ad1ba429b9
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@24667 a1c6a512-1295-4272-9138-f99709370657
1091 lines
35 KiB
C
1091 lines
35 KiB
C
/*
|
|
* Atrac 3 compatible decoder
|
|
* Copyright (c) 2006-2008 Maxim Poliakovski
|
|
* Copyright (c) 2006-2008 Benjamin Larsson
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file libavcodec/atrac3.c
|
|
* Atrac 3 compatible decoder.
|
|
* This decoder handles Sony's ATRAC3 data.
|
|
*
|
|
* Container formats used to store atrac 3 data:
|
|
* RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
|
|
*
|
|
* To use this decoder, a calling application must supply the extradata
|
|
* bytes provided in the containers above.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include "atrac3.h"
|
|
#include "atrac3data.h"
|
|
#include "atrac3data_fixed.h"
|
|
#include "fixp_math.h"
|
|
#include "../lib/mdct2.h"
|
|
|
|
#define JOINT_STEREO 0x12
|
|
#define STEREO 0x2
|
|
|
|
#ifdef ROCKBOX
|
|
#undef DEBUGF
|
|
#define DEBUGF(...)
|
|
#endif /* ROCKBOX */
|
|
|
|
/* FFMAX/MIN/SWAP and av_clip were taken from libavutil/common.h */
|
|
#define FFMAX(a,b) ((a) > (b) ? (a) : (b))
|
|
#define FFMIN(a,b) ((a) > (b) ? (b) : (a))
|
|
#define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
|
|
|
|
static int32_t qmf_window[48] IBSS_ATTR;
|
|
static VLC spectral_coeff_tab[7];
|
|
static channel_unit channel_units[2] IBSS_ATTR_LARGE_IRAM;
|
|
|
|
/**
|
|
* Matrixing within quadrature mirror synthesis filter.
|
|
*
|
|
* @param p3 output buffer
|
|
* @param inlo lower part of spectrum
|
|
* @param inhi higher part of spectrum
|
|
* @param nIn size of spectrum buffer
|
|
*/
|
|
|
|
#if defined(CPU_ARM)
|
|
extern void
|
|
atrac3_iqmf_matrixing(int32_t *p3,
|
|
int32_t *inlo,
|
|
int32_t *inhi,
|
|
unsigned int nIn);
|
|
#else
|
|
static inline void
|
|
atrac3_iqmf_matrixing(int32_t *p3,
|
|
int32_t *inlo,
|
|
int32_t *inhi,
|
|
unsigned int nIn)
|
|
{
|
|
uint32_t i;
|
|
for(i=0; i<nIn; i+=2){
|
|
p3[2*i+0] = inlo[i ] + inhi[i ];
|
|
p3[2*i+1] = inlo[i ] - inhi[i ];
|
|
p3[2*i+2] = inlo[i+1] + inhi[i+1];
|
|
p3[2*i+3] = inlo[i+1] - inhi[i+1];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Matrixing within quadrature mirror synthesis filter.
|
|
*
|
|
* @param out output buffer
|
|
* @param in input buffer
|
|
* @param win windowing coefficients
|
|
* @param nIn size of spectrum buffer
|
|
* Reference implementation:
|
|
*
|
|
* for (j = nIn; j != 0; j--) {
|
|
* s1 = fixmul32(in[0], win[0]);
|
|
* s2 = fixmul32(in[1], win[1]);
|
|
* for (i = 2; i < 48; i += 2) {
|
|
* s1 += fixmul31(in[i ], win[i ]);
|
|
* s2 += fixmul31(in[i+1], win[i+1]);
|
|
* }
|
|
* out[0] = s2;
|
|
* out[1] = s1;
|
|
* in += 2;
|
|
* out += 2;
|
|
* }
|
|
*/
|
|
|
|
#if defined(CPU_ARM)
|
|
extern void
|
|
atrac3_iqmf_dewindowing(int32_t *out,
|
|
int32_t *in,
|
|
int32_t *win,
|
|
unsigned int nIn);
|
|
#else
|
|
static inline void
|
|
atrac3_iqmf_dewindowing(int32_t *out,
|
|
int32_t *in,
|
|
int32_t *win,
|
|
unsigned int nIn)
|
|
{
|
|
int32_t i, j, s1, s2;
|
|
|
|
for (j = nIn; j != 0; j--) {
|
|
i = 0;
|
|
/* 0.. 7 */
|
|
s1 = fixmul31(win[i], in[i]); i++;
|
|
s2 = fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
/* 8..15 */
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
/* 16..23 */
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
/* 24..31 */
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
/* 32..39 */
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
/* 40..47 */
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]); i++;
|
|
s1 += fixmul31(win[i], in[i]); i++;
|
|
s2 += fixmul31(win[i], in[i]);
|
|
|
|
out[0] = s2;
|
|
out[1] = s1;
|
|
|
|
in += 2;
|
|
out += 2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* IMDCT windowing.
