7807934a27
The encryption definitely uses some standard elliptic curve encryption over binary fields (163 and 233 bits, standard polynomials). It is still unclear how this is used in the actual encryption, the key authentification and derivation do not look standard. Change-Id: I6b9180ff7e6115e1dceca8489e986a02a9ea6fc9
1177 lines
35 KiB
C
1177 lines
35 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2017 Amaury Pouly
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include "misc.h"
|
|
#include "fwu.h"
|
|
#include "afi.h"
|
|
|
|
#define check_field(v_exp, v_have, str_ok, str_bad) \
|
|
if((v_exp) != (v_have)) \
|
|
{ cprintf(RED, str_bad); return 1; } \
|
|
else { cprintf(RED, str_ok); }
|
|
|
|
#define check_field_soft(v_exp, v_have, str_ok, str_bad) \
|
|
if((v_exp) != (v_have)) \
|
|
{ cprintf(RED, str_bad); } \
|
|
else { cprintf(RED, str_ok); }
|
|
|
|
#define FWU_SIG_SIZE 16
|
|
#define FWU_BLOCK_SIZE 512
|
|
|
|
struct fwu_hdr_t
|
|
{
|
|
uint8_t sig[FWU_SIG_SIZE];
|
|
uint32_t fw_size;
|
|
uint32_t block_size;// always 512
|
|
uint8_t version;
|
|
uint8_t unk;
|
|
uint8_t sig2[FWU_SIG_SIZE];
|
|
} __attribute__((packed));
|
|
|
|
const uint8_t g_fwu_signature[FWU_SIG_SIZE] =
|
|
{
|
|
0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff, 0x75
|
|
};
|
|
|
|
struct fwu_crypto_hdr_t
|
|
{
|
|
uint8_t field0[16];
|
|
uint8_t unk;
|
|
uint8_t key[32];
|
|
} __attribute__((packed));
|
|
|
|
struct fwu_tail_t
|
|
{
|
|
uint8_t length; /* in blocks? it's always 1 */
|
|
uint8_t type; /* always 7 */
|
|
uint8_t reserved[14];
|
|
uint32_t fwu_checksum;
|
|
uint32_t flags; /* always 0x55aa55aa */
|
|
uint8_t desc[8]; /* always 'FwuTail' */
|
|
uint8_t fwu_crc_checksum[32]; /* always 0 */
|
|
uint8_t reserved2[444];
|
|
uint32_t fwutail_checksum;
|
|
} __attribute__((packed));
|
|
|
|
struct version_desc_t
|
|
{
|
|
uint8_t version;
|
|
uint8_t value;
|
|
uint8_t unk;
|
|
uint8_t sig2[FWU_SIG_SIZE];
|
|
};
|
|
|
|
struct version_desc_t g_version[] =
|
|
{
|
|
{ 1, 0xd, 0xd0, { 0x76, 0x5c, 0x50, 0x94, 0x69, 0xb0, 0xa7, 0x03, 0x10, 0xf1, 0x7e, 0xdb, 0x88, 0x90, 0x86, 0x9d } },
|
|
{ 1, 0xe, 0xd0, { 0x92, 0x22, 0x7a, 0x77, 0x08, 0x67, 0xae, 0x06, 0x16, 0x06, 0xb8, 0x65, 0xa6, 0x42, 0xf7, 0X52 } },
|
|
{ 3, 0x7e, 0xe1, { 0x3f, 0xad, 0xf8, 0xb0, 0x2e, 0xaf, 0x67, 0x49, 0xb9, 0x85, 0x5f, 0x63, 0x4e, 0x5e, 0x8e, 0x2e } },
|
|
};
|
|
|
|
#define NR_VERSIONS (int)(sizeof(g_version)/sizeof(g_version[0]))
|
|
|
|
typedef struct ec_point_t
|
|
{
|
|
uint32_t *x;
|
|
uint32_t *y;
|
|
}ec_point_t;
|
|
|
|
struct block_A_info_t
|
|
{
|
|
int nr_bits;
|
|
uint16_t field_2;
|
|
int nr_words;
|
|
int nr_dwords_x12;
|
|
uint32_t *ec_a; // size
|
|
uint32_t *ptr7; // size
|
|
uint32_t *field_poly; // size
|
|
uint32_t size;
|
|
uint32_t field_1C;
|
|
ec_point_t ptr1;
|
|
uint32_t *ptr3; // size
|
|
uint32_t *ptr4; // size
|
|
int nr_words2;
|
|
uint32_t field_bits;
|
|
int nr_dwords_x8;
|
|
int nr_bytes;
|
|
int nr_bytes2;
|
|
int nr_dwords_m1;
|
|
int nr_dwords_x2_m1;
|
|
int nr_dwords_x2;
|
|
int nr_dwords;
|
|
uint32_t field_54;
|
|
uint32_t field_58;
|
|
};
|
|
|
|
struct block_A_info_t g_decode_A_info;
|
|
uint8_t g_subblock_A[0x128];
|
|
uint8_t g_key_B[20];
|
|
uint8_t g_perm_B[258];
|
|
uint8_t g_crypto_info_byte;
|
|
uint8_t *g_decode_buffer;
|
|
uint8_t *g_decode_buffer2;
|
|
void *g_decode_buffer3;
|
|
|
|
#include "atj_tables.h"
|
|
#include <ctype.h>
|
|
|
|
void print_hex(const char *name, void *buf, size_t sz)
|
|
{
|
|
if(name)
|
|
cprintf(BLUE, "%s\n", name);
|
|
uint8_t *p = buf;
|
|
for(size_t i = 0; i < sz; i += 16)
|
|
{
|
|
if(name)
|
|
cprintf(OFF, " ");
|
|
for(size_t j = i; j < i + 16; j++)
|
|
if(j < sz)
|
|
cprintf(YELLOW, "%02x ", p[j]);
|
|
else
|
|
cprintf(OFF, " ");
|
|
cprintf(RED, " |");
|
|
for(size_t j = i; j < i + 16; j++)
|
|
cprintf(GREEN, "%c", (j < sz && isprint(p[j])) ? p[j] : '.');
|
|
cprintf(RED, "|\n");
|
|
}
|
|
}
|
|
|
|
void compute_checksum(uint8_t *buf, size_t size, uint8_t t[20])
|
|
{
|
|
memset(t, 0, 20);
|
|
|
|
for(size_t i = 0; i < size; i++)
|
|
t[i % 20] ^= buf[i];
|
|
for(int i = 0; i < 20; i++)
|
|
t[i] = ~t[i];
|
|
}
|
|
|
|
int check_block(uint8_t *buf, uint8_t ref[20], unsigned size)
|
|
{
|
|
uint8_t t[20];
|
|
compute_checksum(buf, size, t);
|
|
|
|
return memcmp(ref, t, 20);
