rockbox/firmware/target/mips/ingenic_x1000/clk-x1000.c
Dana Conrad 3e7a09cb0d New Port: Eros Q Native
What works:
- LCD: 16-bit RGB565
- all buttons, including scrollwheel
- SD Card
- Battery level and charging/not charging status
- USB
- audio
- sample rate switching
- HP / LO detect, with "safe" fixed LO volume -
   LO volume will only be put to user-defined max volume
   if headphones are not present.
- rtc
- Plugins build, tried a couple and they seem OK
- Bootloader, installable to nand via usbboot

What doesn't work:
- Dual Boot
- power on/off has intermittent, low volume audio click
   (sometimes it's completely silent, sometimes there's
    a click)
- Audio uses 16-bit volume scaling, so clicking/popping
   is pretty bad at lower volumes - need 32 bit volume
   scaling, 24 bit I2S data
- USB HID keys not yet defined
- no jztool support

Unknowns:
- Stereo Switch pins: Direction select, AC_DC
   (probably not even hooked up)
- What is the actual purpose of the Stereo Swtich?
- How does the bluetooth module connect?

"Someday" stuff:
- get LCD working at higher bit depth
- Bluetooth

Change-Id: I70dda8fc092c6e3f4352f2245e4164193f803c33
2021-07-18 12:14:35 +00:00

355 lines
11 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "system.h"
#include "clk-x1000.h"
#include "boot-x1000.h"
#include "x1000/cpm.h"
#include "x1000/msc.h"
#include "x1000/aic.h"
struct clk_info {
uint8_t mux_reg; /* offset from CPM_BASE for mux register */
uint8_t mux_shift; /* shift to get mux */
uint8_t mux_mask; /* mask to get mux after shifting */
uint8_t mux_type; /* type of mux, maps register bits to clock source */
uint8_t div_reg; /* offset from CPM_BASE for divider register */
uint8_t div_shift; /* shift to get divider */
uint8_t div_mask; /* mask to get divider after shifting */
uint8_t miscbits; /* inclk shift, clkgr bit, and fake mux value */
};
/* Ugliness to pack/unpack stuff in clk_info->miscbits */
#define INCLK_SHIFT(n) ((n) & 1)
#define CLKGR_BIT(n) (((n) & 0x1f) << 1)
#define FAKEMUX(n) (((n) & 3) << 6)
#define GET_INCLK_SHIFT(miscbits) ((miscbits) & 1)
#define GET_CLKGR_BIT(miscbits) (((miscbits) >> 1) & 0x1f)
#define GET_FAKEMUX(miscbits) (((miscbits) >> 6) & 3)
/* Clock sources -- the order here is important! */
#define S_STOP 0
#define S_EXCLK 1
#define S_APLL 2
#define S_MPLL 3
#define S_SCLK_A 4
/* Muxes */
#define MUX_TWOBIT 0
#define MUX_ONEBIT 1
#define MUX_USB 2
#define MUX_PHONY 3
#define MUX_NUM_TYPES 4
/* Ugliness to define muxes */
#define MKSEL(x,i) (((x) & 0xf) << ((i)*4))
#define GETSEL(x,i) (((x) >> ((i)*4)) & 0xf)
