereo_buf, clocks_emulated );
}
}
return 0;
}
blargg_err_t run_clocks( struct Nsf_Emu* this, blip_time_t* duration, int msec )
{
#if defined(ROCKBOX)
(void) msec;
#endif
end_frame( this, *duration );
return 0;
}