|
|
}
|
|
|
|
|
|
int get_version(uint8_t *buf, unsigned long size)
|
|
{
|
|
(void) size;
|
|
struct fwu_hdr_t *hdr = (void *)buf;
|
|
for(int i = 0; i < NR_VERSIONS; i++)
|
|
if(hdr->version == g_version[i].value)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
static int decode_block_A(uint8_t block[1020])
|
|
{
|
|
uint8_t *p = &g_check_block_A_table[32 * (block[998] & 0x1f)];
|
|
uint8_t key[32];
|
|
|
|
for(int i = 0; i < 20; i++)
|
|
{
|
|
block[1000 + i] ^= p[i];
|
|
key[i] = block[1000 + i];
|
|
}
|
|
for(int i = 20; i < 32; i++)
|
|
key[i] = key[i - 20];
|
|
|
|
for(int i = 0; i < 992; i++)
|
|
block[i] ^= key[i % 32] ^ g_check_block_A_table[i];
|
|
|
|
return check_block(block - 1, block + 1000, 1001);
|
|
}
|
|
|
|
static void compute_perm(uint8_t *keybuf, size_t size, uint8_t perm[258])
|
|
{
|
|
for(int i = 0; i < 256; i++)
|
|
perm[i] = i;
|
|
perm[256] = perm[257] = 0;
|
|
uint8_t idx = 0;
|
|
for(int i = 0; i < 256; i++)
|
|
{
|
|
uint8_t v = perm[i];
|
|
idx = (v + keybuf[i % size] + idx) % 256;
|
|
perm[i] = perm[idx];
|
|
perm[idx] = v;
|
|
}
|
|
}
|
|
|
|
static void decode_perm(uint8_t *buf, size_t size, uint8_t perm[258])
|
|
{
|
|
uint8_t idxa = perm[256];
|
|
uint8_t idxb = perm[257];
|
|
for(size_t i = 0; i < size; i++)
|
|
{
|
|
idxa = (idxa + 1) % 256;
|
|
uint8_t v = perm[idxa];
|
|
idxb = (idxb + v) % 256;
|
|
perm[idxa] = perm[idxb];
|
|
perm[idxb] = v;
|
|
buf[i] ^= perm[(v + perm[idxa]) % 256];
|
|
}
|
|
}
|
|
|
|
static void decode_block_with_perm(uint8_t *keybuf, int keysize,
|
|
uint8_t *buf, int bufsize, uint8_t perm[258])
|
|
{
|
|
compute_perm(keybuf, keysize, perm);
|
|
decode_perm(buf, bufsize, perm);
|
|
}
|
|
|
|
static void apply_perm(uint8_t *inbuf, uint8_t *outbuf, size_t size, int swap)
|
|
{
|
|
memcpy(outbuf, inbuf, size);
|
|
int a = swap & 0xf;
|
|
int b = (swap >> 4) + 16;
|
|
uint8_t v = outbuf[a];
|
|
outbuf[a] = outbuf[b];
|
|
outbuf[b] = v;
|
|
}
|
|
|
|
static void decode_block_with_swap(uint8_t keybuf[32], int swap,
|
|
uint8_t *buf, int bufsize, uint8_t perm[258])
|
|
{
|
|
uint8_t keybuf_interm[32];
|
|
|
|
apply_perm(keybuf, keybuf_interm, 32, swap);
|
|
decode_block_with_perm(keybuf_interm, 32, buf, bufsize, perm);
|
|
}
|
|
|
|
static void clear_memory(void *buf, size_t size_dwords)
|
|
{
|
|
memset(buf, 0, 4 * size_dwords);
|
|
}
|
|
|
|
static void set_bit(int bit_pos, uint32_t *buf)
|
|
{
|
|
buf[bit_pos / 32] |= 1 << (bit_pos % 32);
|
|
}
|
|
|
|
static int fill_decode_info(uint8_t sz)
|
|
{
|
|
if(sz == 2) sz = 233;
|
|
else if(sz == 3) sz = 163;
|
|
else return 1;
|
|
|
|
g_decode_A_info.nr_bits = sz;
|
|
g_decode_A_info.nr_bytes2 = sz / 8 + (sz % 8 != 0);
|
|
g_decode_A_info.nr_words = 2 * g_decode_A_info.nr_bytes2;
|
|
g_decode_A_info.nr_bytes = sz / 8 + (sz % 8 != 0);
|
|
g_decode_A_info.nr_words2 = 2 * g_decode_A_info.nr_bytes2;
|
|
g_decode_A_info.nr_dwords = sz / 32 + (sz % 32 != 0);
|
|
g_decode_A_info.size = 4 * g_decode_A_info.nr_dwords;
|
|
g_decode_A_info.nr_dwords_x8 = 8 * g_decode_A_info.nr_dwords;
|
|
g_decode_A_info.nr_dwords_m1 = g_decode_A_info.nr_dwords - 1;
|
|
g_decode_A_info.nr_dwords_x2 = 2 * g_decode_A_info.nr_dwords;
|
|
g_decode_A_info.nr_dwords_x2_m1 = g_decode_A_info.nr_dwords_x2 - 1;
|
|
g_decode_A_info.nr_dwords_x12 = 12 * g_decode_A_info.nr_dwords;
|
|
g_decode_A_info.ptr1.x = malloc(4 * g_decode_A_info.nr_dwords);
|
|
g_decode_A_info.ptr1.y = malloc(g_decode_A_info.size);
|
|
g_decode_A_info.ptr3 = malloc(g_decode_A_info.size);
|
|
g_decode_A_info.ptr4 = malloc(g_decode_A_info.size);
|
|
g_decode_A_info.field_poly = malloc(g_decode_A_info.size);
|
|
g_decode_A_info.ec_a = malloc(g_decode_A_info.size);
|
|
g_decode_A_info.ptr7 = malloc(g_decode_A_info.size);
|
|
|
|
cprintf(BLUE, " Decode Info:\n");
|
|
cprintf_field(" Nr Bits: ", "%d\n", g_decode_A_info.nr_bits);
|
|
cprintf_field(" Nr Bytes: ", "%d\n", g_decode_A_info.nr_bytes);
|
|
cprintf_field(" Nr Bytes 2: ", "%d\n", g_decode_A_info.nr_bytes2);
|
|
cprintf_field(" Nr Words: ", "%d\n", g_decode_A_info.nr_words);
|
|
cprintf_field(" Nr Words 2: ", "%d\n", g_decode_A_info.nr_words2);
|
|
cprintf_field(" Nr DWords: ", "%d\n", g_decode_A_info.nr_dwords);
|
|
cprintf_field(" Size: ", "%d\n", g_decode_A_info.size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_block_A(uint8_t block[1024])