#define STOP(i) MKSEL(S_STOP, i)
#define EXCLK(i) MKSEL(S_EXCLK, i)
#define APLL(i) MKSEL(S_APLL, i)
#define MPLL(i) MKSEL(S_MPLL, i)
#define SCLK_A(i) MKSEL(S_SCLK_A, i)
#define MKMUX(a,b,c,d) (a(0)|b(1)|c(2)|d(3))
/* Ugliness to shorten the clk_info table */
#define JA(x) (JA_CPM_##x & 0xff)
#define BM(x) ((BM_CPM_##x) >> (BP_CPM_##x))
#define BP(x) (BP_CPM_##x)
#define CG(x) CLKGR_BIT(BP_CPM_CLKGR_##x)
#define M(r,f,t) JA(r), BP(r##_##f), BM(r##_##f), t
#define D(r,f) JA(r), BP(r##_##f), BM(r##_##f)
static const uint16_t clk_mux[MUX_NUM_TYPES] = {
/* 00 01 10 11 */
MKMUX(STOP, SCLK_A, MPLL, STOP), /* MUX_TWOBIT */
MKMUX(SCLK_A, MPLL, STOP, STOP), /* MUX_ONEBIT */
MKMUX(EXCLK, EXCLK, SCLK_A, MPLL), /* MUX_USB */
MKMUX(EXCLK, APLL, MPLL, SCLK_A), /* MUX_PHONY */
};
/* Keep in order with enum x1000_clk_t */
const struct clk_info clk_info[X1000_NUM_SIMPLE_CLKS] = {
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(0)},
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(1)},
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(2)},
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(3)},
{M(CCR, SEL_CPLL, MUX_TWOBIT), D(CCR, CDIV), CG(CPU_BIT)},
{M(CCR, SEL_CPLL, MUX_TWOBIT), D(CCR, L2DIV), CG(CPU_BIT)},
{M(CCR, SEL_H0PLL, MUX_TWOBIT), D(CCR, H0DIV), CG(AHB0)},
{M(CCR, SEL_H2PLL, MUX_TWOBIT), D(CCR, H2DIV), CG(APB0)},
{M(CCR, SEL_H2PLL, MUX_TWOBIT), D(CCR, PDIV), CG(APB0)},
{M(DDRCDR, CLKSRC, MUX_TWOBIT), D(DDRCDR, CLKDIV), CG(DDR)},
{M(LPCDR, CLKSRC, MUX_ONEBIT), D(LPCDR, CLKDIV), CG(LCD)},
{M(MSC0CDR, CLKSRC, MUX_ONEBIT), D(MSC0CDR, CLKDIV), CG(MSC0)|INCLK_SHIFT(1)},
{M(MSC0CDR, CLKSRC, MUX_ONEBIT), D(MSC1CDR, CLKDIV), CG(MSC1)|INCLK_SHIFT(1)},
{M(SSICDR, SFC_CS, MUX_ONEBIT), D(SSICDR, CLKDIV), CG(SFC)},
{M(USBCDR, CLKSRC, MUX_USB), D(USBCDR, CLKDIV), CG(OTG)},
};
static uint32_t clk_get_in_rate(uint8_t mux_type, uint32_t mux)
{
uint32_t reg, onbit;
uint32_t src = GETSEL(clk_mux[mux_type], mux);
again:
switch(src) {
default: return 0;
case S_EXCLK: return X1000_EXCLK_FREQ;
case S_APLL: reg = REG_CPM_APCR; onbit = BM_CPM_APCR_ON; break;
case S_MPLL: reg = REG_CPM_MPCR; onbit = BM_CPM_MPCR_ON; break;
case S_SCLK_A: src = jz_readf(CPM_CCR, SEL_SRC); goto again;
}
if(!(reg & onbit))
return 0;
uint32_t rate = X1000_EXCLK_FREQ;
rate *= jz_vreadf(reg, CPM_APCR, PLLM) + 1;
rate /= jz_vreadf(reg, CPM_APCR, PLLN) + 1;
rate >>= jz_vreadf(reg, CPM_APCR, PLLOD);
return rate;
}
static uint32_t clk_get_simple(const struct clk_info* info)
{
if(REG_CPM_CLKGR & (1 << GET_CLKGR_BIT(info->miscbits)))
return 0;
uint32_t base = 0xb0000000;