|
|
*
|
|
* @param buffer sample buffer
|
|
* @param win window coefficients
|
|
*/
|
|
|
|
static inline void
|
|
atrac3_imdct_windowing(int32_t *buffer,
|
|
const int32_t *win)
|
|
{
|
|
int32_t i;
|
|
/* win[0..127] = win[511..384], win[128..383] = 1 */
|
|
for(i = 0; i<128; i++) {
|
|
buffer[ i] = fixmul31(win[i], buffer[ i]);
|
|
buffer[511-i] = fixmul31(win[i], buffer[511-i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Quadrature mirror synthesis filter.
|
|
*
|
|
* @param inlo lower part of spectrum
|
|
* @param inhi higher part of spectrum
|
|
* @param nIn size of spectrum buffer
|
|
* @param pOut out buffer
|
|
* @param delayBuf delayBuf buffer
|
|
* @param temp temp buffer
|
|
*/
|
|
|
|
static void iqmf (int32_t *inlo, int32_t *inhi, unsigned int nIn, int32_t *pOut, int32_t *delayBuf, int32_t *temp)
|
|
{
|
|
/* Restore the delay buffer */
|
|
memcpy(temp, delayBuf, 46*sizeof(int32_t));
|
|
|
|
/* loop1: matrixing */
|
|
atrac3_iqmf_matrixing(temp + 46, inlo, inhi, nIn);
|
|
|
|
/* loop2: dewindowing */
|
|
atrac3_iqmf_dewindowing(pOut, temp, qmf_window, nIn);
|
|
|
|
/* Save the delay buffer */
|
|
memcpy(delayBuf, temp + (nIn << 1), 46*sizeof(int32_t));
|
|
}
|
|
|
|
/**
|
|
* Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
|
|
* caused by the reverse spectra of the QMF.
|
|
*
|
|
* @param pInput float input
|
|
* @param pOutput float output
|
|
* @param odd_band 1 if the band is an odd band
|
|
*/
|
|
|
|
static void IMLT(int32_t *pInput, int32_t *pOutput)
|
|
{
|
|
/* Apply the imdct. */
|
|
mdct_backward(512, pInput, pOutput);
|
|
|
|
/* Windowing. */
|
|
atrac3_imdct_windowing(pOutput, window_lookup);
|
|
}
|
|
|
|
|
|
/**
|
|
* Atrac 3 indata descrambling, only used for data coming from the rm container
|
|
*
|
|
* @param in pointer to 8 bit array of indata
|
|
* @param bits amount of bits
|
|
* @param out pointer to 8 bit array of outdata
|
|
*/
|
|
|
|
static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
|
|
int i, off;
|
|
uint32_t c;
|
|
const uint32_t* buf;
|
|
uint32_t* obuf = (uint32_t*) out;
|
|
|
|
#if ((defined(TEST) || defined(SIMULATOR)) && !defined(CPU_ARM))
|
|
off = 0; //no check for memory alignment of inbuffer
|
|
#else
|
|
off = (intptr_t)inbuffer & 3;
|
|
#endif /* TEST */
|
|
buf = (const uint32_t*) (inbuffer - off);
|
|
|
|
c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
|
|
bytes += 3 + off;
|
|
for (i = 0; i < bytes/4; i++)
|
|
obuf[i] = c ^ buf[i];
|
|
|
|
return off;
|
|
}
|
|
|
|
|
|
static void init_atrac3_transforms(void) {
|
|
int32_t s;
|
|
int i;
|
|
|
|
/* Generate the mdct window, for details see
|
|
* http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
|
|
|
|
/* mdct window had been generated and saved as a lookup table in atrac3data_fixed.h */
|
|
|
|
/* Generate the QMF window. */
|
|
for (i=0 ; i<24; i++) {
|
|
s = qmf_48tap_half_fix[i] << 1;
|
|
qmf_window[i] = s;
|
|
qmf_window[47 - i] = s;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Mantissa decoding
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param selector what table is the output values coded with
|
|
* @param codingFlag constant length coding or variable length coding
|
|
* @param mantissas mantissa output table
|
|
* @param numCodes amount of values to get
|
|
*/
|
|
|
|
static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
|
|
{
|
|
int numBits, cnt, code, huffSymb;
|
|
|
|
if (selector == 1)
|
|
numCodes /= 2;
|
|
|
|
if (codingFlag != 0) {
|
|
/* constant length coding (CLC) */
|
|
numBits = CLCLengthTab[selector];
|
|
|
|
if (selector > 1) {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
if (numBits)
|
|
code = get_sbits(gb, numBits);
|
|
else
|
|
code = 0;