|
|
{
|
|
cprintf(BLUE, "Block A\n");
|
|
int ret = decode_block_A(block + 4);
|
|
cprintf(GREEN, " Check: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
print_hex("BlockA", block, 1024);
|
|
|
|
memcpy(g_subblock_A, block, sizeof(g_subblock_A));
|
|
ret = fill_decode_info(g_subblock_A[276]);
|
|
cprintf(GREEN, " Info: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
|
|
int tmp = 2 * g_decode_A_info.nr_bytes2 + 38;
|
|
int offset = 1004 - tmp + 5;
|
|
g_crypto_info_byte = block[offset - 1];
|
|
g_decode_buffer = malloc(g_decode_A_info.size);
|
|
g_decode_buffer2 = malloc(g_decode_A_info.size);
|
|
|
|
memset(g_decode_buffer, 0, g_decode_A_info.size);
|
|
memset(g_decode_buffer2, 0, g_decode_A_info.size);
|
|
|
|
memcpy(g_decode_buffer, &block[offset], g_decode_A_info.nr_bytes2);
|
|
int offset2 = g_decode_A_info.nr_bytes2 + offset;
|
|
memcpy(g_decode_buffer2, &block[offset2], g_decode_A_info.nr_bytes2);
|
|
|
|
|
|
cprintf_field(" Word: ", "%d ", *(uint16_t *)&g_subblock_A[286]);
|
|
check_field(*(uint16_t *)&g_subblock_A[286], 1, "Ok\n", "Mismatch\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void decode_key_B(uint8_t buf[20], uint8_t buf2[16], uint8_t key[20])
|
|
{
|
|
for(int i = 0; i < 20; i++)
|
|
{
|
|
uint8_t v = buf[i] ^ g_decode_B_table[i];
|
|
key[i] = v;
|
|
buf[i] = v ^ buf2[i % 16];
|
|
}
|
|
}
|
|
|
|
static void decode_block_B(uint8_t *buf, uint8_t key[16], size_t size)
|
|
{
|
|
decode_key_B(&buf[size], key, g_key_B);
|
|
decode_block_with_perm(g_key_B, 20, buf, size, g_perm_B);
|
|
}
|
|
|
|
static int find_last_bit_set(uint32_t *buf, bool a)
|
|
{
|
|
int i = a ? g_decode_A_info.nr_dwords_m1 : g_decode_A_info.nr_dwords_x2_m1;
|
|
|
|
while(i >= 0 && buf[i] == 0)
|
|
i--;
|
|
if(i < 0)
|
|
return -1;
|
|
for(int j = 31; j >= 0; j--)
|
|
if(buf[i] & (1 << j))
|
|
return 32 * i + j;
|
|
return -1; // unreachable
|
|
}
|
|
|
|
static void copy_memory(uint32_t *to, uint32_t *from)
|
|
{
|
|
for(int i = 0; i < g_decode_A_info.nr_dwords; i++)
|
|
to[i] = from[i];
|
|
}
|
|
|
|
static void swap_memory(uint32_t *a, uint32_t *b)
|
|
{
|
|
for(int i = 0; i < g_decode_A_info.nr_dwords; i++)
|
|
{
|
|
uint32_t c = a[i];
|
|
a[i] = b[i];
|
|
b[i] = c;
|
|
}
|
|
}
|
|
|
|
static void shift_left(uint32_t *buf, int nr_bits)
|
|
{
|
|
for(int i = g_decode_A_info.nr_dwords_m1; i >= 0; i--)
|
|
buf[i + (nr_bits / 32)] = buf[i];
|
|
memset(buf, 0, 4 * (nr_bits / 32));
|
|
|
|
size_t size = g_decode_A_info.nr_dwords + (nr_bits + 31) / 32;
|
|
nr_bits = nr_bits % 32;
|
|
|
|
uint32_t acc = 0;
|
|
for(size_t i = 0; i < size; i++)
|
|
{
|
|
uint32_t new_val = buf[i] << nr_bits | acc;
|
|
/* WARNING if nr_bits = 0 then the right shift by 32 is undefined and so
|
|
* the following code could break. The additional AND catches this case
|
|
* and make sure the result is 0 */
|
|
acc = ((1 << nr_bits) - 1) & (buf[i] >> (32 - nr_bits));
|
|
buf[i] = new_val;
|
|
}
|
|
}
|
|
|
|
static void xor_big(uint32_t *res, uint32_t *a, uint32_t *b)
|
|
{
|
|
for(int i = 0; i < g_decode_A_info.nr_dwords_x2; i++)
|
|
res[i] = a[i] ^ b[i];
|
|
}
|
|
|
|
static void print_poly(const char *name, uint32_t *poly, int nr_dwords)
|
|
{
|
|
bool first = true;
|
|
cprintf(RED, "%s", name);
|
|
for(int dw = 0; dw < nr_dwords; dw++)
|
|
{
|
|
for(int i = 0; i < 32; i++)
|
|
{
|
|
if(!(poly[dw] & (1 << i)))
|
|
continue;
|
|
if(first)
|
|
first = false;
|
|
else
|
|
cprintf(OFF, "+");
|
|
cprintf(OFF, "x^%d", dw * 32 + i);
|
|
}
|
|
}
|
|
cprintf(OFF, "\n");
|
|
}
|
|
|
|
static void gf_inverse(uint32_t *res, uint32_t *val)
|
|
{
|
|
uint32_t *tmp = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *copy = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *copy_arg = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *tmp2 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
clear_memory(tmp, g_decode_A_info.nr_dwords_x2);
|
|
clear_memory(res, g_decode_A_info.nr_dwords);
|
|
*res = 1;
|
|
clear_memory(tmp2, g_decode_A_info.nr_dwords);
|
|
copy_memory(copy_arg, val);
|
|
copy_memory(copy, (uint32_t *)g_decode_A_info.field_poly);
|
|
|
|
for(int i = find_last_bit_set(copy_arg, 1); i; i = find_last_bit_set(copy_arg, 1))
|
|
{
|
|
int pos = i - find_last_bit_set(copy, 1);
|
|
if(pos < 0)
|
|
{
|
|
swap_memory(copy_arg, copy);