uint32_t mux_reg = *(const volatile uint32_t*)(base + info->mux_reg);
uint32_t div_reg = *(const volatile uint32_t*)(base + info->div_reg);
uint32_t mux = (mux_reg >> info->mux_shift) & info->mux_mask;
uint32_t div = (div_reg >> info->div_shift) & info->div_mask;
mux |= GET_FAKEMUX(info->miscbits);
uint32_t rate = clk_get_in_rate(info->mux_type, mux);
rate >>= GET_INCLK_SHIFT(info->miscbits);
rate /= (div + 1);
return rate;
}
#ifndef BOOTLOADER
static uint32_t clk_get_i2s_mclk(void)
{
if(jz_readf(CPM_CLKGR, AIC))
return 0;
uint32_t reg = REG_CPM_I2SCDR;
unsigned long long rate;
if(jz_vreadf(reg, CPM_I2SCDR, CS) == 0)
rate = X1000_EXCLK_FREQ;
else {
if(jz_vreadf(reg, CPM_I2SCDR, PCS) == 0)
rate = clk_get(X1000_CLK_SCLK_A);
else
rate = clk_get(X1000_CLK_MPLL);
rate *= jz_vreadf(reg, CPM_I2SCDR, DIV_M);
rate /= jz_vreadf(reg, CPM_I2SCDR, DIV_N);
}
/* Clamp invalid setting to 32 bits */
if(rate > 0xffffffffull)
rate = 0xffffffff;
return rate;
}
static uint32_t clk_get_i2s_bclk(void)
{
return clk_get_i2s_mclk() / (REG_AIC_I2SDIV + 1);
}
static uint32_t clk_get_decimal(x1000_clk_t clk)
{
switch(clk) {
case X1000_CLK_I2S_MCLK: return clk_get_i2s_mclk();
case X1000_CLK_I2S_BCLK: return clk_get_i2s_bclk();
default: return 0;
}
}
#endif
uint32_t clk_get(x1000_clk_t clk)
{
#ifndef BOOTLOADER
if(clk >= X1000_NUM_SIMPLE_CLKS)
return clk_get_decimal(clk);
#endif
return clk_get_simple(&clk_info[clk]);
}
const char* clk_get_name(x1000_clk_t clk)
{
switch(clk) {
#define CASE(x) case X1000_CLK_##x: return #x
CASE(EXCLK);
CASE(APLL);
CASE(MPLL);
CASE(SCLK_A);
CASE(CPU);
CASE(L2CACHE);
CASE(AHB0);
CASE(AHB2);
CASE(PCLK);
CASE(DDR);
CASE(LCD);
CASE(MSC0);
CASE(MSC1);
CASE(SFC);
CASE(USB);
CASE(I2S_MCLK);
CASE(I2S_BCLK);
#undef CASE
default:
return "NONE";
}
}
/* At present we've only got 24 MHz targets, and they are all using
* the same "standard" configuration. */
#if X1000_EXCLK_FREQ == 24000000
void clk_init_early(void)
{
jz_writef(CPM_MPCR, ENABLE(0));
while(jz_readf(CPM_MPCR, ON));
/* 24 MHz * 25 = 600 MHz */
jz_writef(CPM_MPCR, BS(1), PLLM(25 - 1), PLLN(0), PLLOD(0), ENABLE(1));
while(jz_readf(CPM_MPCR, ON) == 0);
/* 600 MHz / 3 = 200 MHz */
clk_set_ddr(X1000_CLK_MPLL, 3);
}
void clk_init(void)
{
/* make sure we only initialize the clocks once */
if(get_boot_flag(BOOT_FLAG_CLK_INIT))
return;
clk_set_ccr_mux(CLKMUX_SCLK_A(EXCLK) |
CLKMUX_CPU(SCLK_A) |
CLKMUX_AHB0(SCLK_A) |
CLKMUX_AHB2(SCLK_A));
clk_set_ccr_div(CLKDIV_CPU(1) |
CLKDIV_L2(1) |
CLKDIV_AHB0(1) |
CLKDIV_AHB2(1) |
CLKDIV_PCLK(1));
jz_writef(CPM_APCR, ENABLE(0));
while(jz_readf(CPM_APCR, ON));