|
|
mantissas[cnt] = code;
|
|
}
|
|
} else {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
if (numBits)
|
|
code = get_bits(gb, numBits); //numBits is always 4 in this case
|
|
else
|
|
code = 0;
|
|
mantissas[cnt*2] = seTab_0[code >> 2];
|
|
mantissas[cnt*2+1] = seTab_0[code & 3];
|
|
}
|
|
}
|
|
} else {
|
|
/* variable length coding (VLC) */
|
|
if (selector != 1) {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
|
|
huffSymb += 1;
|
|
code = huffSymb >> 1;
|
|
if (huffSymb & 1)
|
|
code = -code;
|
|
mantissas[cnt] = code;
|
|
}
|
|
} else {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
|
|
mantissas[cnt*2] = decTable1[huffSymb*2];
|
|
mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Restore the quantized band spectrum coefficients
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pOut decoded band spectrum
|
|
* @return outSubbands subband counter, fix for broken specification/files
|
|
*/
|
|
|
|
int decodeSpectrum (GetBitContext *gb, int32_t *pOut) ICODE_ATTR;
|
|
int decodeSpectrum (GetBitContext *gb, int32_t *pOut)
|
|
{
|
|
int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
|
|
int subband_vlc_index[32], SF_idxs[32];
|
|
int mantissas[128];
|
|
int32_t SF;
|
|
|
|
numSubbands = get_bits(gb, 5); // number of coded subbands
|
|
codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
|
|
|
|
/* Get the VLC selector table for the subbands, 0 means not coded. */
|
|
for (cnt = 0; cnt <= numSubbands; cnt++)
|
|
subband_vlc_index[cnt] = get_bits(gb, 3);
|
|
|
|
/* Read the scale factor indexes from the stream. */
|
|
for (cnt = 0; cnt <= numSubbands; cnt++) {
|
|
if (subband_vlc_index[cnt] != 0)
|
|
SF_idxs[cnt] = get_bits(gb, 6);
|
|
}
|
|
|
|
for (cnt = 0; cnt <= numSubbands; cnt++) {
|
|
first = subbandTab[cnt];
|
|
last = subbandTab[cnt+1];
|
|
|
|
subbWidth = last - first;
|
|
|
|
if (subband_vlc_index[cnt] != 0) {
|
|
/* Decode spectral coefficients for this subband. */
|
|
/* TODO: This can be done faster is several blocks share the
|
|
* same VLC selector (subband_vlc_index) */
|
|
readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
|
|
|
|
/* Decode the scale factor for this subband. */
|
|
SF = fixmul31(SFTable_fixed[SF_idxs[cnt]], iMaxQuant_fix[subband_vlc_index[cnt]]);
|
|
/* Remark: Hardcoded hack to add 2 bits (empty) fract part to internal sample
|
|
* representation. Needed for higher accuracy in internal calculations as
|
|
* well as for DSP configuration. See also: ../atrac3_rm.c, DSP_SET_SAMPLE_DEPTH
|
|
*/
|
|
SF <<= 2;
|
|
|
|
/* Inverse quantize the coefficients. */
|
|
if((first/256) &1) {
|
|
/* Odd band - Reverse coefficients */
|
|
for (pIn=mantissas ; last>first; last--, pIn++)
|
|
pOut[last] = fixmul16(*pIn, SF);
|
|
} else {
|
|
for (pIn=mantissas ; first<last; first++, pIn++)
|
|
pOut[first] = fixmul16(*pIn, SF);
|
|
}
|
|
|
|
} else {
|
|
/* This subband was not coded, so zero the entire subband. */
|
|
memset(pOut+first, 0, subbWidth*sizeof(int32_t));
|
|
}
|
|
}
|
|
|
|
/* Clear the subbands that were not coded. */
|
|
first = subbandTab[cnt];
|
|
memset(pOut+first, 0, (1024 - first) * sizeof(int32_t));
|
|
return numSubbands;
|
|
}
|
|
|
|
/**
|
|
* Restore the quantized tonal components
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pComponent tone component
|
|
* @param numBands amount of coded bands
|
|
*/
|
|
|
|
static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
|
|
{
|
|
int i,j,k,cnt;
|
|
int components, coding_mode_selector, coding_mode, coded_values_per_component;
|
|
int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
|
|
int band_flags[4], mantissa[8];
|
|
int32_t *pCoef;
|
|
int32_t scalefactor;
|
|
int component_count = 0;