|
|
swap_memory(res, tmp2);
|
|
pos = -pos;
|
|
}
|
|
copy_memory(tmp, copy);
|
|
shift_left(tmp, pos);
|
|
xor_big(copy_arg, copy_arg, tmp);
|
|
copy_memory(tmp, tmp2);
|
|
shift_left(tmp, pos);
|
|
xor_big(res, res, tmp);
|
|
}
|
|
free(tmp);
|
|
free(copy);
|
|
free(copy_arg);
|
|
free(tmp2);
|
|
}
|
|
|
|
static void shift_left_one(uint32_t *a)
|
|
{
|
|
int pos = find_last_bit_set(a, 0) / 32 + 1;
|
|
if(pos <= 0)
|
|
return;
|
|
uint32_t v = 0;
|
|
for(int i = 0; i < pos; i++)
|
|
{
|
|
uint32_t new_val = v | a[i] << 1;
|
|
v = a[i] >> 31;
|
|
a[i] = new_val;
|
|
}
|
|
if(v)
|
|
a[pos] = v;
|
|
}
|
|
|
|
|
|
#if 1
|
|
static void gf_mult(uint32_t *res, uint32_t *a2, uint32_t *a3)
|
|
{
|
|
uint32_t *tmp2 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
clear_memory(tmp2, g_decode_A_info.nr_dwords_x2);
|
|
copy_memory(tmp2, a3);
|
|
|
|
int pos = g_decode_A_info.nr_dwords;
|
|
uint32_t mask = 1;
|
|
for(int i = 0; i < 32; i++)
|
|
{
|
|
for(int j = 0; j < g_decode_A_info.nr_dwords; j++)
|
|
{
|
|
if(a2[j] & mask)
|
|
for(int k = 0; k < pos; k++)
|
|
res[j + k] ^= tmp2[k];
|
|
}
|
|
shift_left_one(tmp2);
|
|
mask <<= 1;
|
|
pos = find_last_bit_set(tmp2, 0) / 32 + 1;
|
|
}
|
|
free(tmp2);
|
|
}
|
|
#else
|
|
static void gf_mult(uint32_t *res, uint32_t *a2, uint32_t *a3)
|
|
{
|
|
for(int i = 0; i < 32 * g_decode_A_info.nr_dwords; i++)
|
|
for(int j = 0; j < 32 * g_decode_A_info.nr_dwords; j++)
|
|
{
|
|
int k = i + j;
|
|
uint32_t v1 = (a2[i / 32] >> (i % 32)) & 1;
|
|
uint32_t v2 = (a3[j / 32] >> (j % 32)) & 1;
|
|
res[k / 32] ^= (v1 * v2) << (k % 32);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void gf_mod(uint32_t *inout, uint32_t *other)
|
|
{
|
|
uint32_t *tmp = malloc(g_decode_A_info.nr_dwords_x8);
|
|
int v4 = g_decode_A_info.field_bits;
|
|
int pos = find_last_bit_set(inout, 0);
|
|
for(int i = pos - v4; i >= 0; i = find_last_bit_set(inout, 0) - v4)
|
|
{
|
|
clear_memory(tmp, g_decode_A_info.nr_dwords_x2);
|
|
copy_memory(tmp, other);
|
|
shift_left(tmp, i);
|
|
xor_big(inout, inout, tmp);
|
|
}
|
|
free(tmp);
|
|
}
|
|
|
|
static void gf_add(uint32_t *res, uint32_t *a, uint32_t *b)
|
|
{
|
|
for(int i = 0; i < g_decode_A_info.nr_dwords; i++)
|
|
res[i] = a[i] ^ b[i];
|
|
}
|
|
|
|
static void print_point(const char *name, ec_point_t *ptr)
|
|
{
|
|
cprintf(BLUE, "%s\n", name);
|
|
print_poly(" x: ", ptr->x, g_decode_A_info.nr_dwords);
|
|
print_poly(" y: ", ptr->y, g_decode_A_info.nr_dwords);
|
|
}
|
|
|
|
static uint32_t g_gf_one[9] =
|
|
{
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
static void ec_double(ec_point_t *point, ec_point_t *res)
|
|
{
|
|
uint32_t *v2 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v3 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v4 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v5 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v6 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
clear_memory(res->x, g_decode_A_info.nr_dwords);
|
|
clear_memory(res->y, g_decode_A_info.nr_dwords);
|
|
clear_memory(v3, g_decode_A_info.nr_dwords_x2);
|
|
clear_memory(v6, g_decode_A_info.nr_dwords_x2);
|
|
clear_memory(v4, g_decode_A_info.nr_dwords_x2);
|
|
/* v4 := 1/x */
|
|
gf_inverse(v4, point->x);
|
|
clear_memory(v5, g_decode_A_info.nr_dwords_x2);
|
|
/* v5 := y/x */
|
|
gf_mult(v5, v4, point->y);
|
|
gf_mod(v5, g_decode_A_info.field_poly);
|
|
/* v2 := x + y/x (lambda) */
|
|
gf_add(v2, point->x, v5);
|
|
/* v4 := ec_a + lambda */
|
|
gf_add(v4, v2, g_decode_A_info.ec_a);
|
|
clear_memory(v3, g_decode_A_info.nr_dwords_x2);
|
|
/* v3 := lambda^2 */
|
|
gf_mult(v3, v2, v2);
|
|
gf_mod(v3, g_decode_A_info.field_poly);
|
|
/* x' := lambda + lambda^2 + ec_a */
|
|
gf_add(res->x, v4, v3);
|
|
clear_memory(v5, g_decode_A_info.nr_dwords_x2);
|
|
/* v4 := lambda + g_gf_one */
|
|
gf_add(v4, v2, g_gf_one);
|
|
/* v5 := (lambda + 1) * x' = lambda.x' + x' */
|
|
gf_mult(v5, v4, res->x);
|
|
gf_mod(v5, g_decode_A_info.field_poly);
|
|
clear_memory(v6, g_decode_A_info.nr_dwords_x2);
|
|
/* v6 := x1^2 */
|
|
gf_mult(v6, point->x, point->x);
|
|
gf_mod(v6, g_decode_A_info.field_poly);
|
|
/* y' = (lambda + g_gf_one) * x + x^2 = x^2 + lambda.x + x */
|
|
gf_add(res->y, v5, v6);
|
|
free(v2);
|
|
free(v3);
|
|
free(v4);
|
|
free(v5);
|
|
free(v6);
|
|
}
|
|
|
|