/* 24 MHz * 42 = 1008 MHz */
jz_writef(CPM_APCR, BS(1), PLLM(42 - 1), PLLN(0), PLLOD(0), ENABLE(1));
while(jz_readf(CPM_APCR, ON) == 0);
#if (defined(FIIO_M3K) || defined(EROS_QN))
/* TODO: Allow targets to define their clock frequencies in their config,
* instead of having this be a random special case. */
if(get_boot_option() == BOOT_OPTION_ROCKBOX) {
clk_set_ccr_div(CLKDIV_CPU(1) | /* 1008 MHz */
CLKDIV_L2(2) | /* 504 MHz */
CLKDIV_AHB0(5) | /* 201.6 MHz */
CLKDIV_AHB2(5) | /* 201.6 MHz */
CLKDIV_PCLK(10)); /* 100.8 MHz */
clk_set_ccr_mux(CLKMUX_SCLK_A(APLL) |
CLKMUX_CPU(SCLK_A) |
CLKMUX_AHB0(SCLK_A) |
CLKMUX_AHB2(SCLK_A));
/* DDR to 201.6 MHz */
clk_set_ddr(X1000_CLK_SCLK_A, 5);
/* Disable MPLL */
jz_writef(CPM_MPCR, ENABLE(0));
while(jz_readf(CPM_MPCR, ON));
} else {
#endif
clk_set_ccr_div(CLKDIV_CPU(1) | /* 1008 MHz */
CLKDIV_L2(2) | /* 504 MHz */
CLKDIV_AHB0(3) | /* 200 MHz */
CLKDIV_AHB2(3) | /* 200 MHz */
CLKDIV_PCLK(6)); /* 100 MHz */
clk_set_ccr_mux(CLKMUX_SCLK_A(APLL) |
CLKMUX_CPU(SCLK_A) |
CLKMUX_AHB0(MPLL) |
CLKMUX_AHB2(MPLL));
#if (defined(FIIO_M3K) || defined(EROS_QN))
}
#endif
/* mark that clocks have been initialized */
set_boot_flag(BOOT_FLAG_CLK_INIT);
}
#else
# error "please write a new clk_init() for this EXCLK frequency"
#endif
#define CCR_MUX_BITS jz_orm(CPM_CCR, SEL_SRC, SEL_CPLL, SEL_H0PLL, SEL_H2PLL)
#define CCR_DIV_BITS jz_orm(CPM_CCR, CDIV, L2DIV, H0DIV, H2DIV, PDIV)
#define CSR_MUX_BITS jz_orm(CPM_CSR, SRC_MUX, CPU_MUX, AHB0_MUX, AHB2_MUX)
#define CSR_DIV_BITS jz_orm(CPM_CSR, H2DIV_BUSY, H0DIV_BUSY, CDIV_BUSY)
void clk_set_ccr_mux(uint32_t muxbits)
{
/* Set new mux configuration */
uint32_t reg = REG_CPM_CCR;
reg &= ~CCR_MUX_BITS;
reg |= muxbits & CCR_MUX_BITS;
REG_CPM_CCR = reg;
/* Wait for mux change to complete */
while((REG_CPM_CSR & CSR_MUX_BITS) != CSR_MUX_BITS);
}
void clk_set_ccr_div(uint32_t divbits)
{
/* Set new divider configuration */
uint32_t reg = REG_CPM_CCR;
reg &= ~CCR_DIV_BITS;
reg |= divbits & CCR_DIV_BITS;
reg |= jz_orm(CPM_CCR, CE_CPU, CE_AHB0, CE_AHB2);
REG_CPM_CCR = reg;
/* Wait until divider change completes */
while(REG_CPM_CSR & CSR_DIV_BITS);
/* Disable CE bits after change */
jz_writef(CPM_CCR, CE_CPU(0), CE_AHB0(0), CE_AHB2(0));
}
void clk_set_ddr(x1000_clk_t src, uint32_t div)
{
/* Write new configuration */
jz_writef(CPM_DDRCDR, CE(1), CLKDIV(div - 1),
CLKSRC(src == X1000_CLK_MPLL ? 2 : 1));
/* Wait until mux and divider change are complete */
while(jz_readf(CPM_CSR, DDR_MUX) == 0);
while(jz_readf(CPM_DDRCDR, BUSY));
/* Disable CE bit after change */
jz_writef(CPM_DDRCDR, CE(0));
}