|
|
|
|
components = get_bits(gb,5);
|
|
|
|
/* no tonal components */
|
|
if (components == 0)
|
|
return 0;
|
|
|
|
coding_mode_selector = get_bits(gb,2);
|
|
if (coding_mode_selector == 2)
|
|
return -1;
|
|
|
|
coding_mode = coding_mode_selector & 1;
|
|
|
|
for (i = 0; i < components; i++) {
|
|
for (cnt = 0; cnt <= numBands; cnt++)
|
|
band_flags[cnt] = get_bits1(gb);
|
|
|
|
coded_values_per_component = get_bits(gb,3);
|
|
|
|
quant_step_index = get_bits(gb,3);
|
|
if (quant_step_index <= 1)
|
|
return -1;
|
|
|
|
if (coding_mode_selector == 3)
|
|
coding_mode = get_bits1(gb);
|
|
|
|
for (j = 0; j < (numBands + 1) * 4; j++) {
|
|
if (band_flags[j >> 2] == 0)
|
|
continue;
|
|
|
|
coded_components = get_bits(gb,3);
|
|
|
|
for (k=0; k<coded_components; k++) {
|
|
sfIndx = get_bits(gb,6);
|
|
pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
|
|
max_coded_values = 1024 - pComponent[component_count].pos;
|
|
coded_values = coded_values_per_component + 1;
|
|
coded_values = FFMIN(max_coded_values,coded_values);
|
|
|
|
scalefactor = fixmul31(SFTable_fixed[sfIndx], iMaxQuant_fix[quant_step_index]);
|
|
/* Remark: Hardcoded hack to add 2 bits (empty) fract part to internal sample
|
|
* representation. Needed for higher accuracy in internal calculations as
|
|
* well as for DSP configuration. See also: ../atrac3_rm.c, DSP_SET_SAMPLE_DEPTH
|
|
*/
|
|
scalefactor <<= 2;
|
|
|
|
readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
|
|
|
|
pComponent[component_count].numCoefs = coded_values;
|
|
|
|
/* inverse quant */
|
|
pCoef = pComponent[component_count].coef;
|
|
for (cnt = 0; cnt < coded_values; cnt++)
|
|
pCoef[cnt] = fixmul16(mantissa[cnt], scalefactor);
|
|
|
|
component_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return component_count;
|
|
}
|
|
|
|
/**
|
|
* Decode gain parameters for the coded bands
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pGb the gainblock for the current band
|
|
* @param numBands amount of coded bands
|
|
*/
|
|
|
|
static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
|
|
{
|
|
int i, cf, numData;
|
|
int *pLevel, *pLoc;
|
|
|
|
gain_info *pGain = pGb->gBlock;
|
|
|
|
for (i=0 ; i<=numBands; i++)
|
|
{
|
|
numData = get_bits(gb,3);
|
|
pGain[i].num_gain_data = numData;
|
|
pLevel = pGain[i].levcode;
|
|
pLoc = pGain[i].loccode;
|
|
|
|
for (cf = 0; cf < numData; cf++){
|
|
pLevel[cf]= get_bits(gb,4);
|
|
pLoc [cf]= get_bits(gb,5);
|
|
if(cf && pLoc[cf] <= pLoc[cf-1])
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Clear the unused blocks. */
|
|
for (; i<4 ; i++)
|
|
pGain[i].num_gain_data = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Apply gain parameters and perform the MDCT overlapping part
|
|
*
|
|
* @param pIn input float buffer
|
|
* @param pPrev previous float buffer to perform overlap against
|
|
* @param pOut output float buffer
|
|
* @param pGain1 current band gain info
|
|
* @param pGain2 next band gain info
|
|
*/
|
|
|
|
static void gainCompensateAndOverlap (int32_t *pIn, int32_t *pPrev, int32_t *pOut, gain_info *pGain1, gain_info *pGain2)
|
|
{
|
|
/* gain compensation function */
|
|
int32_t gain1, gain2, gain_inc;
|
|
int cnt, numdata, nsample, startLoc, endLoc;
|
|
|
|
if (pGain2->num_gain_data == 0)
|
|
gain1 = ONE_16;
|
|
else
|
|
gain1 = gain_tab1[pGain2->levcode[0]];
|
|
|
|
if (pGain1->num_gain_data == 0) {
|
|
for (cnt = 0; cnt < 256; cnt++)
|
|
pOut[cnt] = fixmul16(pIn[cnt], gain1) + pPrev[cnt];
|
|
} else {
|
|
numdata = pGain1->num_gain_data;
|
|
pGain1->loccode[numdata] = 32;
|
|
pGain1->levcode[numdata] = 4;
|
|
|
|
nsample = 0; // current sample = 0
|
|
|
|
for (cnt = 0; cnt < numdata; cnt++) {
|
|
startLoc = pGain1->loccode[cnt] * 8;