static void ec_add(ec_point_t *a1, ec_point_t *a2, ec_point_t *res)
|
|
{
|
|
uint32_t *v3 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v4 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v5 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v6 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
uint32_t *v7 = malloc(g_decode_A_info.nr_dwords_x8);
|
|
clear_memory(res->x, g_decode_A_info.nr_dwords);
|
|
clear_memory(res->y, g_decode_A_info.nr_dwords);
|
|
clear_memory(v4, g_decode_A_info.nr_dwords_x2);
|
|
clear_memory(v7, g_decode_A_info.nr_dwords_x2);
|
|
/* v5 = y1 + y2 */
|
|
gf_add(v5, a1->y, a2->y);
|
|
/* v6 = x1 + x2 */
|
|
gf_add(v6, a1->x, a2->x);
|
|
/* v7 = 1/(x1 + x2) */
|
|
gf_inverse(v7, v6);
|
|
clear_memory(v3, g_decode_A_info.nr_dwords_x2);
|
|
/* v3 = (y1 + y2) / (x1 + x2) (lambda) */
|
|
gf_mult(v3, v7, v5);
|
|
gf_mod(v3, g_decode_A_info.field_poly);
|
|
/* v5 = lambda + ec_a */
|
|
gf_add(v5, v3, g_decode_A_info.ec_a);
|
|
clear_memory(v4, g_decode_A_info.nr_dwords_x2);
|
|
/* v4 = lambda^2 */
|
|
gf_mult(v4, v3, v3);
|
|
gf_mod(v4, g_decode_A_info.field_poly);
|
|
/* v7 = lambda^2 + lambda + ec_a */
|
|
gf_add(v7, v5, v4);
|
|
/* x' = ec_a + x1 + x2 + lambda + lambda^2 */
|
|
gf_add(res->x, v7, v6);
|
|
/* v5 = x1 + x' */
|
|
gf_add(v5, a1->x, res->x);
|
|
/* v6 = x' + y1 */
|
|
gf_add(v6, res->x, a1->y);
|
|
clear_memory(v7, g_decode_A_info.nr_dwords_x2);
|
|
/* v7 = (x1 + x').lambda */
|
|
gf_mult(v7, v5, v3);
|
|
gf_mod(v7, g_decode_A_info.field_poly);
|
|
/* y' = (x1 + x').lambda + x' + y1 */
|
|
gf_add(res->y, v7, v6);
|
|
free(v3);
|
|
free(v4);
|
|
free(v5);
|
|
free(v6);
|
|
free(v7);
|
|
}
|
|
|
|
static int ec_mult(uint32_t *n, ec_point_t *point, ec_point_t *res)
|
|
{
|
|
ec_point_t res_others;
|
|
|
|
res_others.x = malloc(g_decode_A_info.size);
|
|
res_others.y = malloc(g_decode_A_info.size);
|
|
clear_memory(res->x, g_decode_A_info.nr_dwords);
|
|
clear_memory(res->y, g_decode_A_info.nr_dwords);
|
|
clear_memory(res_others.x, g_decode_A_info.nr_dwords);
|
|
clear_memory(res_others.y, g_decode_A_info.nr_dwords);
|
|
int pos = find_last_bit_set(n, 1);
|
|
|
|
/* res_other := point */
|
|
copy_memory(res_others.x, point->x);
|
|
copy_memory(res_others.y, point->y);
|
|
|
|
/* for all bit from SZ-1 downto 0 */
|
|
for(int bit = (pos % 32) - 1; bit >= 0; bit--)
|
|
{
|
|
/* res := 2 * res_other */
|
|
ec_double(&res_others, res);
|
|
/* res_other := res = 2 * res_other */
|
|
copy_memory(res_others.x, res->x);
|
|
copy_memory(res_others.y, res->y);
|
|
/* if bit of n is set */
|
|
if(n[pos / 32] & (1 << bit))
|
|
{
|
|
/* res := res_other + point */
|
|
ec_add(&res_others, point, res);
|
|
copy_memory(res_others.x, res->x);
|
|
copy_memory(res_others.y, res->y);
|
|
}
|
|
}
|
|
/* same but optimized */
|
|
for(int i = pos / 32 - 1; i >= 0; i--)
|
|
{
|
|
for(int bit = 31; bit >= 0; bit--)
|
|
{
|
|
ec_double(&res_others, res);
|
|
copy_memory(res_others.x, res->x);
|
|
copy_memory(res_others.y, res->y);
|
|
if(n[i] & (1 << bit))
|
|
{
|
|
ec_add(&res_others, point, res);
|
|
copy_memory(res_others.x, res->x);
|
|
copy_memory(res_others.y, res->y);
|
|
}
|
|
}
|
|
}
|
|
copy_memory(res->x, res_others.x);
|
|
copy_memory(res->y, res_others.y);
|
|
free(res_others.x);
|
|
free(res_others.y);
|
|
return 0;
|
|
}
|
|
|
|
static void xor_with_point(uint8_t *buf, ec_point_t *point)
|
|
{
|
|
/*
|
|
int sz = g_decode_A_info.nr_bytes2 - 1;
|
|
if(sz <= 32)
|
|
{
|
|
for(int i = 0; i < sz; i++)
|
|
buf[i] ^= point->x[i];
|
|
for(int i = sz; i < 32; i++)
|
|
buf[i] ^= point->y[i - sz];
|
|
}
|
|
else
|
|
for(int i = 0; i < 32; i++)
|
|
buf[i] ^= point->x[i];
|
|
*/
|
|
uint8_t *ptrA = (uint8_t *)point->x;
|
|
uint8_t *ptrB = (uint8_t *)point->y;
|
|
int sz = MIN(g_decode_A_info.nr_bytes2 - 1, 32);
|
|
for(int i = 0; i < sz; i++)
|
|
buf[i] ^= ptrA[i];
|
|
for(int i = sz; i < 32; i++)
|
|
buf[i] ^= ptrB[i - sz];
|
|
}
|
|
|
|
static int crypto4(uint8_t *a1, ec_point_t *ptrs, uint32_t *a3)
|
|
{
|
|
ec_point_t ptrs_others;
|
|
|
|
ptrs_others.x = malloc(g_decode_A_info.size);
|
|
ptrs_others.y = malloc(g_decode_A_info.size);
|
|
clear_memory(ptrs_others.x, g_decode_A_info.nr_dwords);
|
|
clear_memory(ptrs_others.y, g_decode_A_info.nr_dwords);
|
|
int ret = ec_mult(a3, ptrs, &ptrs_others);
|
|
if(ret == 0)