|
|
endLoc = startLoc + 8;
|
|
|
|
gain2 = gain_tab1[pGain1->levcode[cnt]];
|
|
gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
|
|
|
|
/* interpolate */
|
|
for (; nsample < startLoc; nsample++)
|
|
pOut[nsample] = fixmul16((fixmul16(pIn[nsample], gain1) + pPrev[nsample]), gain2);
|
|
|
|
/* interpolation is done over eight samples */
|
|
for (; nsample < endLoc; nsample++) {
|
|
pOut[nsample] = fixmul16((fixmul16(pIn[nsample], gain1) + pPrev[nsample]),gain2);
|
|
gain2 = fixmul16(gain2, gain_inc);
|
|
}
|
|
}
|
|
|
|
for (; nsample < 256; nsample++)
|
|
pOut[nsample] = fixmul16(pIn[nsample], gain1) + pPrev[nsample];
|
|
}
|
|
|
|
/* Delay for the overlapping part. */
|
|
memcpy(pPrev, &pIn[256], 256*sizeof(int32_t));
|
|
}
|
|
|
|
/**
|
|
* Combine the tonal band spectrum and regular band spectrum
|
|
* Return position of the last tonal coefficient
|
|
|
|
*
|
|
* @param pSpectrum output spectrum buffer
|
|
* @param numComponents amount of tonal components
|
|
* @param pComponent tonal components for this band
|
|
*/
|
|
|
|
static int addTonalComponents (int32_t *pSpectrum, int numComponents, tonal_component *pComponent)
|
|
{
|
|
int cnt, i, lastPos = -1;
|
|
int32_t *pOut;
|
|
int32_t *pIn;
|
|
|
|
for (cnt = 0; cnt < numComponents; cnt++){
|
|
lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
|
|
pIn = pComponent[cnt].coef;
|
|
pOut = &(pSpectrum[pComponent[cnt].pos]);
|
|
|
|
for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
|
|
pOut[i] += pIn[i];
|
|
}
|
|
|
|
return lastPos;
|
|
}
|
|
|
|
/**
|
|
* Linear equidistant interpolation between two points x and y. 7 interpolation
|
|
* points can be calculated. Result is scaled by <<16.
|
|
* Result for s=0 is x*ONE_16
|
|
* Result for s=8 is y*ONE_16
|
|
*
|
|
* @param x first input point
|
|
* @param y second input point
|
|
* @param s index of interpolation point (0..7)
|
|
*/
|
|
|
|
/*
|
|
#define INTERPOLATE(x, y, s) ((x*ONE_16) + fixmul16(((s*ONE_16)>>3), (((x) - (y))*ONE_16)))
|
|
*/
|
|
#define INTERPOLATE(x, y, s) ((((x)<<3) + s*((y)-(x)))<<13)
|
|
|
|
static void reverseMatrixing(int32_t *su1, int32_t *su2, int *pPrevCode, int *pCurrCode)
|
|
{
|
|
int i, band, nsample, s1, s2;
|
|
int32_t c1, c2;
|
|
int32_t mc1_l, mc1_r, mc2_l, mc2_r;
|
|
|
|
for (i=0,band = 0; band < 4*256; band+=256,i++) {
|
|
s1 = pPrevCode[i];
|
|
s2 = pCurrCode[i];
|
|
nsample = 0;
|
|
|
|
if (s1 != s2) {
|
|
/* Selector value changed, interpolation needed. */
|
|
mc1_l = matrixCoeffs_fix[s1<<1];
|
|
mc1_r = matrixCoeffs_fix[(s1<<1)+1];
|
|
mc2_l = matrixCoeffs_fix[s2<<1];
|
|
mc2_r = matrixCoeffs_fix[(s2<<1)+1];
|
|
|
|
/* Interpolation is done over the first eight samples. */
|
|
for(; nsample < 8; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
c2 = fixmul16(c1, INTERPOLATE(mc1_l, mc2_l, nsample)) + fixmul16(c2, INTERPOLATE(mc1_r, mc2_r, nsample));
|
|
su1[band+nsample] = c2;
|
|
su2[band+nsample] = (c1 << 1) - c2;
|
|
}
|
|
}
|
|
|
|
/* Apply the matrix without interpolation. */
|
|
switch (s2) {
|
|
case 0: /* M/S decoding */
|
|
for (; nsample < 256; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
su1[band+nsample] = c2 << 1;
|
|
su2[band+nsample] = (c1 - c2) << 1;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
for (; nsample < 256; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
su1[band+nsample] = (c1 + c2) << 1;
|
|
su2[band+nsample] = -1*(c2 << 1);
|
|
}
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
for (; nsample < 256; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
su1[band+nsample] = c1 + c2;
|
|
su2[band+nsample] = c1 - c2;
|
|
}
|
|
break;
|
|
default:
|
|
//assert(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void getChannelWeights (int indx, int flag, int32_t ch[2]){
|
|
/* Read channel weights from table */
|
|
if (flag) {
|
|
/* Swap channel weights */
|
|
ch[1] = channelWeights0[indx&7];
|
|
ch[0] = channelWeights1[indx&7];
|
|
} else {
|
|
ch[0] = channelWeights0[indx&7];
|
|
ch[1] = channelWeights1[indx&7];
|
|
}
|
|
}
|
|
|
|
static void channelWeighting (int32_t *su1, int32_t *su2, int *p3)
|
|
{
|
|
int band, nsample;
|
|
/* w[x][y] y=0 is left y=1 is right */
|
|
int32_t w[2][2];
|
|
|
|
if (p3[1] != 7 || p3[3] != 7){
|
|
getChannelWeights(p3[1], p3[0], w[0]);
|
|
getChannelWeights(p3[3], p3[2], w[1]);
|
|
|
|
for(band = 1; band < 4; band++) {
|
|
/* scale the channels by the weights */
|
|
for(nsample = 0; nsample < 8; nsample++) {
|
|
su1[band*256+nsample] = fixmul16(su1[band*256+nsample], INTERPOLATE(w[0][0], w[0][1], nsample));
|
|
su2[band*256+nsample] = fixmul16(su2[band*256+nsample], INTERPOLATE(w[1][0], w[1][1], nsample));
|
|
}
|
|
|
|
for(; nsample < 256; nsample++) {
|
|
su1[band*256+nsample] = fixmul16(su1[band*256+nsample], w[1][0]);
|
|
su2[band*256+nsample] = fixmul16(su2[band*256+nsample], w[1][1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode a Sound Unit
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pSnd the channel unit to be used
|
|
* @param pOut the decoded samples before IQMF in float representation
|
|
* @param channelNum channel number
|
|
* @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
|
|
*/
|
|
|
|
|
|
static int decodeChannelSoundUnit (GetBitContext *gb, channel_unit *pSnd, int32_t *pOut, int channelNum, int codingMode)
|
|
{
|
|
int band, result=0, numSubbands, lastTonal, numBands;
|
|
if (codingMode == JOINT_STEREO && channelNum == 1) {
|
|
if (get_bits(gb,2) != 3) {
|
|
DEBUGF("JS mono Sound Unit id != 3.\n");
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (get_bits(gb,6) != 0x28) {
|
|
DEBUGF("Sound Unit id != 0x28.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* number of coded QMF bands */
|
|
pSnd->bandsCoded = get_bits(gb,2);
|
|
|
|
result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
|
|
if (result) return result;
|
|
|
|
pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
|
|
if (pSnd->numComponents == -1) return -1;
|
|
|
|
numSubbands = decodeSpectrum (gb, pSnd->spectrum);
|
|
|
|
/* Merge the decoded spectrum and tonal components. */
|
|
lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
|
|
|
|
|
|
/* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
|
|
numBands = (subbandTab[numSubbands] - 1) >> 8;
|
|
if (lastTonal >= 0)
|
|
numBands = FFMAX((lastTonal + 256) >> 8, numBands);
|
|
|
|
/* Reconstruct time domain samples. */
|
|
for (band=0; band<4; band++) {
|
|
/* Perform the IMDCT step without overlapping. */
|
|
if (band <= numBands) {
|
|
IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf);
|
|
} else
|
|
memset(pSnd->IMDCT_buf, 0, 512 * sizeof(int32_t));
|
|
|
|
/* gain compensation and overlapping */
|
|
gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
|
|
&((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
|
|
&((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
|
|
}
|
|
|
|
/* Swap the gain control buffers for the next frame. */
|
|
pSnd->gcBlkSwitch ^= 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Frame handling
|
|
*
|
|
* @param q Atrac3 private context
|
|
* @param databuf the input data
|
|
*/
|
|
|
|
static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf, int off)
|
|
{
|
|
int result, i;
|
|
int32_t *p1, *p2, *p3, *p4;
|
|
uint8_t *ptr1;
|
|
|
|
if (q->codingMode == JOINT_STEREO) {
|
|
|
|
/* channel coupling mode */
|
|
/* decode Sound Unit 1 */
|
|
init_get_bits(&q->gb,databuf,q->bits_per_frame);