|
|
xor_with_point(a1, &ptrs_others);
|
|
free(ptrs_others.x);
|
|
free(ptrs_others.y);
|
|
return ret;
|
|
}
|
|
|
|
static int set_field_poly(uint32_t *field_poly, int field_sz)
|
|
{
|
|
clear_memory(field_poly, g_decode_A_info.nr_dwords);
|
|
g_decode_A_info.field_bits = 0;
|
|
if(field_sz == 4)
|
|
{
|
|
set_bit(0, field_poly);
|
|
set_bit(74, field_poly);
|
|
set_bit(233, field_poly);
|
|
g_decode_A_info.field_bits = 233;
|
|
return 0;
|
|
}
|
|
else if (field_sz == 5)
|
|
{
|
|
set_bit(0, field_poly);
|
|
set_bit(3, field_poly);
|
|
set_bit(6, field_poly);
|
|
set_bit(7, field_poly);
|
|
set_bit(163, field_poly);
|
|
g_decode_A_info.field_bits = 163;
|
|
return 0;
|
|
}
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static int ec_init(ec_point_t *a1, char field_sz)
|
|
{
|
|
int ret = set_field_poly(g_decode_A_info.field_poly, field_sz);
|
|
if(ret) return ret;
|
|
if(field_sz == 4)
|
|
{
|
|
copy_memory(a1->x, g_crypto_table);
|
|
copy_memory(a1->y, g_crypto_table2);
|
|
copy_memory(g_decode_A_info.ec_a, g_atj_ec233_a);
|
|
copy_memory(g_decode_A_info.ptr7, g_crypto_key6);
|
|
return 0;
|
|
}
|
|
else if(field_sz == 5 )
|
|
{
|
|
copy_memory(a1->x, g_crypto_key3);
|
|
copy_memory(a1->y, g_crypto_key4);
|
|
copy_memory(g_decode_A_info.ec_a, g_atj_ec163_a);
|
|
copy_memory(g_decode_A_info.ptr7, g_crypto_key5);
|
|
return 0;
|
|
}
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static void create_guid(void *uid, int bit_size)
|
|
{
|
|
uint8_t *p = uid;
|
|
for(int i = 0; i < bit_size / 8; i++)
|
|
p[i] = rand() % 256;
|
|
}
|
|
|
|
static int process_block_B(uint8_t block[512])
|
|
{
|
|
cprintf(BLUE, "Block B\n");
|
|
decode_block_B(block + 3, g_subblock_A + 4, 489);
|
|
cprintf_field(" Word: ", "%d ", *(uint16_t *)(block + 3));
|
|
check_field(*(uint16_t *)(block + 3), 1, "Ok\n", "Mismatch\n");
|
|
|
|
int ret = check_block(block, block + 492, 492);
|
|
cprintf(GREEN, " Check: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
|
|
g_decode_buffer3 = malloc(g_decode_A_info.size);
|
|
memset(g_decode_buffer3, 0, g_decode_A_info.size);
|
|
int offset = *(uint16_t *)(block + 13) + 16;
|
|
memcpy(g_decode_buffer3, &block[offset], g_decode_A_info.nr_bytes2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_key_fwu_v3(size_t size, uint8_t *buf, uint8_t *blockA, uint8_t *blockB,
|
|
uint8_t *keybuf, uint8_t *blo)
|
|
{
|
|
(void) size;
|
|
uint8_t smallblock[512];
|
|
uint8_t bigblock[1024];
|
|
|
|
memset(smallblock, 0, sizeof(smallblock));
|
|
memset(bigblock, 0, sizeof(bigblock));
|
|
|
|
uint8_t ba = buf[0x1ee] & 0xf;
|
|
uint8_t bb = buf[0x1fe] & 0xf;
|
|
|
|
cprintf(BLUE, "Crypto\n");
|
|
cprintf_field(" Block A: ", "%d\n", ba + 2);
|
|
cprintf_field(" Block B: ", "%d\n", ba + bb + 5);
|
|
|
|
*blockA = buf[494] & 0xf;
|
|
*blockB = buf[510] & 0xf;
|
|
memcpy(bigblock, &buf[512 * (*blockA + 2)], sizeof(bigblock));
|
|
|
|
int ret = process_block_A(bigblock);
|
|
if(ret != 0)
|
|
return ret;
|
|
|
|
memcpy(smallblock, &buf[512 * (*blockA + *blockB + 5)], sizeof(smallblock));
|
|
ret = process_block_B(smallblock);
|
|
if(ret != 0)
|
|
return ret;
|
|
|
|
cprintf(BLUE, "Main\n");
|
|
|
|
struct fwu_crypto_hdr_t crypto_hdr;
|
|
memcpy(&crypto_hdr, buf + sizeof(struct fwu_hdr_t), sizeof(crypto_hdr));
|
|
cprintf_field(" Byte: ", "%d ", crypto_hdr.unk);
|
|
check_field(crypto_hdr.unk, 3, "Ok\n", "Mismatch\n");
|
|
|
|
ec_point_t ptrs;
|
|
ptrs.x = malloc(g_decode_A_info.size);
|
|
ptrs.y = malloc(g_decode_A_info.size);
|
|
memset(ptrs.x, 0, g_decode_A_info.size);
|
|
memset(ptrs.y, 0, g_decode_A_info.size);
|
|
memcpy(ptrs.x, buf + 91, g_decode_A_info.nr_bytes2);
|
|
memcpy(ptrs.y, buf + 91 + g_decode_A_info.nr_bytes2, g_decode_A_info.nr_bytes2);
|
|
|
|
ret = ec_init(&g_decode_A_info.ptr1, g_crypto_info_byte);
|
|
cprintf(GREEN, " Crypto bits copy: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
|
|
ret = crypto4(crypto_hdr.key, &ptrs, g_decode_buffer3);
|
|
cprintf(GREEN, " Crypto 4: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
|
|
memcpy(keybuf, crypto_hdr.key, 32);
|
|
int offset = g_decode_A_info.nr_words + 91;
|
|
|
|
decode_block_with_swap(keybuf, 0, &buf[offset], 512 - offset, g_perm_B);
|
|
|
|
int pos = *(uint16_t *)&buf[offset];
|
|
cprintf_field(" Word: ", "%d ", pos);
|
|