|
|
|
|
result = decodeChannelSoundUnit(&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
|
|
if (result != 0)
|
|
return (result);
|
|
|
|
/* Framedata of the su2 in the joint-stereo mode is encoded in
|
|
* reverse byte order so we need to swap it first. */
|
|
if (databuf == q->decoded_bytes_buffer) {
|
|
uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
|
|
ptr1 = q->decoded_bytes_buffer;
|
|
for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
|
|
FFSWAP(uint8_t,*ptr1,*ptr2);
|
|
}
|
|
} else {
|
|
const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
|
|
for (i = 0; i < q->bytes_per_frame; i++)
|
|
q->decoded_bytes_buffer[i] = *ptr2--;
|
|
}
|
|
|
|
/* Skip the sync codes (0xF8). */
|
|
ptr1 = q->decoded_bytes_buffer;
|
|
for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
|
|
if (i >= q->bytes_per_frame)
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* set the bitstream reader at the start of the second Sound Unit*/
|
|
init_get_bits(&q->gb,ptr1,q->bits_per_frame);
|
|
|
|
/* Fill the Weighting coeffs delay buffer */
|
|
memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
|
|
q->weighting_delay[4] = get_bits1(&q->gb);
|
|
q->weighting_delay[5] = get_bits(&q->gb,3);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
|
|
q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
|
|
q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
|
|
}
|
|
|
|
/* Decode Sound Unit 2. */
|
|
result = decodeChannelSoundUnit(&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
|
|
if (result != 0)
|
|
return (result);
|
|
|
|
/* Reconstruct the channel coefficients. */
|
|
reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
|
|
|
|
channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
|
|
|
|
} else {
|
|
/* normal stereo mode or mono */
|
|
/* Decode the channel sound units. */
|
|
for (i=0 ; i<q->channels ; i++) {
|
|
|
|
/* Set the bitstream reader at the start of a channel sound unit. */
|
|
init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels)+off, (q->bits_per_frame)/q->channels);
|
|
|
|
result = decodeChannelSoundUnit(&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
|
|
if (result != 0)
|
|
return (result);
|
|
}
|
|
}
|
|
|
|
/* Apply the iQMF synthesis filter. */
|
|
p1= q->outSamples;
|
|
for (i=0 ; i<q->channels ; i++) {
|
|
p2= p1+256;
|
|
p3= p2+256;
|
|
p4= p3+256;
|
|
iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
|
|
iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
|
|
iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
|
|
p1 +=1024;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Atrac frame decoding
|
|
*
|
|
* @param rmctx pointer to the AVCodecContext
|
|
*/
|
|
|
|
int atrac3_decode_frame(RMContext *rmctx, ATRAC3Context *q,
|
|
int *data_size, const uint8_t *buf, int buf_size) {
|
|
int result = 0, off = 0;
|
|
const uint8_t* databuf;
|
|
|
|
if (buf_size < rmctx->block_align)
|
|
return buf_size;
|
|
|
|
/* Check if we need to descramble and what buffer to pass on. */
|
|
if (q->scrambled_stream) {
|
|
off = decode_bytes(buf, q->decoded_bytes_buffer, rmctx->block_align);
|
|
databuf = q->decoded_bytes_buffer;
|
|
} else {
|
|
databuf = buf;
|
|
}
|
|
|
|
result = decodeFrame(q, databuf, off);
|
|
|
|
if (result != 0) {
|
|
DEBUGF("Frame decoding error!\n");
|
|
return -1;
|
|
}
|
|
|
|
if (q->channels == 1)
|
|
*data_size = 1024 * sizeof(int32_t);
|
|
else
|
|
*data_size = 2048 * sizeof(int32_t);
|
|
|
|
return rmctx->block_align;
|
|
}
|
|
|
|
|
|
/**
|
|
* Atrac3 initialization
|
|
*
|
|
* @param rmctx pointer to the RMContext
|
|
*/
|
|
|
|
int atrac3_decode_init(ATRAC3Context *q, RMContext *rmctx)
|
|
{
|
|
int i;
|
|
uint8_t *edata_ptr = rmctx->codec_extradata;
|
|
static VLC_TYPE atrac3_vlc_table[4096][2];
|
|
static int vlcs_initialized = 0;
|
|
|
|
/* Take data from the AVCodecContext (RM container). */
|
|
q->sample_rate = rmctx->sample_rate;
|
|
q->channels = rmctx->nb_channels;
|
|
q->bit_rate = rmctx->bit_rate;
|
|
q->bits_per_frame = rmctx->block_align * 8;
|
|
q->bytes_per_frame = rmctx->block_align;
|
|
|
|
/* Take care of the codec-specific extradata. */
|
|
if (rmctx->extradata_size == 14) {
|
|
/* Parse the extradata, WAV format */
|
|
DEBUGF("[0-1] %d\n",rm_get_uint16le(&edata_ptr[0])); //Unknown value always 1
|
|
q->samples_per_channel = rm_get_uint32le(&edata_ptr[2]);
|
|
q->codingMode = rm_get_uint16le(&edata_ptr[6]);
|
|
DEBUGF("[8-9] %d\n",rm_get_uint16le(&edata_ptr[8])); //Dupe of coding mode
|
|
q->frame_factor = rm_get_uint16le(&edata_ptr[10]); //Unknown always 1
|
|
DEBUGF("[12-13] %d\n",rm_get_uint16le(&edata_ptr[12])); //Unknown always 0
|
|
|
|
/* setup */
|
|
q->samples_per_frame = 1024 * q->channels;
|
|
q->atrac3version = 4;
|
|
q->delay = 0x88E;
|
|
if (q->codingMode)
|
|
q->codingMode = JOINT_STEREO;
|
|
else
|
|
q->codingMode = STEREO;
|
|
q->scrambled_stream = 0;
|
|
|
|
if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
|
|
} else {
|
|
DEBUGF("Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
|
|
return -1;
|
|
}
|
|
|
|
} else if (rmctx->extradata_size == 10) {
|
|
/* Parse the extradata, RM format. */
|
|
q->atrac3version = rm_get_uint32be(&edata_ptr[0]);
|
|
q->samples_per_frame = rm_get_uint16be(&edata_ptr[4]);
|
|
q->delay = rm_get_uint16be(&edata_ptr[6]);
|
|
q->codingMode = rm_get_uint16be(&edata_ptr[8]);
|
|
|
|
q->samples_per_channel = q->samples_per_frame / q->channels;
|
|
q->scrambled_stream = 1;
|
|
|
|
} else {
|
|
DEBUGF("Unknown extradata size %d.\n",rmctx->extradata_size);
|
|
}
|
|
/* Check the extradata. */
|
|
|
|
if (q->atrac3version != 4) {
|
|
DEBUGF("Version %d != 4.\n",q->atrac3version);
|
|
return -1;
|
|
}
|
|
|
|
if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
|
|
DEBUGF("Unknown amount of samples per frame %d.\n",q->samples_per_frame);
|
|
return -1;
|
|
}
|
|
|
|
if (q->delay != 0x88E) {
|
|
DEBUGF("Unknown amount of delay %x != 0x88E.\n",q->delay);
|
|
return -1;
|
|
}
|
|
|
|
if (q->codingMode == STEREO) {
|
|
DEBUGF("Normal stereo detected.\n");
|
|
} else if (q->codingMode == JOINT_STEREO) {
|
|
DEBUGF("Joint stereo detected.\n");
|
|
} else {
|
|
DEBUGF("Unknown channel coding mode %x!\n",q->codingMode);
|
|
return -1;
|
|
}
|
|
|
|
if (rmctx->nb_channels <= 0 || rmctx->nb_channels > 2 /*|| ((rmctx->channels * 1024) != q->samples_per_frame)*/) {
|
|
DEBUGF("Channel configuration error!\n");
|
|
return -1;
|
|
}
|
|
|
|
|
|
if(rmctx->block_align >= UINT16_MAX/2)
|
|
return -1;
|
|
|
|
|
|
/* Initialize the VLC tables. */
|
|
if (!vlcs_initialized) {
|
|
for (i=0 ; i<7 ; i++) {
|
|
spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
|
|
spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
|
|
init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
|
|
huff_bits[i], 1, 1,
|
|
huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
|
|
vlcs_initialized = 1;
|
|
|
|
}
|
|
|
|
init_atrac3_transforms();
|
|
|
|
/* init the joint-stereo decoding data */
|
|
q->weighting_delay[0] = 0;
|
|
q->weighting_delay[1] = 7;
|
|
q->weighting_delay[2] = 0;
|
|
q->weighting_delay[3] = 7;
|
|
q->weighting_delay[4] = 0;
|
|
q->weighting_delay[5] = 7;
|
|
|
|
for (i=0; i<4; i++) {
|
|
q->matrix_coeff_index_prev[i] = 3;
|
|
q->matrix_coeff_index_now[i] = 3;
|
|
q->matrix_coeff_index_next[i] = 3;
|
|
}
|
|
|
|
q->pUnits = channel_units;
|
|
|
|
return 0;
|
|
}
|
|
|