int tmp = g_decode_A_info.nr_words2 + 199;
|
|
check_field(pos, 510 - tmp, "Ok\n", "Mismatch\n");
|
|
|
|
uint8_t midbuf[108];
|
|
memcpy(midbuf, &buf[pos + offset + 2], sizeof(midbuf));
|
|
|
|
cprintf_field(" Byte: ", "%d ", midbuf[0]);
|
|
check_field(midbuf[0], 2, "Ok\n", "Invalid\n");
|
|
cprintf_field(" DWord: ", "%d ", *(uint32_t *)&midbuf[1]);
|
|
check_field(*(uint32_t *)&midbuf[1], 2056, "Ok\n", "Invalid\n");
|
|
cprintf_field(" DWord: ", "%d ", *(uint32_t *)&midbuf[5]);
|
|
check_field(*(uint32_t *)&midbuf[5], 8, "Ok\n", "Invalid\n");
|
|
cprintf_field(" Byte: ", "%d ", midbuf[41]);
|
|
check_field(midbuf[41], 190, "Ok\n", "Invalid\n");
|
|
|
|
memset(blo, 0, 512);
|
|
create_guid(smallblock, 3808);
|
|
memcpy(smallblock + 476, midbuf + 42, 16);
|
|
compute_checksum(smallblock, 492, blo + 492);
|
|
int bsz = blo[500];
|
|
memcpy(blo, smallblock, bsz);
|
|
memcpy(blo + bsz, midbuf + 42, 16);
|
|
memcpy(blo + bsz + 16, smallblock + bsz, 476 - bsz);
|
|
|
|
decode_block_with_perm(blo + 492, 16, blo, 492, g_perm_B);
|
|
ret = check_block(buf + 42, midbuf + 88, 450);
|
|
cprintf(GREEN, " Decode block: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
|
|
ret = memcmp(g_subblock_A + 4, midbuf + 9, 16);
|
|
cprintf(GREEN, " Compare: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
|
|
/*
|
|
ret = memcmp(midbuf + 25, zero, sizeof(zero));
|
|
cprintf(GREEN, " Sanity: ");
|
|
check_field(ret, 0, "Pass\n", "Fail\n");
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* stolen from https://github.com/nfd/atj2127decrypt, I have no idea from where
|
|
* he got this sequence of code. This code is really weird, I copy verbatim
|
|
* his authors comment below. */
|
|
uint32_t atj2127_key[] =
|
|
{
|
|
0x42146ea2, 0x892c8e85, 0x9f9f6d27, 0x545fedc3,
|
|
0x09e5c0ca, 0x2dfa7e61, 0x4e5322e6, 0xb19185b9
|
|
};
|
|
|
|
/* decrypt a 512-byte sector */
|
|
static void atj2127_decrypt_sector(void *inbuf, size_t size,
|
|
uint32_t session_key[8], int rounds_to_perform)
|
|
{
|
|
uint32_t key[8];
|
|
for(int i = 0; i < 8; i++)
|
|
key[i] = atj2127_key[i] ^ session_key[i];
|
|
uint32_t *buf = inbuf;
|
|
if(size % 32)
|
|
cprintf(GREY, "Size is not a multiple of 32!!!\n");
|
|
while(rounds_to_perform > 0)
|
|
{
|
|
uint32_t rollover = buf[7] ^ session_key[7];
|
|
|
|
buf[0] ^= key[1];
|
|
buf[1] ^= key[2];
|
|
buf[2] ^= key[3];
|
|
buf[3] ^= key[4];
|
|
buf[4] ^= key[5];
|
|
buf[5] ^= key[6];
|
|
buf[6] ^= key[7];
|
|
buf[7] ^= key[1] ^ key[4];
|
|
|
|
key[1] = key[2];
|
|
key[2] = key[3];
|
|
key[3] = key[4];
|
|
key[4] = key[5];
|
|
key[5] = key[6];
|
|
key[6] = key[7];
|
|
key[7] = rollover;
|
|
|
|
buf += 8;
|
|
rounds_to_perform -= 1;
|
|
}
|
|
}
|
|
|
|
static void atj2127_decrypt(uint8_t *dst, const uint8_t *src, size_t size,
|
|
uint8_t keybuf[32], int rounds_to_perform)
|
|
{
|
|
cprintf(BLUE, "ATJ2127:\n");
|
|
cprintf_field(" Rounds: ", "%d\n", rounds_to_perform);
|
|
while(size > 0)
|
|
{
|
|
int sec_sz = MIN(size, 512);
|
|
memcpy(dst, src, sec_sz);
|
|
atj2127_decrypt_sector(dst, sec_sz, (uint32_t *)keybuf, rounds_to_perform);
|
|
src += sec_sz;
|
|
dst += sec_sz;
|
|
size -= sec_sz;
|
|
}
|
|
}
|
|
|
|
static int decrypt_fwu_v3(uint8_t *buf, size_t *size, uint8_t block[512], enum fwu_mode_t mode)
|
|
{
|
|
uint8_t blockA;
|
|
uint8_t blockB;
|
|
uint8_t keybuf[32];
|
|
struct fwu_hdr_t *hdr = (void *)buf;
|
|
memset(keybuf, 0, sizeof(keybuf));
|
|
int ret = get_key_fwu_v3(*size, buf, &blockA, &blockB, keybuf, block);
|
|
if(ret != 0)
|
|
return ret;
|
|
|
|
size_t file_size = *size;
|
|
/* the input buffer is reorganized based on two offsets (blockA and blockB),
|
|
* skip 2048 bytes of data used for crypto init */
|
|
*size = hdr->fw_size; /* use firmware size, not file size */
|
|
*size -= 2048;
|
|
uint8_t *tmpbuf = malloc(*size);
|
|
memset(tmpbuf, 0, *size);
|
|
int offsetA = (blockA + 1) << 9;
|
|
int offsetB = (blockB + 1) << 9;
|
|
memcpy(tmpbuf, buf + 512, offsetA);
|
|
memcpy(tmpbuf + offsetA, buf + offsetA + 1536, offsetB);
|
|
memcpy(tmpbuf + offsetA + offsetB,
|
|
buf + offsetA + 1536 + offsetB + 512, *size - offsetA - offsetB);
|
|
/* stolen from https://github.com/nfd/atj2127decrypt, I have no idea from where
|
|
* he got this sequence of code. This code is really weird, I copy verbatim
|
|
* his authors comment below.
|
|
*
|
|
* This is really weird. This is passed to the decrypt-sector function and
|
|
* determines how much of each 512-byte sector to decrypt, where for every
|
|
* 32MB of size above the first 32MB, one 32 byte chunk of each sector
|
|
* (starting from the end) will remain unencrypted, up to a maximum of 480
|
|
* bytes of plaintext. Was this a speed-related thing? It just seems
|
|
* completely bizarre. */
|
|
|
|
/* NOTE: the original code uses the file length to determine how much
|
|
* to encrypt and not the size reported in the header. Since
|
|
* the file size can be different from the size reported in the header
|
|
* (the infamous 512 bytes described above), this might be wrong. */
|
|
int rounds_to_perform = 16 - (file_size >> 0x19);
|
|
if(rounds_to_perform <= 0)
|
|
rounds_to_perform = 1;
|
|
/* the ATJ213x and ATJ2127 do not use the same encryption at this point, and I
|
|
* don't see any obvious way to tell which encryption is used (since they
|
|
* use the same version above). */
|
|
bool is_atj2127 = false;
|
|
if(mode == FWU_AUTO)
|
|
{
|
|
uint8_t hdr_buf[512];
|
|
atj2127_decrypt(hdr_buf, tmpbuf, sizeof(hdr_buf), keybuf, rounds_to_perform);
|
|
is_atj2127 = afi_check(hdr_buf, sizeof(hdr_buf));
|
|
if(is_atj2127)
|
|
cprintf(BLUE, "File looks like an ATJ2127 firmware\n");
|
|
else
|
|
cprintf(BLUE, "File does not looks like an ATJ2127 firmware\n");
|
|
}
|
|
else if(mode == FWU_ATJ2127)
|
|
is_atj2127 = true;
|
|
|
|
if(is_atj2127)
|
|
atj2127_decrypt(buf, tmpbuf, *size, keybuf, rounds_to_perform);
|
|
else
|
|
{
|
|
compute_perm(keybuf, 32, g_perm_B);
|
|
decode_perm(tmpbuf, *size, g_perm_B);
|
|
memcpy(buf, tmpbuf, *size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t fwu_checksum(void *buf, size_t size)
|
|
{
|
|
if(size % 4)
|
|
cprintf(GREY, "WARNING: checksum of buffer whose length is not a multiple of 4");
|
|
uint32_t *p = buf;
|
|
uint32_t sum = 0;
|
|
for(size_t i = 0; i < size / 4; i++)
|
|
sum += *p++;
|
|
return sum;
|
|
}
|
|
|
|
int fwu_decrypt(uint8_t *buf, size_t *size, enum fwu_mode_t mode)
|
|
{
|
|
struct fwu_hdr_t *hdr = (void *)buf;
|
|
|
|
if(*size < sizeof(struct fwu_hdr_t))
|
|
{
|
|
cprintf(GREY, "File too small\n");
|
|
return 1;
|
|
}
|
|
cprintf(BLUE, "Header\n");
|
|
cprintf(GREEN, " Signature:");
|
|
for(int i = 0; i < FWU_SIG_SIZE; i++)
|
|
cprintf(YELLOW, " %02x", hdr->sig[i]);
|
|
if(memcmp(hdr->sig, g_fwu_signature, FWU_SIG_SIZE) == 0)
|
|
cprintf(RED, " Ok\n");
|
|
else
|
|
{
|
|
cprintf(RED, " Mismatch\n");
|
|
return 1;
|
|
}
|
|
|
|
cprintf_field(" FW size: ", "%d ", hdr->fw_size);
|
|
if(hdr->fw_size == *size)
|
|
cprintf(RED, " Ok\n");
|
|
else if(hdr->fw_size < *size)
|
|
cprintf(RED, " Ok (file greater than firmware)\n");
|
|
else
|
|
{
|
|
cprintf(RED, " Error (file too small)\n");
|
|
return 1;
|
|
}
|
|
|
|
cprintf_field(" Block size: ", "%d ", hdr->block_size);
|
|
check_field(hdr->block_size, FWU_BLOCK_SIZE, "Ok\n", "Invalid\n");
|
|
|
|
cprintf_field(" Version: ", "%x ", hdr->version);
|
|
int ver = get_version(buf, *size);
|
|
if(ver < 0)
|
|
{
|
|
cprintf(RED, "(Unknown)\n");
|
|
return 1;
|
|
}
|
|
else
|
|
cprintf(RED, "(Ver. %d)\n", g_version[ver].version);
|
|
|
|
cprintf_field(" Unknown: ", "0x%x ", hdr->unk);
|
|
check_field(hdr->unk, g_version[ver].unk, "Ok\n", "Invalid\n");
|
|
|
|
cprintf(GREEN, " Signature:");
|
|
for(int i = 0; i < FWU_SIG_SIZE; i++)
|
|
cprintf(YELLOW, " %02x", hdr->sig2[i]);
|
|
if(memcmp(hdr->sig2, g_version[ver].sig2, FWU_SIG_SIZE) == 0)
|
|
cprintf(RED, " Ok\n");
|
|
else
|
|
{
|
|
cprintf(RED, " Mismatch\n");
|
|
return 2;
|
|
}
|
|
|
|
/* check whether the firmware has a FwuTail (as far as I know, there is no flag anywhere that
|
|
* indicates its presence or not) */
|
|
struct fwu_tail_t *tail = (void *)(buf + hdr->fw_size - sizeof(struct fwu_tail_t));
|
|
if(tail->flags == 0x55aa55aa && strcmp((char *)tail->desc, "FwuTail") == 0)
|
|
{
|
|
cprintf(BLUE, "Tail\n");
|
|
cprintf_field(" Length: ", "%d ", tail->length);
|
|
check_field_soft(tail->length, 1, "Ok\n", "Fail\n");
|
|
cprintf_field(" Type: ", "%d ", tail->type);
|
|
check_field_soft(tail->type, 7, "Ok\n", "Fail\n");
|
|
cprintf_field(" FW checksum: ", "%x ", tail->fwu_checksum);
|
|
check_field_soft(fwu_checksum(buf, hdr->fw_size - sizeof(struct fwu_tail_t)),
|
|
tail->fwu_checksum, "Ok\n", "Mismatch\n");
|
|
cprintf(GREEN, " FW CRC Checksum: ");
|
|
for(unsigned i = 0; i < sizeof(tail->fwu_crc_checksum); i++)
|
|
cprintf(YELLOW, "%02x", tail->fwu_crc_checksum[i]);
|
|
cprintf(RED, " Ignored (should be 0)\n");
|
|
cprintf_field(" Tail checksum: ", "%x ", tail->fwutail_checksum);
|
|
check_field_soft(fwu_checksum(tail, sizeof(struct fwu_tail_t) - 4),
|
|
tail->fwutail_checksum, "Ok\n", "Mismatch\n");
|
|
/* if it has a tail, the firmware size includes it, so we need to decrease it to avoid
|
|
* "decrypting" the tail and output garbage */
|
|
hdr->fw_size -= sizeof(struct fwu_tail_t);
|
|
}
|
|
else
|
|
cprintf(BLUE, "Firmware does not seem to have a tail\n");
|
|
|
|
if(g_version[ver].version == 3)
|
|
{
|
|
uint8_t block[512];
|
|
memset(block, 0, sizeof(block));
|
|
return decrypt_fwu_v3(buf, size, block, mode);
|
|
}
|
|
else
|
|
{
|
|
cprintf(GREY, "Unsupported version: %d\n", g_version[ver].version);
|
|
return 1;
|
|
}
|
|
|
|
}
|
|
|
|
bool fwu_check(uint8_t *buf, size_t size)
|
|
{
|
|
struct fwu_hdr_t *hdr = (void *)buf;
|
|
|
|
if(size < sizeof(struct fwu_hdr_t))
|
|
return false;
|
|
return memcmp(hdr->sig, g_fwu_signature, FWU_SIG_SIZE) == 0;
|
|
}
|